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0. Introduction



0.1) Scattering Amplitudes in d + 2 Dimensions

e A massless n-point scattering amplitude in d + 2 dimensions is given by
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where (- denotes the time-ordered vacuum correlation function and
the operators Oy are defined via the LSZ reduction formula

ooz

with
OF(pIX) = et (p)e™P%,  p? =0,



0.1) Scattering Amplitudes in d + 2 Dimensions

e A massless n-point scattering amplitude in d + 2 dimensions is given by

An(p1;- -+, Pn) = (O1(P1) -+ On(pa) ),

where (- denotes the time-ordered vacuum correlation function and
the operators Oy are defined via the LSZ reduction formula

Ou(p) = i [ 42X (IX)P 0 (X),

with
OF(pIX) = et (p)e™P%,  p? =0,

e The plane wave operators O(p) diagonalize the translation generators,

Py - Ok(p) = —p.Ok(p)-



0.2) Celestial Amplitudes in d + 2 Dimensions

e A massless n-point celestial amplitude in d + 2 dimensions is given by
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where
0 (A, %) = —iJdd”xwf(A,)?\X)angk(X),

with (for scalars) Pasterski, Shao [1705.01027]
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0.2) Celestial Amplitudes in d + 2 Dimensions

e A massless n-point celestial amplitude in d + 2 dimensions is given by

San(Al’ )?17 €1, Ana)?fh 6l‘l) = <®fl (A17;1) e ®r67"(An7 )?n)>
where
0 (A, %) = —iJdd”xwf(A,)?\X)angk(X),
with (for scalars) Pasterski, Shao [1705.01027]
ra 1+ 52 _ 1—|x?
%a a#()?) = + |X‘ 7)?’ ‘X| .
(Fi4(x) - X 2 2
e The conformal primary operators 6 (A, X) transform as conformal
primaries, e.g.
D -6 (A,
K, - 65 (A,

YA, X|X) =

0) = —iAGE(A,0), D= Mgyi1o,
0) =0, Ka= Mo,s + Mgi1,a.

(a,b,...e {1, ,d})
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0.3) Scattering Amplitudes «— Celestial Amplitudes

e The direct relationship between the plane wave operators and conformal
primary operators is given by the Mellin transform

0% (A, %) = JOC dww1O(2wd(R)).
0

e Completeness and normalizability (w.r.t. Klein-Gordon norm) of
conformal primary wavefunctions implies Pasterski, Shao [1705.01027]

d
AeCp=—+IiR.
2
e The inverse transform is given by

O (£wi(x)) = J dAW—A®i(A7>?).

Cp 27
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e The Mellin integral requires us to integrate the energy w over (0,00)
= C(Celestial amplitudes cannot be defined for effective field theories.

e Completeness and normalizability restricts A € % + /IR. Many operators

of interest do not live here, e.g. wy, o generators have A € 2 — N.
They are constructed by analytically continuing A € C and then extracting the
residue of the poles at A € 2 — N.

o The bulk translation generators P, map A — A + 1 which takes us off
the principal series axis, Cp.

Py, is not bounded, but exp(—ia*P,,) is, so that the latter has a good action

. . dA’ ria-—A)
exp(—ia'Py) - GE(A,X) = J R AN
cp 2mi [Fia- §(X) + €]

05 (A, %).

e s there a different definition of the conformal primary operators that
removes these obstacles? Yes! (this talk) PM [2402.09256]



Approach

I. Generalize the integration contours used to define conformal primaries.

II. Impose constraints: 1) Completeness, 2) Consistency with symmetries,
and 3) Normalizability == Only two contour choices are allowed!

~ Ae'l02™) ¢, ~ Z « resolves aforementioned obstacles!

°
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1. Summary

IV. Comments



|I. Generalized Conformal
Primaries
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|I. Generalized Definition for Conformal Primaries

Consider a generalized definition for the conformal primaries

O6(A,X) = CJC dww?1O(WE(X)),

O(wg(x)) = c’f dAw™206(A, X).
Ca
The kernels w®~! and w™2 are fixed by Lorentz symmetry and cannot
be altered. The only thing we get to choose are the contours of
integration C,, and Ca.

The analytic continuation to w € C is defined via the LSZ reduction
formula.

For now, we restrict ourselves to tree-level amplitudes so O(w§(x)) are
meromorphic functions of w. We will discuss with In w-type terms later.
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I1.1) Completeness

e We recall
(A, ) — cf w1 O(WE(R)),
Co

Ow§(x)) =c' | dAw™206(A,X).
Ca
e The plane wave operators O(w§(X)) are complete. Consequently,
O(A, X) will also be complete if the basis transformations above are
invertible. Substituting the second equation into the first and vice

versa, we find the constraints

o | dAw AW = b (W, w),
Ca

CCIJ dww? =271 = 50 (A, A).
Cu
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I1.1) Completeness

e To process the constraints, we set w = e*. In terms of t, they read
CC/J dtet=t)A=2) — 5. (A" A),
C:
CC/J dAe~ (1A=L) — 5. (¢ 1),
Ca

e Compare these to the standard integral representation of the Dirac delta
function,

sz dxe* XV K=K) — ek, k') = 6(k — K').
e Constraints are satisfied if
Ca = Ay + €“R, Cr =ty + ie”'°R, o' = —.

for some fixed Ag, t) € C and a € [0, 7).
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+ +

s

ae(0,%) ae (5,m)

Contours in w (orange) and A (blue) for o # 0.
For fixed Ag, tg € R, the contour is

A = (Ao +vcosa) + i(vsina), veR,

w = 75" cos(ty + 1 cosar) + ie" " sin(ty + 1 cos ), ne€R.
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Contours in w (orange) and A (blue) for o = 7.
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11.1) Completeness: o =7

N

Ca

A~
~

Ao

+

Contours in w (orange) and A (blue) for o = 7.

For fixed Ag, tg € R, the contour is
A=Ay +iv, v eR,

w = e'lcos ty + ie” sin ty, n€R,
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I1.1) Completeness: a =0
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Contours in w (orange) and A (blue) for o = 0.
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I1.1) Completeness: a =0

N

<+

A~
~

+

Contours in w (orange) and A (blue) for o = 0.

For fixed Ag, tg € R, the contour is
A =v+ iy, veR,

w = elem, neR.
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I1.1) Completeness: a = 0 + Analyticity

If the amplitude is analytic inside C,,, then we can further restrict
CheZ+ il

AN Ca

A~
~

12



I1.1) Completeness: a = 0 + Analyticity

If the amplitude is analytic inside C,,, then we can further restrict
CheZ+ il

AN Ca

A~
~

For fixed Ag, tg € R, the contour is
A =n+ iAo, neZ,
w = ee™, n € [0,2m).
12



I1.2) Constraints: Consistency
with Symmetry




I1.2) Consistency with Conformal Symmetry

We recall the definitions
O(A,X) = cJ dww?1O(Ww§(x)),
Cw

OW§(x)) =c' | dAw™206(A,X).
Ca

Under boosts along the X9+ direction,
D - O(w§(0)) = iwd.,O(w§(0)).
It follows that

D-6(A,0) = ic f duw? 2, 0(wd(0))
Gy

= -i0(4,0) +ie( 20910

ac.,
For © to transform as a conformal primary, the second term above must
vanish.

13



I1.2) Consistency with Conformal Symmetry (« # 0)

For the o # 0 contours, dC,, = {0, o0} so in this case, we must have

lim [wO(w§(x))] = 0.

w—0,00

We can't really say much about the UV limit without knowing the
precise UV behavior of the theory. The IR limit is constrained by soft
theorems which states O(w§(X)) = O(w™1).

14



I1.2) Consistency with Conformal Symmetry (« # 0)

For the o # 0 contours, dC,, = {0, o0} so in this case, we must have

. A S
Jim [w£0wa(R)] = 0.

We can't really say much about the UV limit without knowing the

precise UV behavior of the theory. The IR limit is constrained by soft

theorems which states O(w§(X)) = O(w™1).

The limit above holds iff. Re A > 1. It follows that only the o = 7

contour can be used with Ag > 1.

14



I1.2) Consistency with Conformal Symmetry (o = 0)

e For the a = 0 contours, dC,, = ¢ so in this case, there is no new

constraint in this case.

4

15



I1.2) Consistency with CPT

e CPT mapsw — —w.
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I1.2) Consistency with CPT

e CPT mapsw — —w.

e Thea = 5 contour is not invariant under CPT, so we need to introduce

a second set of conformal primary operators
e The a = 0 contour is invariant under CPT, so in this case, we do not

need to introduce a second set of conformal primary operators.

4~

Ca

+

~
~
~

~

Ao
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11.3) Normalizability




11.3) Normalizability (a =

e There are four different conformal primaries with a = 7, namely
6%(A, %) and (A, %)
(Roughly, these are the in creation and out annihilation operators for a particle and

its CPT conjugate) .
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11.3) Normalizability (« = %)

e There are four different conformal primaries with o = Z, namely
6%(A, %) and (A, %)
(Roughly, these are the in creation and out annihilation operators for a particle and

its CPT conjugate) .

e The non-vanishing two-point function of the conformal primaries is
given by

(6T (A, )6 (A, X)) = f dww® 1 [ dw' w2 "N O(w, R)O(W, X))
Co c,

e The integrand is a 1 — 1 scattering amplitudes and is given by
(O(w, R0, 2") > = 2(2m) 9+ (—ww') 2D (w + )6 (% — %).

e Analytically continue §(w + w') — dc,, (w, —w').

17



11.3) Normalizability (« = %)

e It follows that
(6T (A, X)67 (A, %)) = 2e™A=D (27)d+15(D) (¢ — %)

52 dw/w,A+A_d_1.

c’
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11.3) Normalizability (« = %)

e It follows that
(6T (A, X)67 (A, %)) = 2e™A=D (27)d+15(D) (¢ — %)

dw/ IA+A—d— 1
C/

X

e The integral over w’ along the contour is given by
g g

s IA+A —d—1 JOO dne(nJrito)(2A07d+i(u+1/))'
cl —©

where we used the fact that in this case, A € Ay + iR.
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11.3) Normalizability (« = %)

e It follows that
(6T (A, X)67 (A, %)) = 2e™A=D (27)d+15(D) (¢ — %)

dw/ IA+A—d— 1
C/

X

e The integral over w’ along the contour is given by

s IA+A —d—1 JOO dne(nJrito)(2A07d+i(u+1/))'
cl —©

where we used the fact that in this case, A € Ay + iR.

e J-function normalizability requires Ag = g = A€ Cp.

18



11.3) Normalizability (o« = 0)

e The argument is the same as before. The integral over w’ along the
contour, in this case, is given by

Q0
J dwwA+A,*d71 _ /J d,r]e(tu+in)(2iAo+I/+u’fd)
C. —0

where we used the fact that in this case, A € R + iA.
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11.3) Normalizability (o« = 0)

e The argument is the same as before. The integral over w’ along the
contour, in this case, is given by

Q0
J dwwA+A,*d71 _ /J d,r]e(tu+in)(2iAo+I/+u’fd)
C. —0

where we used the fact that in this case, A € R + iA.

e J-function normalizability now implies Ag =0 =— A €R.

19
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I1l. Summary

Completeness, normalizability, and consistency with symmetries imply
two possible definitions for conformal primary operators.
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I1l. Summary

Completeness, normalizability, and consistency with symmetries imply
two possible definitions for conformal primary operators.

e a = 75: In this case, we define two sets of conformal primary operators

d
6% (A,X) = J dww? 10w, %), Ae = +iR.
eiltotm/2)R 2

for any tg € [—7/2,7/2). The Pasterski-Shao conformal primaries have
to = —Tl'/2.
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I1l. Summary

Completeness, normalizability, and consistency with symmetries imply
two possible definitions for conformal primary operators.

a = Z: In this case, we define two sets of conformal primary operators

d
6% (A,X) = J dww? 10w, %), Ae = +iR.
eiltotm/2)R 2

for any tg € [—7/2,7/2). The Pasterski-Shao conformal primaries have
to = —Tl'/2.
a = 0: In this case, we define just one set of conformal primary operator

d
0(A, %) :f | 2—9&*10(%;), A€R.
AeR Tl

for any A € R.. If we additionally assume that O(w, X) is analytic in w
for |w| < A, then we can restrict the contour integral to Ae'l%2™) with
AeZ

20
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IVV. Comments

e The conformal primary operators with A € Z resolves all the obstacles
we discussed previously.

o The contour of integration in w is Ae'l%2™) . As long as A < Ay,
we can evaluate these integrals in EFTs.

o All operators of interest (so far) are obtained from this definition.
No analytic continuation in A is required.

o P, has a perfectly well-defined action on the conformal primaries
(A — A +1 makes sense!).
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IVV. Comments

e The conformal primary operators with A € Z resolves all the obstacles
we discussed previously.

o The contour of integration in w is Ae/l%:2™).

As long as A < Ay,
we can evaluate these integrals in EFTs.

o All operators of interest (so far) are obtained from this definition.
No analytic continuation in A is required.

o P, has a perfectly well-defined action on the conformal primaries

(A — A +1 makes sense!).

e Fermionic plane wave operators are analytic in \/w so in that case, we
have A € £Z.

e The operators have a topological dependence on A (radius of contour).
For multiple insertions, the ordering of A defines the order of softness
= no ambiguity in J,J; OPE!

21



IVV. Comments

If O(w, X) has Inw terms in its soft expansion, then the contour
integrals that define O(A, X) are not defined due to the branch cut.
This can be fixed by extending the definition to

6™ (A, %) ffdl A1(4,0V"O (w, %)

2mi

The highest power m above equals the highest power of Inw that
appears at O(w™2) in the soft expansion.
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IVV. Comments

o If O(w,X) has Inw terms in its soft expansion, then the contour
integrals that define O(A, X) are not defined due to the branch cut.
This can be fixed by extending the definition to

d
6™ (A, %) ffl A1(4,0V"O (w, %)
27
The highest power m above equals the highest power of Inw that

appears at O(w™2) in the soft expansion.

e Conformal primaries with A € Z have appeared previously in Freidel,
Pranzetti, Raclariu [2212.12469] and Cotler, Miller, Strominger [2302.04905].
These authors constructed conformal primary wavefunctions with A € Z
that are normalizable w.r.t. modified norms (L?-norm on Schwarz space
and RSW norm). The operators constructed here are most certainly
related to these.
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