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Outline

o We revisit and refine an old approach to the S-matrix based on computing the

path integral subject to asymptotic boundary conditions

o Definition in terms of asymptotic data makes this approach well suited to

studying implications of asymptotic symmetries

o Discuss relation to “Carrollian” picture of the S-matrix, and utility in

understanding the Minkowski S-matrix from the flat space limit of AdS



Motivation from AdS/CFT

o AdS/CFT analogy: two ways to compute boundary correlators

GKP/W: ¢bulk (1, Z) ~ r27%4(Z) +... ( non-normalizable mode)

Z[CE]Z/Q5 A_dqu%ulke”b“lk[%“lk] —  (O(21)...0 (0)) ~ —5 —5 Z(¢]

0P (213'1) 0Q (xn) $=0

BDHM: (O(z1)...0(xy)) = lim re .rﬁ(qﬁ(rl, 1) ...0(Tn, Tn))bulk

r—00

Prescriptions are equivalent, possibly up to contact terms

Proof: consider bulk path integral with bulk source . and bndy condition ¢
To establish equivalence one shows that z[¢,J] depends on(#,J) only through:

d5(x) = ¢(x) +/dd+1x’\/§G (z;2") J (z')
S~~~ G = bulk-bulk propagator
P(x) = / d%/'vhK (7" (@) K = bulk-boundary propagator
OAdS

Use substitution / GJ < / K¢ to toggle between Z[0, J] <+ Z[¢; 0]



S-matrix

o BDHM clearly analogous to LSZ. Makes manifest that correlators are

computed by Feynman/Witten diagrams
o What is the analog of GKP/W for the flat space S-matrix?

o Consider a massless scalar field on Minkowski space

I—i—

7-

o Impose asymptotic boundary conditions at null infinity and evaluate action as

functional of the boundary data
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S-matrix

o Boundary conditions should fix unique classical solution, and for S-matrix should

involve both past and future boundaries

o Fix positive(negative) frequency field content at past(future) null infinity

= Z b};eiw“t + pos. freq. part
n

by, , bl

n, independent

¢ = Z bne "t 4 neg. freq. part
L v )

a-l- = fixed

o Action: I[¢,¢] = / d*x <%¢V2q§ — V(qb)) + Ibndy |9, )



Boundary terms

o Boundary terms can be deduced by demanding good variational principle

1
I = /d433 <§¢v2¢ — V(qb)> + Ipndy

Demand 61 = (EoM) when d¢_, = 0

— Tpnay = (9_,d)z+ — (b4, ) 1-

where (61,62)s = - / BT (610,65 — D1 d2)

o Same basic story for more complicated theories (gauge theory, gravity)



S-matrix

o Path integral with prescribed boundary data

2[6,,3_] = /_ Dl

¢+7¢—
o The claim is that this gives the S-matrix operator according to

n

l.e. (p),...ph;out|ps,pa...;in) = (p),ph,...|S[d]lp1, D2, - - .)

o Equivalently, Z|¢] serves as generating function for S-matrix

) 4 4 ) —
T, ...phout|pr,pa...;in) = A
e N E AR AR I FAl Y R

$=0

o Agreement with LSZ (when both are defined) can be established
by same argument as for GKP/W = BDHM



Comments

o Via these arguments we rediscover an old proposal (AFS)
who worked with the coherent state matrix elements of the S-operator

o This formulation of the S-matrix pops up occasionally but is rarely used, because in
most cases evaluation of the action involves the standard Feynman diagram

expansion.

o We take the perspective that the AFS formulation is more holographic in spirit, so

may provide insight into holography, asymptotic symmetries, etc.



Free theory: Particle creation in curved space

o For a free scalar field the action reduces to boundary terms:
I= (5—7¢+)I+ + (5+7¢—)I‘

o Obviously boring in Minkowski space, but considered curved metric:
guu(x) — Ny In any direction

o~ e—iwt

o Mode solutions:

up = ) (ijv; + Bijv;)

J

Just need to find the right combination of {u,u*} or {v,v*} that obeys
boundary conditions {¢,.4_}. Plugging é_ => blu;, ¢, => bw; into bndy
action gives S-matrix:

~ . 1
_ .o I=1p) . —

o Yields known result obtained more laboriously from operator methods (Dewitt)

1 1
. exp {b* (' =1)b+ 5boflﬁb — 5szﬁ*orlb}



Bulk and boundary actions
o Path integral gives “partition function” definedon Z =7~ UZ™"

o Gives partition function of hypothetical “"Carrollian theory”  (Bamich, Troessaert

Bagchi, Banerjee, Basu, Dutta
Donnay, Fiorucci, Herfray, Ruzziconi

. N ()= 1—
@) Scalar action: Iy = Z Iq(b )[¢] ¢(5E) ~ ;¢(U,Q) Mason, Ruzziconi, Srikant

m,n=1 )
I(;m’n) = (H /I+ szd’U@&z_ (’U,i, - ) (H/ dQ dvg¢z+ v]a )% ) é((pm’n) (’U,i,Qi;’Uj,Qj)
(m n)
O RACTRY (u, 2)

o Boundary correlators encode on-shell Feynman amplitudes G{™™ (p;)

G(m ") (/ Hdwz ) éé)m’") (wy, wE;)

o Explicit examples in recent literature
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| orentz invariance

o In usual SL(2,C) description A= ( . Z ) , ad—bc=1 that acts at large r as
T A= fa(z, 2) dQ? = 5L dzdz — (fa(z,2))* dQ?
u— up = fa(z,2)u 1+ 27
az +b fa(z,2) = b|2 d|?
Z— 2\ = 7 az+ B + ez +dl
cz +

o Boundary data transforms as

5(“’7 2 2) — fA(Z7 Z)Q; (U’Aa ZA ZA)

o Lorentz invariance of S-matrix encoded in following relation obeyed by

boundary amplitudes: &% (u;, 2, z) = (H fa (zi, 2 ) ) | GY (uns, zni, Zas)
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Scalar QED

1 14 . .
1= /d45[3 (_ZFM Fly + |D“¢|2) + londy  with Dy = (0, —ieA,)d VHA, =

o Boundary data 4} (v,9) ,4,(u,Q) , ¢ (v,Q),¢ (u,Q)

L sphere index

A4 includes (antipodally matched) Iarge gauge (Goldstone) mode: 4, = V48(Q) + radiative
o Boundary action now takes form: / (Ha b (ui, Q2 )AA(u )0, G (u, Q; ug, ;)

o Relation to standard amplitudes given by

i) = [ T ) ¥ (9,640

)

o Lorentz transformation: A.(u,z,z) — A, (up, 2A, Z7)

o Lorentz invariance implies:

fA 2: z (HfA Z@,Z@

) (uAazA)2A7uiA7z7:A72iA) —
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QED Ward identity and soft theorem

o Bulk action is invariant under large gauge transformations that act on

boundary data as: Ay = Ax+VANQ)
¢ — e 1My,

o Boundary action:

/<H8 i (i, ) G(u, ) L(Haquz(uuﬁz)> AA(u,Q)auéA(u,Q;ui,Qi)-I—...

Invariance under LGT implies Ward identity
@f&y)/duauGg,y (u, J; us, T5) —ze[ ZQz52 — ;) ]Gqs (us, T;)

Solving gives leading soft photon theorem, as in  (He, Mitra, Porfyriadis, Strominger)
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Subleading soft theorem in scalar QED

o Known subleading soft theorem implies that classical on-shell action must

be invariant under (as in Lysov, pasterski, Strominger)
SA,(u, ) = uV, Va2 (9), N =0
0Az(u,g) =0
50, bi(u, ) = ieq; [au (WAAA(@)QB(% az)) ARV ad(u, f;)]
o Invariance of boundary action implies Ward identity:

0, VOV [auG* (u, i )

2(5 — 3. R 2 (A~ A
= —teq; laua' (u;Go (Uz‘afz‘))vgy)é -2 _ V&G (i, 25) "0 )]

Yal) V()
Solution gives Low subleading soft theorem. Invariance of the action is not
obvious to the eye. (Campiglia, Laddha

Himwich, Strominger
Choi, Laddha, Puhm)
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Flat limit of AdS

o An old idea is to extract the Minkowski S-matrix from the flat limit of AdS correlators
(Polchinski

© Giddings
N
~

Hijano, Neuenfeld)

o Use boundary sources to create/destroy

particles arranged to collide in region << R

o Since Minkowski S-matrix is equal to Minkowski path integral with bndy
conds on Z, while AdS boundary correlators are equal to path integral with
AdS boundary conditions, we essentially just need to relate the two sets of

boundary conditions.
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Flat limit of AdS (Hiano, Neuenfeld)

o HKLL relation:  ¢aas (p, z /dr /d2 Ky (p,z;2") OF (2') + K_ (p,z;2") O (2')]

S
{ow\ sdates
@A +T=<2
ﬂk("’)
A shetes

Boundary integral taken over 7 € [—m,0] forin

states and 7 € [0, 7] for out states

o Take large R limit while keeping bulk point in region near AdS origin. Write as
expression for in/out flat space creation/annihilation operators:
0
ain,ﬁ:/ dTeiwa(T+%)O_ (7-7 _ﬁ)

0
Qout,p — / dTezwa(T_%)O_ (7-7 ﬁ)
0

-
o For wavepacket states integrals localizeto 7 = +—

2
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Flat limit of AdS

o Flat space boundary action can be interpreted as S-matrix in coherent space
basis. Flat <-> AdS data map equivalent to map between flat and AdS

coherent states. Flat space: ag|a) = a(p)|a)
AdS state created by boundary source: S = /d3x¢00
o AdS and flat partition functions related as  Zgai[a(¢0)] = Zaas|¢o]

o Operator mapping implies

> T U

a(p) ~ w/_oodue_ b0 (—§+ E,—p).
o Within “scattering” subspace of Hilbert space, this provides a map between

flat S-matrix and AdS correlators
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IR symmetry in AdS

o BMS must arise from flat limit of AdS, though latter has only finite dimensional

asymptotic symmetry algebra above D=3.
o Toy example: Virasoro as IR symmetry of AdS_5
Magnetic brane solution

o Asymptotically AdS_5 solution of D=5 Einstein-Maxwell with boundary B-field
(dual to N=4 SYM with external B-field coupled to R-current).

o Describes RG flow from AdS_5 -> AdS_3 x T2
AdS:

Brown-Henneaux Virasoro should be visible from AdS_5
boundary. Microscopically described by effective D=1+1 CFT of
fermions in Landau levels

18



IR symmetry in AdS

o Direct approach: stress tensor correlators (D'Hoker, PK.Shah)

(T, (2) T (0)) = “BH/2

I

o Alternatively, extend AdS_3 boundary gravitons to AdS_5 (kim, Pk, Myers)

Background solution:  ds? = LCZ; +2L(rYdzTde™ + e*Vda'dx' , F = bdz' A da?
Perturbation: ds® — ds® + M(:U“)(dx+)2

L < —p0telt) as r 0 (BH diff)
Extend perturbation to full spacetime: M = %Lc(fr)aie(ﬁ) Le(r) :L(r)/o: L(T/);“;V(T/)

L not pure diff mode

o Full spacetime symplectic form found to reduce to Brown-Henneaux:

QOp—s5 = cH /dgba_|_5€ A a_2|_56 = QpH 19



The End



