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1) Lorentz transformations, that act as conformal isometries of the 

celestial sphere 
2) Supertranslations.  At leading order in  they are: 

They transform the shear as 

θA → θA + VA(θ)
r u → u + f(θ)

CAB → CAB + (−2DADB + hABD2)f
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2) Supertranslations.  At leading order in  they are: 

They transform the shear as 

θA → θA + VA(θ)
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The supertranslation charges are

and  is the energy-momentum 4-vector 

Q[ f ] =
1

4πG ∫ d2θ hf(θ)m(θ, u)

Q(θ) = P0 + PmY1 m(θ)
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JY(u) =

1
8πG ∫ d2θ hYANA(θ, u)

YA

DAYB + DBYA = hABDCYC

Under supertranslations    
the angular momentum aspect and Bondi charges at   

transform as

 

u → u + f(θ)
u = ± ∞

NA(θ, ± ∞) → NA(θ, ± ∞) + 3∂A f(θ)m(θ, ± ∞)
JY(±∞) → JY(±∞) +

1
4πG ∫ d2θ hYAm(θ, ± ∞)∂A f(θ)

The total (conserved) angular momentum is  and the angular 
momentum flux is  

JY(−∞)
ΔJ ≡ J(+∞) − J(−∞)



The flux can be changed by supertranslations, i.e. by adding an 
infinite-wavelength gravitational wave! 

Not crazy  (  can be large even when the momentum is small) 
yet not useful.  We want to be able to tell wheat from chaff 

separating the radiation due to a scattering process (e.g. black hole 
mergers) from unobservable backgrounds
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yet not useful.  We want to be able to tell wheat from chaff 

separating the radiation due to a scattering process (e.g. black hole 
mergers) from unobservable backgrounds

ΔJY → ΔJY +
1

4πG ∫ d2θ hYAΔm(θ)∂A f(θ)

p × x

Soft dynamics is universal and there exists an automorphism of the 
algebra of u-local operators that makes them independent of 
supertranslations and boundary graviton degrees of freedom 

R. Bousso, M. P. CQG 34 (2017) 20, 204001 arXiv:1706.00436
PRD 96 (2017) 8, 086016 arXiv:1706.09280 

Shouldn’t it be possible to do the same for angular momentum &c.?



Several choices of angular momentum exist in the literature. 
We choose one proposed by Chen, Wang, Wang and Yau
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DADBCAB(±∞, θ) ≡ D2(D2 + 2)C±
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Y X ≡ wDCYCX + YCDCX

δfC
± = f, δf m

± = 0
Other definitions dress the angular momentum by using only  the 

boundary graviton  as additional degree of freedom. Some do not 
capture  contributions to the flux needed to explain radiative 

back-reaction effects in gravitational scattering.
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The flux   computes:
final angular momentum in the supertranslation frame where the 

final metric is    
MINUS

initial angular momentum in the supertranslation frame where 
the initial metric is 

THESE ARE THE FRAMES WHERE THE BONDI CHARGES 
COINCIDE WITH CANONICAL ADM CHARGES 
(Venziano and Vilkovisky following Ashtekar et al.)

This may explain why they coincide with scattering amplitudes 
computations and other perturbative computations that implicitly 

or explicitly work in the “round-metric’’  canonical frame.
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        THE CWWY FLUX AND COVARIANCE 

The flux   is covariant if  transform
covariantly i.e.

  

 

 
They are the transformations of conformal fields of weight

  
 These transformations follow from the asymptotic form of 

Lorentz transformations on coordinates
 

  and  are unit vectors parametrizing the celestial sphere

Generated by     not by  
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Y m+, m−, C+, C−
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DAYAm± + YADAm±

δ−1/2
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2

DAYAC± + YADAC±

w = 3/2, − 1/2

u = K(x̄)ū, x = g(x̄), r = K(x̄)
x x̄

J−
Y J−

Y − jY(m−, C−)
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A PROBLEM WITH LORENTZ BOOSTS: 
supertranslation invariance + covariance = translation invariance

 
invariant flux is ALSO TRANSLATION INVARIANT

JACOBI:
 

COVARIANCE

SUPERTRANSLATION INVARIANCE

On the other hand: 

so Jacobi implies 

[[Fμν, Jρσ], Sa] + [[Sa, Fμν], Jρσ] + [[Jρσ, Sa], Fμν] = 0

[Fμν, Jρσ] = − ημρFνσ − ηνσFμρ + ηνρFμσ + ημσFνρ

[Sa, Fμν] = 0

[JρσSa] = supertranslations + TRANSLATIONS

[Fμν, Pρ] = 0
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We define it first in the initial center of mass rest frame 

This definition still allows for spacetime translations

m−
1,m ≡ ∫ d2Θ hY1mm(−∞, Θ) = 0

We fix the origin of the the initial center of mass rest frame by 
requiring       

       
for  all boosts, which can be written as         
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ȲA = boost = DAψ, D2ψ = − 2ψ
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4πG
C−

1m = J−
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C−
00 = 0

In tensor notation we have just set   
in a generic frame we impose the manifestly covariant condition

In the rest frame  so we recover 

Ji0 = 0

JμνPμ = 0

⃗P = 0 Ji0 = 0
Equivalently, define the vector  

and impose
* (J−

Y − jY[m−, C−]) ≡ * J ∈ {Conformal Killing Vectors}

δ*Jm− |l = 0 l = 0,1
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The condition  is implicitly used in most papers 
on gravitational radiation because the frame of choice is a CMRF 

where the origin of coordinates coincides with the COM

To completely define the a covariant and (super)translation invariant 
flux we have to define also  

We can use either:

A:      
or

B:    

It is easy to show that the two prescriptions agree to  

J−
Ȳ − jȲ[m−, C−] = 0

C+ |l≤1

C+ |l≤1 = C− |l≤1

J+
μνPν = 0

O(G2)
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So  is the change in the total ADM angular 
momentum. Riva Vernizzi and Wong verified in some cases that it 

coincides with the formulas given by Bini, Damour and Manohar et al.

This identification is valid only for the ADM Lorentz generators 
defined with special asymptotic boundary conditions that forbid 

supertranslations (there is no single angular momentum otherwise)
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In fact  belongs the the universal enveloping algebra of  
(generalized) BMS but it is not in the BMS algebra

J−
Y − jY(m−, C− |l>1 ), m |l<1

𝔍Y ≡ J−
Y − jY(m−, C− |l>1 )
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