# **Actions and S-matrices**

## Per Kraus, UCLA

Based on:

- 2307.12368 (Seolhwa Kim, PK, Ruben Monten, Richard Myers)
- WIP with Richard Myers

Related:

- 2311.03443 (Jain, Kundu, Minwalla, Parrikar, Prabhu, Shrivastava)
- Talk by Minwalla

# Outline

- We revisit and refine an old approach to the S-matrix based on computing the path integral subject to asymptotic boundary conditions
- Definition in terms of *asymptotic* data makes this approach well suited to studying implications of asymptotic symmetries
- Discuss relation to "Carrollian" picture of the S-matrix, and utility in understanding the Minkowski S-matrix from the flat space limit of AdS

## Motivation from AdS/CFT

AdS/CFT analogy: two ways to compute boundary correlators

GKP/W:  $\phi_{\text{bulk}}(r, \vec{x}) \sim r^{\Delta - d} \bar{\phi}(\vec{x}) + \dots$  (non-normalizable mode)

$$Z[\bar{\phi}] = \int_{\phi \sim r^{\Delta - d}\bar{\phi}} \mathcal{D}\phi_{\text{bulk}} e^{iI_{bulk}[\phi_{bulk}]} \longrightarrow \langle \mathcal{O}(x_1) \dots \mathcal{O}(x_n) \rangle \sim \frac{\delta}{\delta\bar{\phi}(x_1)} \cdots \frac{\delta}{\delta\bar{\phi}(x_n)} Z[\bar{\phi}] \Big|_{\bar{\phi}=0}$$

BDHM:  $\langle \mathcal{O}(x_1) \dots \mathcal{O}(x_n) \rangle = \lim_{r \to \infty} r_1^{\Delta} \dots r_n^{\Delta} \langle \phi(r_1, x_1) \dots \phi(r_n, x_n) \rangle_{bulk}$ 

Prescriptions are equivalent, possibly up to contact terms

Proof: consider bulk path integral with bulk source J and bndy condition  $\overline{\phi}$ To establish equivalence one shows that  $Z[\overline{\phi}, J]$  depends on  $(\overline{\phi}, J)$  only through:

$$\bar{\phi}_{J}(x) = \underbrace{\bar{\phi}(x)}_{\bar{\phi}(x)} + \int d^{d+1}x' \sqrt{g} G(x;x') J(x')$$

$$G = \text{bulk-bulk propagator}$$

$$\bar{\phi}(x) = \int_{\partial \text{AdS}} d^{d}y' \sqrt{h} K(x;\vec{y}\,') \,\bar{\phi}(\vec{y}\,')$$

$$K = \text{bulk-boundary propagator}$$

$$G = \text{bulk-bulk propagator}$$

$$K = \text{bulk-boundary propagator}$$

$$K = \text{bulk-boundary propagator}$$

#### S-matrix

 BDHM clearly analogous to LSZ. Makes manifest that correlators are computed by Feynman/Witten diagrams

• What is the analog of GKP/W for the flat space S-matrix?

• Consider a massless scalar field on Minkowski space



 Impose asymptotic boundary conditions at null infinity and evaluate action as functional of the boundary data

#### S-matrix

 Boundary conditions should fix unique classical solution, and for S-matrix should involve both past and future boundaries

• Fix positive(negative) frequency field content at past(future) null infinity

$$\phi = \sum_{n} b_{n}^{\dagger} e^{i\omega_{n}t} + \text{pos. freq. part}$$

$$\overline{\phi}_{-} = \text{fixed}$$

$$b_{n} ,$$

$$\phi = \sum_{n} b_{n} e^{-i\omega_{n}t} + \text{neg. freq. part}$$

$$\overline{\phi}_{+} = \text{fixed}$$

• Action: 
$$I[\phi,\overline{\phi}] = \int d^4x \left(\frac{1}{2}\phi \nabla^2 \phi - V(\phi)\right) + I_{\text{bndy}}[\phi,\overline{\phi}]$$

independent

 $b_n^{\dagger}$ 

## **Boundary terms**

|

o Boundary terms can be deduced by demanding good variational principle

$$I = \int d^4x \left(\frac{1}{2}\phi \nabla^2 \phi - V(\phi)\right) + I_{bndy}$$

Demand  $\delta I = (\text{EoM}) \text{ when } \delta \overline{\phi}_{\pm} = 0$ 

$$I_{bndy} = (\overline{\phi}_{-}, \phi)_{\mathcal{I}^{+}} - (\overline{\phi}_{+}, \phi)_{\mathcal{I}^{-}}$$

where 
$$(\phi_1, \phi_2)_{\Sigma} = \frac{1}{2} \int d^3x \sqrt{h} n^{\mu} (\phi_1 \partial_{\mu} \phi_2 - \partial_{\mu} \phi_1 \phi_2)$$

• Same basic story for more complicated theories (gauge theory, gravity)

#### S-matrix

o Path integral with prescribed boundary data

l.e.

$$Z[\overline{\phi}_+,\overline{\phi}_-] = \int_{\overline{\phi}_+,\overline{\phi}_-} \mathcal{D}\phi e^{iI[\phi]}$$

• The claim is that this gives the S-matrix operator according to

$$\hat{S}[\hat{\overline{\phi}}] =: e^{-iI_{\text{bndy}}[\hat{\overline{\phi}},\hat{\overline{\phi}}]} Z[\hat{\overline{\phi}}]:$$
$$\hat{\overline{\phi}} = \hat{\overline{\phi}}_{+} + \hat{\overline{\phi}}_{-} = \sum_{n} (\hat{b}_{n}e^{-i\omega_{n}t} + \hat{b}_{n}^{\dagger}e^{i\omega_{n}t})$$
$$\langle p_{1}', \dots, p_{2}'; \text{out}|p_{1}, p_{2} \dots; \text{in} \rangle = \langle p_{1}', p_{2}', \dots |\hat{S}[\hat{\overline{\phi}}]|p_{1}, p_{2}, \dots \rangle$$

• Equivalently,  $Z[\overline{\phi}]$  serves as generating function for S-matrix  $\langle p'_1, \dots p'_2; \text{out} | p_1, p_2 \dots; \text{in} \rangle = \left[ \frac{\delta}{\delta b(p'_1)} \frac{\delta}{\delta b(p'_2)} \dots \frac{\delta}{\delta b^{\dagger}(p_1)} \frac{\delta}{\delta b^{\dagger}(p_2)} \dots Z[\overline{\phi}] \right]_{\overline{\phi}=0}$ 

Agreement with LSZ (when both are defined) can be established
 by same argument as for GKP/W = BDHM

#### Comments

- Via these arguments we rediscover an old proposal Arefeva, Faddeev, Slavnov (1974) (AFS) who worked with the coherent state matrix elements of the S-operator
- This formulation of the S-matrix pops up occasionally but is rarely used, because in most cases evaluation of the action involves the standard Feynman diagram expansion.
- We take the perspective that the AFS formulation is more holographic in spirit, so may provide insight into holography, asymptotic symmetries, etc.

• For a free scalar field the action reduces to boundary terms:

 $I = (\overline{\phi}_{-}, \phi_{+})_{\mathcal{I}^{+}} + (\overline{\phi}_{+}, \phi_{-})_{\mathcal{I}^{-}}$ 

• Obviously boring in Minkowski space, but considered curved metric:

Just need to find the right combination of  $\{u, u^*\}$  or  $\{v, v^*\}$  that obeys boundary conditions  $\{\overline{\phi}_+, \overline{\phi}_-\}$ . Plugging  $\overline{\phi}_- = \sum b_i^{\dagger} u_i^*$ ,  $\overline{\phi}_+ = \sum b_i v_i$  into bndy action gives S-matrix:

$$\hat{S} = C : e^{i(I-I_0)} := \frac{1}{\sqrt{|\det \alpha|}} : \exp\left\{b^{\dagger} \left(\alpha^{-1} - I\right)b + \frac{1}{2}b\alpha^{-1}\beta b - \frac{1}{2}b^{\dagger}\beta^{*}\alpha^{-1}b\right\}$$

• Yields known result obtained more laboriously from operator methods (DeWitt)

## Bulk and boundary actions

 $\circ$  Path integral gives "partition function" defined on  $\mathcal{I} = \mathcal{I}^- \cup \mathcal{I}^+$ 

• Gives partition function of hypothetical "Carrollian theory"

• Scalar action: 
$$I_{\phi} = \sum_{m,n=1}^{\infty} I_{\phi}^{(m,n)}[\overline{\phi}] \qquad \phi(x) \sim \frac{1}{r}\overline{\phi}(u,\Omega)$$
  
 $I_{\phi}^{(m,n)} = \left(\prod_{i=1}^{m} \int_{I^{+}} d\Omega_{i}du_{i}\overline{\phi}_{i^{-}}(u_{i},\Omega_{i})\frac{1}{2}\overleftrightarrow{\partial}_{u_{i}}\right) \left(\prod_{j=1}^{r} \int_{I^{-}} d\Omega_{j}dv_{j}\overline{\phi}_{i^{+}}(v_{j},\Omega_{j})\frac{1}{2}\overleftrightarrow{\partial}_{v_{j}}\right) \hat{G}_{\phi}^{(m,n)}(u_{i},\Omega_{i};v_{j},\Omega_{j})$   
 $\sim \int_{\mathcal{I}} \partial_{u_{i}}\overline{\phi}_{i}(u_{i},\Omega_{i})\hat{G}_{\phi}^{(m,n)}(u,\Omega)$ 

• Boundary correlators encode on-shell Feynman amplitudes  $\tilde{G}_{\phi}^{(m,n)}(p_i)$ 

$$\hat{G}_{\phi}^{(m,n)}(u,\Omega) = \left(\int_{-\infty}^{\infty} \prod_{i} d\omega_{i} e^{-i\omega_{i}u_{i}}\right) \hat{\tilde{G}}_{\phi}^{(m,n)}(\omega_{i},\omega\Omega_{i})$$

• Explicit examples in recent literature

(Barnich, Troessaert

Bagchi, Baneriee, Basu, Dutta

#### Lorentz invariance

• Boundary data transforms as

 $\overline{\phi}(u,z,ar{z}) \ o \ f_{\Lambda}(z,ar{z}) \overline{\phi}\left(u_{\Lambda},z_{\Lambda},ar{z}_{\Lambda}
ight)$ 

• Lorentz invariance of S-matrix encoded in following relation obeyed by boundary amplitudes:  $\hat{G}_{\phi}^{N}(u_{i}, z_{i}, \bar{z}_{i}) = \left(\prod_{i=1}^{N} f_{\Lambda}(z_{i}, \bar{z}_{i})\right) \hat{G}_{\phi}^{N}(u_{\Lambda i}, z_{\Lambda i}, \bar{z}_{\Lambda i})$ 

## Scalar QED

$$I = \int d^4x \left( -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + |D_\mu \phi|^2 \right) + I_{bndy} \quad \text{with} \qquad D_\mu = (\partial_\mu - ieA_\mu)\phi \qquad \nabla^\mu A_\mu = 0$$

 $\overline{A}_A$  includes (antipodally matched) large gauge (Goldstone) mode:  $\overline{A}_A = \nabla_A \Phi(\Omega) + \text{radiative}$  $\circ$  Boundary action now takes form:  $I_{\phi\gamma} = \int_{\mathcal{I}} \left(\prod_i \partial_{u_i} \overline{\phi}_i(u_i, \Omega_i)\right) \overline{A}_A(u, \Omega) \partial_u G^A(u, \Omega; u_i, \Omega_i)$ 

• Relation to standard amplitudes given by

$$G^{A}\left(u,\Omega;u_{i},\Omega_{i}\right) = \left(\int_{-\infty}^{\infty}\prod_{i}d\omega_{i}e^{-i\omega_{i}u_{i}}\right)\sum_{\alpha}\left(\left(\varepsilon^{*\alpha}\right)_{\mu}\tilde{G}^{\mu}(q,p)\right)\hat{\varepsilon}_{\alpha}^{A}$$

• Lorentz transformation:  $\bar{A}_z(u, z, \bar{z}) \rightarrow \frac{1}{(cz+d)^2} \bar{A}_z(u_\Lambda, z_\Lambda, \bar{z}_\Lambda)$ 

• Lorentz invariance implies:

$$\left(f_{\Lambda}(z,\bar{z})\right)^{2}\left(\prod_{i=1}^{N}f_{\Lambda}\left(z_{i},\bar{z}_{i}\right)\right]\right)G^{z}\left(u_{\Lambda},z_{\Lambda},\bar{z}_{\Lambda},u_{i\Lambda},z_{i\Lambda},\bar{z}_{i\Lambda}\right)=\frac{1}{(cz+d)^{2}}G^{z}\left(u,z,\bar{z},u_{i},z_{i},\bar{z}_{i}\right)$$
<sup>12</sup>

## QED Ward identity and soft theorem

 $\circ\,$  Bulk action is invariant under large gauge transformations that act on

boundary data as:

$$\bar{A}_A \to \bar{A}_A + \nabla_A \lambda(\Omega) \bar{\phi}_i \to e^{iq_i\lambda(\Omega)} \bar{\phi}_i$$

• Boundary action:

$$I = \int_{\mathcal{I}} \left( \prod_{i} \partial_{u_{i}} \bar{\phi}_{i} \left( u_{i}, \Omega_{i} \right) \right) \hat{G}(u, \Omega) + \int_{\mathcal{I}} \left( \prod_{i} \partial_{u_{i}} \bar{\phi}_{i} \left( u_{i}, \Omega_{i} \right) \right) \bar{A}_{A}(u, \Omega) \partial_{u} \hat{G}^{A} \left( u, \Omega; u_{i}, \Omega_{i} \right) + \dots$$

Invariance under LGT implies Ward identity

$$\hat{\nabla}_{A}^{(y)} \int du \partial_{u} G_{\phi\gamma}^{A}\left(u, \hat{y}; u_{i}, \hat{x}_{i}\right) = ie \left[\frac{1}{\sqrt{\gamma}} \sum_{i=1}^{N} q_{i} \delta^{2}\left(\hat{y} - \hat{x}_{i}\right)\right] G_{\phi}\left(u_{i}, \hat{x}_{i}\right)$$

Solving gives leading soft photon theorem, as in (He, Mitra, Porfyriadis, Strominger)

#### Subleading soft theorem in scalar QED

o Known subleading soft theorem implies that classical on-shell action must

be invariant under (as in Lysov, Pasterski, Strominger)

$$\begin{split} \delta \bar{A}_{z}(u,\hat{y}) &= u \hat{\nabla}_{z} \hat{\nabla}_{A} \lambda^{A}(\hat{y}) , \quad \lambda^{\bar{z}} = 0 \\ \delta \bar{A}_{\bar{z}}(u,\hat{y}) &= 0 \\ \delta \partial_{u} \bar{\phi}_{i}(u,\hat{x}) &= i e q_{i} \left[ \partial_{u} \left( u \hat{\nabla}_{A} \lambda^{A}(\hat{x}) \bar{\phi}(u,\hat{x}) \right) + \lambda^{A}(\hat{x}) \hat{\nabla}_{A} \bar{\phi}(u,\hat{x}) \right] \end{split}$$

• Invariance of boundary action implies Ward identity:

$$\begin{split} \partial_{u_j} \hat{\nabla}_z^{(y)} \hat{\nabla}_z^{(y)} \int & du G^z \left( u, \hat{y}; u_i, \hat{x}_i \right) \\ &= -i e q_j \left[ \partial_{u_j} \left( u_j G_\phi \left( u_i, \hat{x}_i \right) \right) \hat{\nabla}_z^{(y)} \frac{\delta^2 \left( \hat{y} - \hat{x}_j \right)}{\sqrt{\gamma(y)}} - \hat{\nabla}_z^{(x_j)} G_\phi \left( u_i, \hat{x}_i \right) \frac{\delta^2 \left( \hat{y} - \hat{x}_j \right)}{\sqrt{\gamma(y)}} \right] \end{split}$$

Solution gives Low subleading soft theorem. Invariance of the action is not obvious to the eye. (Campiglia, Laddha

(Campiglia, Laddha Himwich, Strominger Choi, Laddha, Puhm )

# Flat limit of AdS

• An old idea is to extract the Minkowski S-matrix from the flat limit of AdS correlators

Use boundary sources to create/destroy
 particles arranged to collide in region << R</li>



(Polchinski Giddings

Hijano, Neuenfeld)

 Since Minkowski S-matrix is equal to Minkowski path integral with bndy conds on *I*, while AdS boundary correlators are equal to path integral with AdS boundary conditions, we essentially just need to relate the two sets of boundary conditions.

## Flat limit of AdS (Hijano, Neuenfeld)

 $\circ \text{ HKLL relation:} \quad \hat{\phi}_{\text{AdS}} \left( \rho, x \right) = \int_{\mathcal{T}} d\tau' \int d^2 \Omega \left[ K_+ \left( \rho, x; x' \right) \mathcal{O}^+ \left( x' \right) + K_- \left( \rho, x; x' \right) \mathcal{O}^- \left( x' \right) \right]$ 



 $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$ 

• Take large R limit while keeping bulk point in region near AdS origin. Write as expression for in/out flat space creation/annihilation operators:

$$a_{\mathrm{in},\vec{p}} = \int_{-\pi}^{0} d\tau e^{i\omega_{p}R\left(\tau + \frac{\pi}{2}\right)} \mathcal{O}^{-}(\tau, -\hat{p})$$
$$a_{\mathrm{out},\vec{p}} = \int_{0}^{\pi} d\tau e^{i\omega_{p}R\left(\tau - \frac{\pi}{2}\right)} \mathcal{O}^{-}(\tau, \hat{p})$$

• For wavepacket states integrals localize to  $\tau = \pm \frac{\pi}{2}$ 



## Flat limit of AdS

- Flat space boundary action can be interpreted as S-matrix in coherent space basis. Flat <-> AdS data map equivalent to map between flat and AdS
  - coherent states. Flat space:  $a_{\vec{p}} |\alpha\rangle = \alpha(\vec{p}) |\alpha\rangle$

AdS state created by boundary source:  $S = \int d^3x \phi_0 O$ 

• AdS and flat partition functions related as  $Z_{\text{flat}}[\alpha(\phi_0)] = Z_{\text{AdS}}[\phi_0]$ 

• Operator mapping implies

$$\alpha(\vec{p}) \sim \omega \int_{-\infty}^{\infty} \mathrm{d}u e^{-i\omega u} \phi_0 \left(-\frac{\pi}{2} + \frac{u}{R}, -\hat{p}\right).$$

 Within ``scattering" subspace of Hilbert space, this provides a map between flat S-matrix and AdS correlators

## IR symmetry in AdS

 BMS must arise from flat limit of AdS, though latter has only finite dimensional asymptotic symmetry algebra above D=3.

• Toy example: Virasoro as IR symmetry of AdS\_5

Magnetic brane solution (D'Hoker, PK)

 Asymptotically AdS\_5 solution of D=5 Einstein-Maxwell with boundary B-field (dual to N=4 SYM with external B-field coupled to R-current).

Describes RG flow from AdS\_5 -> AdS\_3 x T<sup>2</sup>



Brown-Henneaux Virasoro should be visible from AdS\_5 boundary. Microscopically described by effective D=1+1 CFT of fermions in Landau levels

#### IR symmetry in AdS

• Direct approach: stress tensor correlators (D'Hoker, PK,Shah)  $\langle T_{zz}(z)T_{zz}(0)\rangle = \frac{c_{BH}/2}{z^4}$ 

• Alternatively, extend AdS\_3 boundary gravitons to AdS\_5 (Kim, PK,Myers) Background solution:  $ds^2 = \frac{dr^2}{L(r)^2} + 2L(r)dx^+dx^- + e^{2V}dx^idx^i$ ,  $F = bdx^1 \wedge dx^2$ Perturbation:  $ds^2 \rightarrow ds^2 + M(x^{\mu})(dx^+)^2$   $\downarrow \approx -\frac{1}{2b^2}\partial_+^3\epsilon(x^+)$  as  $r \rightarrow 0$  (BH diff) Extend perturbation to full spacetime:  $M = \frac{1}{b}L^c(r)\partial_+^3\epsilon(x^+)$   $L^c(r) = L(r)\int_{\infty}^r \frac{dr'}{L(r')^2e^{2V(r')}}$  $\downarrow$  not pure diff mode

• Full spacetime symplectic form found to reduce to Brown-Henneaux:

$$\Omega_{D=5} = c_{BH} \int d\phi \partial_+ \delta \epsilon \wedge \partial_+^2 \delta \epsilon = \Omega_{BH}$$
<sup>19</sup>

# The End