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0. Introduction



0.1) Scattering Amplitudes in d ` 2 Dimensions

‚ A massless n-point scattering amplitude in d ` 2 dimensions is given by

Anpp1, ¨ ¨ ¨ , pnq “ xO1pp1q ¨ ¨ ¨Onppnq y,

where x ¨ ¨ ¨ y denotes the time-ordered vacuum correlation function and
the operators Ok are defined via the LSZ reduction formula

Okp˘pq “ ´i

ż

dd`2XΦ˘
k pp|X qB2φkpX q,

with
Φ˘

k pp|X q “ ε˘
k ppqe¯ip¨X , p2 “ 0.

‚ The plane wave operators Okppq diagonalize the translation generators,

Pµ ¨ Okppq “ ´pµOkppq.
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0.2) Celestial Amplitudes in d ` 2 Dimensions

‚ A massless n-point celestial amplitude in d ` 2 dimensions is given by

Anp∆1, x⃗1, ϵ1; ¨ ¨ ¨ ; ∆n, x⃗n, ϵnq “ xOϵ1
1 p∆1, x⃗1q ¨ ¨ ¨Oϵn

n p∆n, x⃗nq y

where
O˘
k p∆, x⃗q “ ´i

ż

dd`2X Ψ˘
k p∆, x⃗ |X qB2φkpX q,

with (for scalars) Pasterski, Shao [1705.01027]

Ψ˘p∆, x⃗ |X q “
Γp∆q

p¯i q̂px⃗q ¨ X q∆
, q̂µpx⃗q ”

ˆ

1 ` |x⃗ |2

2
, x⃗ ,

1 ´ |x⃗ |2

2

˙

.

‚ The conformal primary operators O˘
k p∆, x⃗q transform as conformal

primaries, e.g.

D ¨ O˘
k p∆, 0⃗q “ ´i∆O˘

k p∆, 0⃗q, D “ Md`1,0,

Ka ¨ O˘
k p∆, 0⃗q “ 0, Ka “ M0,a ` Md`1,a.

(a, b, . . . P t1, ¨ ¨ ¨ , du)
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0.3) Scattering Amplitudes ÐÑ Celestial Amplitudes

‚ The direct relationship between the plane wave operators and conformal
primary operators is given by the Mellin transform

O˘p∆, x⃗q “

ż 8

0
dωω∆´1Op˘ωq̂px⃗qq.

‚ Completeness and normalizability (w.r.t. Klein-Gordon norm) of
conformal primary wavefunctions implies Pasterski, Shao [1705.01027]

∆ P CP –
d

2
` iR.

‚ The inverse transform is given by

O p˘ωq̂px⃗qq “

ż

CP

d∆
2πi

ω´∆O˘p∆, x⃗q.
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0.4) Some Observations

‚ The Mellin integral requires us to integrate the energy ω over p0,8q

ùñ Celestial amplitudes cannot be defined for effective field theories.

‚ Completeness and normalizability restricts ∆ P d
2 ` iR. Many operators

of interest do not live here, e.g. w1`8 generators have ∆ P 2 ´ N.

They are constructed by analytically continuing ∆ P C and then extracting the
residue of the poles at ∆ P 2 ´ N.

‚ The bulk translation generators Pµ map ∆ Ñ ∆ ` 1 which takes us off
the principal series axis, CP .

Pµ is not bounded, but expp´iaµPµq is, so that the latter has a good action

expp´iaµPµq ¨ O˘
k p∆, x⃗q “

ż

CP

d∆1

2πi
Γp∆ ´ ∆1q

r¯ia ¨ q̂px⃗q ` ϵs∆´∆1 O
˘
k p∆1, x⃗q.

‚ Is there a different definition of the conformal primary operators that
removes these obstacles?

Yes! (this talk) PM [2402.09256]
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Approach

I. Generalize the integration contours used to define conformal primaries.

II. Impose constraints: 1) Completeness, 2) Consistency with symmetries,
and 3) Normalizability ùñ Only two contour choices are allowed!

‚ C˘
ω – R˘, C∆ – d

2 ` iR.

‚ Cω – Λe ir0,2πq, C∆ – Z Ð resolves aforementioned obstacles!

III. Summary

IV. Comments
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I. Generalized Conformal
Primaries



I. Generalized Definition for Conformal Primaries

‚ Consider a generalized definition for the conformal primaries

Op∆, x⃗q “ c

ż

Cω

dωω∆´1Opωq̂px⃗qq,

Opωq̂px⃗qq “ c 1

ż

C∆

d∆ω´∆Op∆, x⃗q.

The kernels ω∆´1 and ω´∆ are fixed by Lorentz symmetry and cannot
be altered. The only thing we get to choose are the contours of
integration Cω and C∆.

‚ The analytic continuation to ω P C is defined via the LSZ reduction
formula.

‚ For now, we restrict ourselves to tree-level amplitudes so Opωq̂px⃗qq are
meromorphic functions of ω. We will discuss with lnω-type terms later.
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II.1) Constraints: Completeness



II.1) Completeness

‚ We recall

Op∆, x⃗q “ c

ż

Cω

dωω∆´1Opωq̂px⃗qq,

Opωq̂px⃗qq “ c 1

ż

C∆

d∆ω´∆Op∆, x⃗q.

‚ The plane wave operators Opωq̂px⃗qq are complete. Consequently,
Op∆, x⃗q will also be complete if the basis transformations above are
invertible. Substituting the second equation into the first and vice
versa, we find the constraints

cc 1

ż

C∆

d∆ω´∆ω1∆´1 “ δCω pω1, ωq,

cc 1

ż

Cω

dωω∆´∆1
´1 “ δC∆

p∆1,∆q.
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II.1) Completeness

‚ To process the constraints, we set ω “ et . In terms of t, they read

cc 1

ż

Ct

dtept´t1
qp∆´∆1

q “ δC∆
p∆1,∆q,

cc 1

ż

C∆

d∆e´pt´t1
qp∆´∆1

q “ δCt pt
1, tq.

‚ Compare these to the standard integral representation of the Dirac delta
function,

1
2πi

ż

iR
dxepx´x 1

qpk´k1
q “ δRpk, k 1q “ δpk ´ k 1q.

‚ Constraints are satisfied if

C∆ – ∆1
0 ` e iαR, Ct – t 1

0 ` ie´iαR, cc 1 “
1

2πi
.

for some fixed ∆1
0, t

1
0 P C and α P r0, πq.
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II.1) Completeness: α P p0, π2 q Y pπ
2 , πq

C∆

∆0

Cω C∆
∆0

Cω

α P p0, π
2 q α P pπ

2 , πq

Contours in ω (orange) and ∆ (blue) for α ‰ 0.

For fixed ∆0, t0 P R, the contour is

∆ “ p∆0 ` ν cosαq ` ipν sinαq, ν P R,

ω “ eη sinα cospt0 ` η cosαq ` ieη sinα sinpt0 ` η cosαq, η P R.
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II.1) Completeness: α “ π
2
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II.1) Completeness: α “ 0

C∆i∆0

Cω

Contours in ω (orange) and ∆ (blue) for α “ 0.

For fixed ∆0, t0 P R, the contour is

∆ “ ν ` i∆0, ν P R,

ω “ et0e iη, η P R.
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II.1) Completeness: α “ 0

C∆i∆0

Cω

Contours in ω (orange) and ∆ (blue) for α “ 0.

For fixed ∆0, t0 P R, the contour is

∆ “ ν ` i∆0, ν P R,

ω “ et0e iη, η P R.
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II.1) Completeness: α “ 0 + Analyticity

If the amplitude is analytic inside Cω, then we can further restrict
C∆ P Z ` i∆0

C∆i∆0

Cω

For fixed ∆0, t0 P R, the contour is

∆ “ n ` i∆0, n P Z,

ω “ et0e iη, η P r0, 2πq.
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II.2) Constraints: Consistency
with Symmetry



II.2) Consistency with Conformal Symmetry

We recall the definitions

Op∆, x⃗q “ c

ż

Cω

dωω∆´1Opωq̂px⃗qq,

Opωq̂px⃗qq “ c 1

ż

C∆

d∆ω´∆Op∆, x⃗q.

Under boosts along the X d`1 direction,

D ¨ Opωq̂p⃗0qq “ iωBωOpωq̂p⃗0qq.

It follows that

D ¨ Op∆, 0⃗q “ ic

ż

Cω

dωω∆BωOpωq̂p⃗0qq

“ ´i∆Op∆, 0⃗q ` ic

ˆ

ω∆Opωq̂p⃗0qq

˙
ˇ

ˇ

ˇ

ˇ

BCω

For O to transform as a conformal primary, the second term above must
vanish.
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II.2) Consistency with Conformal Symmetry (α ‰ 0)

‚ For the α ‰ 0 contours, BCω “ t0,8u so in this case, we must have

lim
ωÑ0,8

rω∆Opωq̂px⃗qqs “ 0.

We can’t really say much about the UV limit without knowing the
precise UV behavior of the theory. The IR limit is constrained by soft
theorems which states Opωq̂px⃗qq “ Opω´1q.

‚ The limit above holds iff. Re∆ ě 1. It follows that only the α “ π
2

contour can be used with ∆0 ě 1.

C∆

∆0

Cω

C∆

∆0

Cω
C∆

∆0

Cω

α P p0, π
2 q α “ π

2 α P pπ
2 , πq
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II.2) Consistency with Conformal Symmetry (α “ 0)

‚ For the α “ 0 contours, BCω “ H so in this case, there is no new
constraint in this case.

C∆i∆0

CωCω
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II.2) Consistency with CPT

‚ CPT maps ω Ñ ´ω.

‚ The α “ π
2 contour is not invariant under CPT, so we need to introduce

a second set of conformal primary operators
‚ The α “ 0 contour is invariant under CPT, so in this case, we do not

need to introduce a second set of conformal primary operators.

C∆

∆0

C+
ω

C−
ω

C∆i∆0

Cω

α “ π
2 α “ 0
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II.3) Normalizability (α “ π
2 )

‚ There are four different conformal primaries with α “ π
2 , namely

O˘p∆, x⃗q and Ō˘p∆, x⃗q

(Roughly, these are the in creation and out annihilation operators for a particle and

its CPT conjugate) .

‚ The non-vanishing two-point function of the conformal primaries is
given by

xO`p∆, x⃗qŌ´p∆1, x⃗ 1q y “

ż

Cω

dωω∆´1
ż

C1
ω

dω1ω1∆1
´1xOpω, x⃗qŌpω1, x⃗ 1q y.

‚ The integrand is a 1 Ñ 1 scattering amplitudes and is given by

xOpω, x⃗qŌpω1, x⃗ 1q y “ 2p2πqd`1p´ωω1q
1
2 p1´dqδpω ` ω1qδpdqpx⃗ ´ x⃗ 1q.

‚ Analytically continue δpω ` ω1q Ñ δCω
pω,´ω1q.
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II.3) Normalizability (α “ π
2 )

‚ It follows that

xO`p∆, x⃗qŌ´p∆1, x⃗ 1q y “ 2eπip∆´dqp2πqd`1δpdqpx⃗ ´ x⃗ 1q

ˆ

ż

C1
ω

dω1ω1∆`∆´d´1.

‚ The integral over ω1 along the contour is given by
ż

C1
ω

dω1ω1∆`∆1
´d´1 “

ż 8

´8

dηepη`it0qp2∆0´d`ipν`ν1
qq.

where we used the fact that in this case, ∆ P ∆0 ` iR.

‚ δ-function normalizability requires ∆0 “ d
2 ùñ ∆ P CP .
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xO`p∆, x⃗qŌ´p∆1, x⃗ 1q y “ 2eπip∆´dqp2πqd`1δpdqpx⃗ ´ x⃗ 1q

ˆ

ż

C1
ω

dω1ω1∆`∆´d´1.

‚ The integral over ω1 along the contour is given by
ż

C1
ω

dω1ω1∆`∆1
´d´1 “

ż 8

´8

dηepη`it0qp2∆0´d`ipν`ν1
qq.

where we used the fact that in this case, ∆ P ∆0 ` iR.

‚ δ-function normalizability requires ∆0 “ d
2 ùñ ∆ P CP .

18



II.3) Normalizability (α “ 0)

‚ The argument is the same as before. The integral over ω1 along the
contour, in this case, is given by

ż

Cω

dωω∆`∆1
´d´1 “ i

ż 8

´8

dηept0`iηqp2i∆0`ν`ν1
´dq

where we used the fact that in this case, ∆ P R ` i∆0.

‚ δ-function normalizability now implies ∆0 “ 0 ùñ ∆ P R.
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III. Summary

Completeness, normalizability, and consistency with symmetries imply
two possible definitions for conformal primary operators.

‚ α “ π
2 : In this case, we define two sets of conformal primary operators

O˘p∆, x⃗q “

ż

e ipt0˘π{2qR`

dωω∆´1Opω, x⃗q, ∆ P
d

2
` iR.

for any t0 P r´π{2, π{2q. The Pasterski-Shao conformal primaries have
t0 “ ´π{2.

‚ α “ 0: In this case, we define just one set of conformal primary operator

Op∆, x⃗q “

ż

Λe iR

dω
2πi

ω∆´1Opω, x⃗q, ∆ P R.

for any Λ P R`. If we additionally assume that Opω, x⃗q is analytic in ω

for |ω| ă Λ, then we can restrict the contour integral to Λe ir0,2πq with
∆ P Z.
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IV. Comments

‚ The conformal primary operators with ∆ P Z resolves all the obstacles
we discussed previously.

˝ The contour of integration in ω is Λe ir0,2πq. As long as Λ ă ΛUV,
we can evaluate these integrals in EFTs.

˝ All operators of interest (so far) are obtained from this definition.
No analytic continuation in ∆ is required.

˝ Pµ has a perfectly well-defined action on the conformal primaries
(∆ Ñ ∆ ` 1 makes sense!).

‚ Fermionic plane wave operators are analytic in
?
ω so in that case, we

have ∆ P 1
2Z.

‚ The operators have a topological dependence on Λ (radius of contour).
For multiple insertions, the ordering of Λ defines the order of softness
ùñ no ambiguity in JzJw̄ OPE!
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IV. Comments

‚ If Opω, x⃗q has lnω terms in its soft expansion, then the contour
integrals that define Op∆, x⃗q are not defined due to the branch cut.
This can be fixed by extending the definition to

Opmqp∆, x⃗q “

¿

dω
2πi

ω∆´1pωBωqmOpω, x⃗q

The highest power m above equals the highest power of lnω that
appears at Opω´∆q in the soft expansion.

‚ Conformal primaries with ∆ P Z have appeared previously in Freidel,

Pranzetti, Raclariu [2212.12469] and Cotler, Miller, Strominger [2302.04905].
These authors constructed conformal primary wavefunctions with ∆ P Z
that are normalizable w.r.t. modified norms (L2-norm on Schwarz space
and RSW norm). The operators constructed here are most certainly
related to these.
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Thank You!
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