Actions and S-matrices

Per Kraus, UCLA

Based on: • 2307.12368 (Seolhwa Kim, PK, Ruben Monten, Richard Myers)

- WIP with Richard Myers

Related: - 2311.03443 (Jain, Kundu, Minwalla, Parrikar, Prabhu, Shrivastava)

- Talk by Minwalla

Outline

- We revisit and refine an old approach to the S-matrix based on computing the path integral subject to asymptotic boundary conditions
- Definition in terms of asymptotic data makes this approach well suited to studying implications of asymptotic symmetries
- Discuss relation to "Carrollian" picture of the S-matrix, and utility in understanding the Minkowski S-matrix from the flat space limit of AdS

Motivation from AdS/CFT

- AdS/CFT analogy: two ways to compute boundary correlators

GKP/W: $\phi_{\text {bulk }}(r, \vec{x}) \sim r^{\Delta-d} \bar{\phi}(\vec{x})+\ldots \quad$ (non-normalizable mode)

$$
Z[\bar{\phi}]=\left.\int_{\phi \sim r \Delta-d \bar{\phi}} \mathcal{D} \phi_{\text {bulk }} e^{i I_{\text {butk }}\left[\phi_{\text {butk }}\right]} \quad \longrightarrow\left\langle\mathcal{O}\left(x_{1}\right) \ldots \mathcal{O}\left(x_{n}\right)\right\rangle \sim \frac{\delta}{\delta \bar{\phi}\left(x_{1}\right)} \cdots \frac{\delta}{\delta \bar{\phi}\left(x_{n}\right)} Z[\bar{\phi}]\right|_{\bar{\phi}=0}
$$

BDHM: $\left\langle\mathcal{O}\left(x_{1}\right) \ldots \mathcal{O}\left(x_{n}\right)\right\rangle=\lim _{r \rightarrow \infty} r_{1}^{\Delta} \ldots r_{n}^{\Delta}\left\langle\phi\left(r_{1}, x_{1}\right) \ldots \phi\left(r_{n}, x_{n}\right)\right\rangle_{b u l k}$
Prescriptions are equivalent, possibly up to contact terms
Proof: consider bulk path integral with bulk source J and bndy condition $\bar{\phi}$
To establish equivalence one shows that $Z[\bar{\phi}, J]$ depends on $(\bar{\phi}, J)$ only through:

$$
\bar{\phi}_{J}(x)=\underbrace{\bar{\phi}(x)}_{\bar{\phi}(x)=\int_{\partial A d S} d^{d} y^{\prime} \sqrt{h} K\left(x ; \vec{y}^{\prime}\right) \bar{\phi}\left(\bar{y}^{\prime}\right)}+\int_{\substack{\mathrm{A}}} d^{d+1} x^{\prime} \sqrt{g} G\left(x ; x^{\prime}\right) J\left(x^{\prime}\right) \quad \begin{aligned}
& \mathrm{G}=\text { bulk-bulk propagator } \\
& \mathrm{K}=\text { bulk-boundary propagator }
\end{aligned}
$$

Use substitution $\int G J \leftrightarrow \int K \bar{\phi}$ to toggle between $Z[0, J] \leftrightarrow Z[\bar{\phi} ; 0]$

-matrix

- BDHM clearly analogous to LSZ. Makes manifest that correlators are computed by Feynman/Witten diagrams
- What is the analog of GKP/W for the flat space S-matrix?
- Consider a massless scalar field on Minkowski space

- Impose asymptotic boundary conditions at null infinity and evaluate action as functional of the boundary data

S-matrix

- Boundary conditions should fix unique classical solution, and for S-matrix should involve both past and future boundaries
- Fix positive(negative) frequency field content at past(future) null infinity

$$
b_{n}, b_{n}^{\dagger} \text { independent }
$$

- Action: $I[\phi, \bar{\phi}]=\int d^{4} x\left(\frac{1}{2} \phi \nabla^{2} \phi-V(\phi)\right)+I_{\mathrm{bndy}}[\phi, \bar{\phi}]$

Boundary terms

- Boundary terms can be deduced by demanding good variational principle

$$
I=\int d^{4} x\left(\frac{1}{2} \phi \nabla^{2} \phi-V(\phi)\right)+I_{b n d y}
$$

Demand $\quad \delta I=(\mathrm{EoM})$ when $\delta \bar{\phi}_{ \pm}=0$

$$
\begin{gathered}
\longrightarrow \quad I_{b n d y}=\left(\bar{\phi}_{-}, \phi\right)_{\mathcal{I}^{+}}-\left(\bar{\phi}_{+}, \phi\right)_{\mathcal{I}^{-}} \\
\text {where }\left(\phi_{1}, \phi_{2}\right)_{\Sigma}=\frac{1}{2} \int d^{3} x \sqrt{h} n^{\mu}\left(\phi_{1} \partial_{\mu} \phi_{2}-\partial_{\mu} \phi_{1} \phi_{2}\right)
\end{gathered}
$$

- Same basic story for more complicated theories (gauge theory, gravity)

-matrix

- Path integral with prescribed boundary data

$$
Z\left[\bar{\phi}_{+}, \bar{\phi}_{-}\right]=\int_{\bar{\phi}_{+}, \bar{\phi}_{-}} \mathcal{D} \phi e^{i I[\phi]}
$$

- The claim is that this gives the S-matrix operator according to

$$
\begin{aligned}
& \hat{S}[\hat{\bar{\phi}}]=: e^{\left.-i I_{\text {bndy }} \hat{\bar{\phi}}, \hat{\bar{\phi}}\right]} Z[\hat{\bar{\phi}}]: \\
& \hat{\bar{\phi}}=\hat{\bar{\phi}}_{+}+\hat{\bar{\phi}}_{-}=\sum_{n}\left(\hat{b}_{n} e^{-i \omega_{n} t}+\hat{b}_{n}^{\dagger} e^{i \omega_{n} t}\right)
\end{aligned}
$$

I.e. $\left\langle p_{1}^{\prime}, \ldots p_{2}^{\prime} ;\right.$ out $| p_{1}, p_{2} \ldots ;$ in $\rangle=\left\langle p_{1}^{\prime}, p_{2}^{\prime}, \ldots\right| \hat{S}[\hat{\phi}]\left|p_{1}, p_{2}, \ldots\right\rangle$

- Equivalently, $Z[\bar{\phi}]$ serves as generating function for S-matrix

$$
\left.\left\langle p_{1}^{\prime}, \ldots p_{2}^{\prime} ; \text { out }\right| p_{1}, p_{2} \ldots ; \text { in }\right\rangle=\left[\frac{\delta}{\delta b\left(p_{1}^{\prime}\right)} \frac{\delta}{\delta b\left(p_{2}^{\prime}\right)} \cdots \frac{\delta}{\delta b^{\dagger}\left(p_{1}\right)} \frac{\delta}{\delta b^{\dagger}\left(p_{2}\right)} \cdots Z[\bar{\phi}]\right]_{\bar{\phi}=0}
$$

- Agreement with LSZ (when both are defined) can be established by same argument as for GKP/W = BDHM

Comments

- Via these arguments we rediscover an old proposal Arefeva, Faddeev, Slavnov (1974) (AFS) who worked with the coherent state matrix elements of the S-operator
- This formulation of the S-matrix pops up occasionally but is rarely used, because in most cases evaluation of the action involves the standard Feynman diagram expansion.
- We take the perspective that the AFS formulation is more holographic in spirit, so may provide insight into holography, asymptotic symmetries, etc.
- For a free scalar field the action reduces to boundary terms:

$$
I=\left(\bar{\phi}_{-}, \phi_{+}\right)_{\mathcal{I}^{+}}+\left(\bar{\phi}_{+}, \phi_{-}\right)_{\mathcal{I}^{-}}
$$

- Obviously boring in Minkowski space, but considered curved metric:
$g_{\mu \nu}(x) \longrightarrow \eta_{\mu \nu}$ in any direction
- Mode solutions:

$$
u_{i}=\sum_{j}\left(\alpha_{i j} v_{j}+\beta_{i j} v_{j}^{*}\right)
$$

Just need to find the right combination of $\left\{u, u^{*}\right\}$ or $\left\{v, v^{*}\right\}$ that obeys boundary conditions $\left\{\bar{\phi}_{+}, \bar{\phi}_{-}\right\}$. Plugging $\bar{\phi}_{-}=\sum b_{i}^{\dagger} u_{i}^{*}, \quad \bar{\phi}_{+}=\sum b_{i} v_{i}$ into bndy action gives S-matrix:

$$
\hat{S}=C: e^{i\left(I-I_{0}\right)}: \quad=\frac{1}{\sqrt{|\operatorname{det} \alpha|}}: \exp \left\{b^{\dagger}\left(\alpha^{-1}-I\right) b+\frac{1}{2} b \alpha^{-1} \beta b-\frac{1}{2} b^{\dagger} \beta^{*} \alpha^{-1} b\right\}
$$

- Yields known result obtained more laboriously from operator methods (DeWitt)

Bulk and boundary actions

- Path integral gives "partition function" defined on $\mathcal{I}=\mathcal{I}^{-} \cup \mathcal{I}^{+}$
- Gives partition function of hypothetical "Carrollian theory" (Barnich, Troessaert
- Scalar action: $I_{\phi}=\sum_{m, n=1}^{\infty} I_{\phi}^{(m, n)}[\bar{\phi}] \quad \phi(x) \sim \frac{1}{r} \bar{\phi}(u, \Omega)$

$$
\begin{aligned}
I_{\phi}^{(m, n)} & =\left(\prod_{i=1}^{m} \int_{I^{+}} d \Omega_{i} d u_{i} \bar{\phi}_{i-}\left(u_{i}, \Omega_{i}\right) \frac{1}{2} \stackrel{\leftrightarrow}{\partial} u_{u_{i}}\right)\left(\prod_{j=1} \int_{I^{-}} d \Omega_{j} d v_{j} \bar{\phi}_{i+}\left(v_{j}, \Omega_{j}\right) \frac{1}{2} \overleftrightarrow{\partial}_{v_{j}}\right) \hat{G}_{\phi}^{(m, n)}\left(u_{i}, \Omega_{i} ; v_{j}, \Omega_{j}\right) \\
& \sim \int_{\mathcal{I}} \partial_{u_{i}} \bar{\phi}_{i}\left(u_{i}, \Omega_{i}\right) \hat{G}_{\phi}^{(m, n)}(u, \Omega)
\end{aligned}
$$

- Boundary correlators encode on-shell Feynman amplitudes $\tilde{G}_{\phi}^{(m, n)}\left(p_{i}\right)$

$$
\hat{G}_{\phi}^{(m, n)}(u, \Omega)=\left(\int_{-\infty}^{\infty} \prod_{i} d \omega_{i} e^{-i \omega_{i} u_{i}}\right) \hat{\tilde{G}}_{\phi}^{(m, n)}\left(\omega_{i}, \omega \Omega_{i}\right)
$$

- Explicit examples in recent literature

Lorentz invariance

- In usual $\operatorname{SL}(2, C)$ description $\Lambda=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), a d-b c=1$ that acts at large r as

$$
\begin{aligned}
r & \rightarrow r_{\Lambda} & =\frac{r}{f_{\Lambda}(z, \bar{z})} & d \Omega^{2}=\frac{2}{(1+z \bar{z})^{2}} d z d \bar{z} \rightarrow\left(f_{\Lambda}(z, \bar{z})\right)^{2} d \Omega^{2} \\
u & \rightarrow u_{\Lambda} & =f_{\Lambda}(z, \bar{z}) u & f_{\Lambda}(z, \bar{z})=\frac{1+z \bar{z}}{|a z+b|^{2}+|c z+d|^{2}} \\
z & \rightarrow z_{\Lambda} & =\frac{a z+b}{c z+d} &
\end{aligned}
$$

- Boundary data transforms as

$$
\bar{\phi}(u, z, \bar{z}) \rightarrow f_{\Lambda}(z, \bar{z}) \bar{\phi}\left(u_{\Lambda}, z_{\Lambda}, \bar{z}_{\Lambda}\right)
$$

- Lorentz invariance of S-matrix encoded in following relation obeyed by boundary amplitudes: $\quad \hat{G}_{\phi}^{N}\left(u_{i}, z_{i}, \bar{z}_{i}\right)=\left(\prod_{i=1}^{N} f_{\Lambda}\left(z_{i}, \bar{z}_{i}\right)\right) \hat{G}_{\phi}^{N}\left(u_{\Lambda i}, z_{\Lambda i}, \bar{z}_{\Lambda i}\right)$

Scalar QED

$I=\int d^{4} x\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\left|D_{\mu} \phi\right|^{2}\right)+I_{b n d y} \quad$ with $\quad D_{\mu}=\left(\partial_{\mu}-i e A_{\mu}\right) \phi \quad \nabla^{\mu} A_{\mu}=0$

- Boundary data $\bar{A}_{A}^{+}(v, \Omega), \bar{A}_{A}^{-}(u, \Omega), \bar{\phi}^{+}(v, \Omega), \bar{\phi}^{-}(u, \Omega)$
$L_{\text {sphere index }}$
\bar{A}_{A} includes (antipodally matched) large gauge (Goldstone) mode: $\bar{A}_{A}=\nabla_{A} \Phi(\Omega)+$ radiative
- Boundary action now takes form: $\quad I_{\phi \gamma}=\int_{\mathcal{I}}\left(\prod_{i} \partial_{u_{i}} \bar{\phi}_{i}\left(u_{i}, \Omega_{i}\right)\right) \bar{A}_{A}(u, \Omega) \partial_{u} G^{A}\left(u, \Omega ; u_{i}, \Omega_{i}\right)$
- Relation to standard amplitudes given by

$$
G^{A}\left(u, \Omega ; u_{i}, \Omega_{i}\right)=\left(\int_{-\infty}^{\infty} \prod_{i} d \omega_{i} e^{-i \omega_{i} u_{i}}\right) \sum_{\alpha}\left(\left(\varepsilon^{* \alpha}\right)_{\mu} \tilde{G}^{\mu}(q, p)\right) \hat{\varepsilon}_{\alpha}^{A}
$$

- Lorentz transformation: $\quad \bar{A}_{z}(u, z, \bar{z}) \rightarrow \frac{1}{(c z+d)^{2}} \bar{A}_{z}\left(u_{\Lambda}, z_{\Lambda}, \bar{z}_{\Lambda}\right)$
- Lorentz invariance implies:

$$
\left.\left(f_{\Lambda}(z, \bar{z})\right)^{2}\left(\prod_{i=1}^{N} f_{\Lambda}\left(z_{i}, \bar{z}_{i}\right)\right]\right) G^{z}\left(u_{\Lambda}, z_{\Lambda}, \bar{z}_{\Lambda}, u_{i \Lambda}, z_{i \Lambda}, \bar{z}_{i \Lambda}\right)=\frac{1}{(c z+d)^{2}} G^{z}\left(u, z, \bar{z}, u_{i}, z_{i}, \bar{z}_{i}\right)
$$

QED Ward identity and soft theorem

- Bulk action is invariant under large gauge transformations that act on boundary data as:

$$
\begin{aligned}
& \bar{A}_{A} \rightarrow \bar{A}_{A}+\nabla_{A} \lambda(\Omega) \\
& \bar{\phi}_{i} \rightarrow e^{i q_{i} \lambda(\Omega)} \bar{\phi}_{i}
\end{aligned}
$$

- Boundary action:

$$
I=\int_{\mathcal{I}}\left(\prod_{i} \partial_{u_{i}} \bar{\phi}_{i}\left(u_{i}, \Omega_{i}\right)\right) \hat{G}(u, \Omega)+\int_{\mathcal{I}}\left(\prod_{i} \partial_{u_{i}} \bar{\phi}_{i}\left(u_{i}, \Omega_{i}\right)\right) \bar{A}_{A}(u, \Omega) \partial_{u} \hat{G}^{A}\left(u, \Omega ; u_{i}, \Omega_{i}\right)+\ldots
$$

Invariance under LGT implies Ward identity

$$
\hat{\nabla}_{A}^{(y)} \int d u \partial_{u} G_{\phi \gamma}^{A}\left(u, \hat{y} ; u_{i}, \hat{x}_{i}\right)=i e\left[\frac{1}{\sqrt{\gamma}} \sum_{i=1}^{N} q_{i} \delta^{2}\left(\hat{y}-\hat{x}_{i}\right)\right] G_{\phi}\left(u_{i}, \hat{x}_{i}\right)
$$

Solving gives leading soft photon theorem, as in (He, Mitra, Porfyriadis, Strominger)

- Known subleading soft theorem implies that classical on-shell action must be invariant under (as in Lysov, Pasterski, Strominger)

$$
\begin{aligned}
\delta \bar{A}_{z}(u, \hat{y}) & =u \hat{\nabla}_{z} \hat{\nabla}_{A} \lambda^{A}(\hat{y}), \quad \lambda^{\bar{z}}=0 \\
\delta \bar{A}_{\bar{z}}(u, \hat{y}) & =0 \\
\delta \partial_{u} \bar{\phi}_{i}(u, \hat{x}) & =i e q_{i}\left[\partial_{u}\left(u \hat{\nabla}_{A} \lambda^{A}(\hat{x}) \bar{\phi}(u, \hat{x})\right)+\lambda^{A}(\hat{x}) \hat{\nabla}_{A} \bar{\phi}(u, \hat{x})\right]
\end{aligned}
$$

- Invariance of boundary action implies Ward identity:

$$
\begin{aligned}
& \partial_{u_{j}} \hat{\nabla}_{z}^{(y)} \hat{\nabla}_{z}^{(y)} \int d u G^{z}\left(u, \hat{y} ; u_{i}, \hat{x}_{i}\right) \\
& \quad=-i e q_{j}\left[\partial_{u_{j}}\left(u_{j} G_{\phi}\left(u_{i}, \hat{x}_{i}\right)\right) \hat{\nabla}_{z}^{(y)} \frac{\delta^{2}\left(\hat{y}-\hat{x}_{j}\right)}{\sqrt{\gamma(y)}}-\hat{\nabla}_{z}^{\left(x_{j}\right)} G_{\phi}\left(u_{i}, \hat{x}_{i}\right) \frac{\delta^{2}\left(\hat{y}-\hat{x}_{j}\right)}{\sqrt{\gamma(y)}}\right]
\end{aligned}
$$

Solution gives Low subleading soft theorem. Invariance of the action is not obvious to the eye.

Flat limit of AdS

- An old idea is to extract the Minkowski S-matrix from the flat limit of AdS correlators
- Use boundary sources to create/destroy particles arranged to collide in region << R

(Polchinski
Giddings
Hijano, Neuenfeld)
- Since Minkowski S-matrix is equal to Minkowski path integral with bndy conds on \mathcal{I}, while AdS boundary correlators are equal to path integral with AdS boundary conditions, we essentially just need to relate the two sets of boundary conditions.
- HKLL relation: $\quad \hat{\phi}_{\text {AdS }}(\rho, x)=\int_{\mathcal{T}} d \tau^{\prime} \int d^{2} \Omega\left[K_{+}\left(\rho, x ; x^{\prime}\right) \mathcal{O}^{+}\left(x^{\prime}\right)+K_{-}\left(\rho, x ; x^{\prime}\right) \mathcal{O}^{-}\left(x^{\prime}\right)\right]$

Boundary integral taken over $\tau \in[-\pi, 0]$ for in states and $\tau \in[0, \pi]$ for out states

- Take large R limit while keeping bulk point in region near AdS origin. Write as expression for in/out flat space creation/annihilation operators:

$$
\begin{aligned}
& a_{\mathrm{in}, \vec{p}}=\int_{-\pi}^{0} d \tau e^{i \omega_{p} R\left(\tau+\frac{\pi}{2}\right)} \mathcal{O}^{-}(\tau,-\hat{p}) \\
& a_{\mathrm{out}, \vec{p}}=\int_{0}^{\pi} d \tau e^{i \omega_{p} R\left(\tau-\frac{\pi}{2}\right)} \mathcal{O}^{-}(\tau, \hat{p})
\end{aligned}
$$

- For wavepacket states integrals localize to $\quad \tau= \pm \frac{\pi}{2}$

Flat limit of AdS

- Flat space boundary action can be interpreted as S-matrix in coherent space basis. Flat <-> AdS data map equivalent to map between flat and AdS coherent states.

$$
\text { Flat space: } a_{\vec{p}}|\alpha\rangle=\alpha(\vec{p})|\alpha\rangle
$$

AdS state created by boundary source: $S=\int d^{3} x \phi_{0} O$

- AdS and flat partition functions related as $\quad Z_{\text {flat }}\left[\alpha\left(\phi_{0}\right)\right]=Z_{\text {AdS }}\left[\phi_{0}\right]$
- Operator mapping implies

$$
\alpha(\vec{p}) \sim \omega \int_{-\infty}^{\infty} \mathrm{d} u e^{-i \omega u} \phi_{0}\left(-\frac{\pi}{2}+\frac{u}{R},-\hat{p}\right) .
$$

- Within "scattering" subspace of Hilbert space, this provides a map between flat S-matrix and AdS correlators

IR symmetry in AdS

- BMS must arise from flat limit of AdS, though latter has only finite dimensional asymptotic symmetry algebra above $D=3$.
- Toy example: Virasoro as IR symmetry of AdS_5

Magnetic brane solution (D'Hoker, PK)

- Asymptotically AdS_5 solution of D=5 Einstein-Maxwell with boundary B-field (dual to $\mathrm{N}=4 \mathrm{SYM}$ with external B -field coupled to R -current).
- Describes RG flow from AdS_5 -> AdS_3 \times Th$^{\wedge} 2$

Brown-Henneaux Virasoro should be visible from AdS_5 boundary. Microscopically described by effective $\mathrm{D}=1+1$ CFT of fermions in Landau levels

IR symmetry in AdS

- Direct approach: stress tensor correlators (D'Hoker, PK,Shah)

$$
\left\langle T_{z z}(z) T_{z z}(0)\right\rangle_{|z| \rightarrow \infty}=\frac{c_{B H} / 2}{z^{4}}
$$

- Alternatively, extend AdS_3 boundary gravitons to AdS_5 (Kim, PK,Myers)

Background solution: $\quad d s^{2}=\frac{d r^{2}}{L(r)^{2}}+2 L(r) d x^{+} d x^{-}+e^{2 V} d x^{i} d x^{i}, \quad F=b d x^{1} \wedge d x^{2}$
Perturbation:

\[

\]

Extend perturbation to full spacetime: $\quad M=\frac{1}{b} L^{c}(r) \partial_{+}^{3} \epsilon\left(x^{+}\right) \quad L^{c}(r)=L(r) \int_{\infty}^{r} \frac{d r^{\prime}}{L\left(r^{\prime}\right)^{2} e^{2 V\left(r^{\prime}\right)}}$

$$
\leftrightarrows \text { not pure diff mode }
$$

- Full spacetime symplectic form found to reduce to Brown-Henneaux:

$$
\Omega_{D=5}=c_{B H} \int d \phi \partial_{+} \delta \epsilon \wedge \partial_{+}^{2} \delta \epsilon=\Omega_{B H}
$$

The End

