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® Review entanglement entropy (EE)
e Standard approach and its problems
e Shrinkability approach to EE
* A shrinkable boundary condition (BC) for Maxwell
* Bulk-edge split

® Resolving discrepancy
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Entanglement Entropy (EE)

e Cauchyslice 2 =AUA
e Density matrix p, = Trz|y){y/|

e EE of |y) is von Neumann entropy of p,: Sgg = — Try [pA log p A]

e Hilbert space factorization? #'y = # , Q # ; ?
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Obstructions to factorization

e All QFTs have UV obstructions to factorization

e UV modes piling up near entangling surface dA
e Discontinuity associated with infinite energy
® Most UV regulators solve problem

® Gauge theories have IR, or global, obstructions too
e Constraints generically violated

e Extended objects (e.g. Wilson lines) get cut open
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A unified framework

e Can address UV and IR obstructions together through shrinkability

* Need to review path integral approach to EE first



EE from path integral

For concreteness, let 2
be a slice of Minkowski
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EE from path integral

Prepare vacuum with
Euclidean half-plane
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EE from path integral

Cut out disk and choose a local BC.
Allows Hilbert space on radial slices
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EE from path integral
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_ exp(=2zHp)
PA = Tt [exp(—27 Hy)]
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EE from path integral
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Shrinkability

A BC is shrinkable if it recovers no hole [Donnelly, Wong ’18]

i

Spoiler: including edge modes yields shrinkability
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EE in 4D Maxwell

¢ 4D Maxwell is conformal

* EE across sphere determined by trace anomaly [Casini, Huerta, Myers "11]

31 r
e 4D: SEE,anom o = E log E
16 r
o 4D: Sggpuk ~ — 5 log 3 [Dowker 10]
1 r

o 2D: SEE,scalar ~ g log g



General Z(SP)

e Z(SP) and Zéfﬁ( of static dS computed for all D in [Anninos et al. *20]

e Found systematic discrepancy l/Zscalar(SD 2



General Z(SP)

e Z(SP) and Zéfﬁ( of static dS computed for all D in [Anninos et al. *20]

e Found systematic discrepancy 1/Zscalar(SD 2

-2
To resolve, need ZédD;e =1/Z,.,..(SP7%
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BC’s for Maxwell

e Want a BC that allows edge modes. Recall they’re
associated with large gauge transformations

e First recall symplectic form

0 =J SA A *6F = [ SA'SE,
A A

o Plug 6A = dA, so Q=J

VilSE, = J ASE,
A

0A

e Want a BC allowing both 4|,, and E, |,
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BC’s for Maxwell

o Electrically conducting BC: A,|,,, =0, p#n
e Forces A|,,, = const.

e Magnetically conducting BC: F,, |, =0
e Forces E,|,,,=0

e Dynamical edge mode (DEM) boundary condition: F; |, =0=A,|,,
e Allows A|,, and E |,

* Keeps all edge modes!
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e With DEM BC, can parametrize data on A as
e A;,=A.+V,a where V'A;=0= ‘Zin|aA
e E,=FE;+V,p where VE;=0=E,|,,

. Can show Q = J

SA'SE; + J oa oE, where weused V,f=E,
A

0A

* Phase space factorizes,

® I'ppm = Lpuik X 1 eqge also note L'y = 1yc
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Dynamical Edge Modes

o Also have H = J

1o 1. 1
A(EE’EE-+ZF’JFI-]-)+" E,—E,

0A

e K is the Dirichlet-to-Neumann operator. Maps harmonic Dirichlet data on dA to
Neumann data on 0A

e Can write as integral kernel in terms of harmonic Green’s function
e In static horizon limit, simplifies to K < log(e™!) A,

e Here ¢ is spatial distance from horizon to brick wall
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Edge partition function

ZDEM(ﬂ) — Tl‘ e_ﬂH
= Trbulk e_ﬁ Houlk Tredge
= Zbulk(ﬁ) Zedge(ﬁ)

* Z,.1x 1S magnetically conducting case. Has been computed in examples

e _ﬂ Hedge

® Z4ge is Our object of interest

(27) = Tr g, e " eae ~ det(K)*1? ~ det(A )% ~ 1/2Z,

edge (aA)

® Ledge calar



Edge partition function

Zeage = Trogge €7 Hetee ~ 1/Z,

edge € calar(aA)

Found the codimension-two scalar
and wrote as trace!
Resolves discrepancies in literature.

31 16 1
4D —— = — — — — AnyD: Z(SPY=2Z_. +Z
45 15 3 y (S7) bulk edge



Thank you!



