X(3872) production and prospects from ATLAS

Vato Kartvelishvili

Exotic Hadron Spectroscopy
Edinburgh, 11 December 2017
Outline

- ATLAS detector, (di-) muon triggers and LHC luminosity
- $\chi_{bJ}(3P)$ – an early contribution from ATLAS to heavy quarkonium spectroscopy
- Searches for X_b
- $X(3872)$ production measurement, prompt and non-prompt
- Summary and perspectives
The ATLAS detector at LHC
Muon and dimuon triggers in ATLAS

History of 20th century particle physics in one plot

\(\sqrt{s} = 7 \text{ TeV} \int L \, dt \sim 2.3 \text{ fb}^{-1} \)
ATLAS as a detector is optimised for “high pT” physics – Higgs and BSM searches

In early years of LHC luminosity was not as high, could afford dimuon triggers with low thresholds

Many quarkonium-related measurements made, including some rather unexpected “first observations

In Run 2 our favourite low-pT dimuon triggers are heavily prescaled, and muon trigger thresholds creep higher and higher

Need to be more and more creative and inventive to maintain interest in the area of heavy flavour physics
In fact, the first new state observed by any of the LHC experiments was not the Higgs, but rather the humble excited P-wave bottomonium, $\chi_{bJ}(3P)$

Observed by ATLAS in $Y(nS)+\text{photon}$ final state, using both converted and unconverted photons

Since then, confirmed by DØ and LHCb

Relevant for this talk, as some exotic bottomonium state may be hiding in there...

First observation of the $\chi_{bJ}(3P)$ state

PRL 108 (2012) 152001

light blue: statistical, dark blue statistical+systematic

Graphical Data

- **ATLAS**
 - Data: $Y(1S)\gamma$
 - Fit to $Y(1S)\gamma$
 - Data: $Y(2S)\gamma$
 - Fit to $Y(2S)\gamma$
 - Background to $Y(1S)\gamma$
 - Background to $Y(2S)\gamma$

- **Converted Photons**

- **Invariant mass [GeV]**

- **Potential models**
 - PRD38, 279 (1988)
 - EPJC 4 107 (1998)
 - arXiv:1211.6373
 - arXiv:1208.2186
 - arXiv:1208.2186
 - arXiv:1105.0855v2

V Kartvelishvili – X(3872) production in ATLAS :: Exotic hadron spectroscopy :: 11 December 2017 :: Page 6
Event with $\chi_b(3P)$ candidate
Observation of the $\chi_{bJ}(3P)$ state (media)

LHC reports discovery of its first new particle

By Jonathan Amos
Science correspondent, BBC News

The Large Hadron Collider (LHC) on the Franco-Swiss border has made its first clear observation of a new particle since opening in 2009.

It is called $\chi_{bJ}(3P)$ and will help scientists understand better the forces that hold matter together.

Large Hadron Collider has first confirmed sighting of new particle (but it's not the Higgs)

Large Hadron Collider discovers a new particle: the Chi-b(3P)

By Mark Brown | 22 December 11

Search for X_b in $\Upsilon \pi \pi$ decay mode

- Effective integrated luminosity 16.2 fb\(^{-1}\) at 8 TeV

- The $\pi^+ \pi^- \Upsilon(1S)$ invariant mass distribution in the kinematic bin most sensitive to an X_b signal: $|y| < 1.2$, $p_T > 20$ GeV, and $\cos \theta^* > 0$.

- The only apparent peaks are at the masses of the $\Upsilon(2S)$ (10023 MeV) and $\Upsilon(3S)$ (10355 MeV).

- Observed 95\% CL\(_S\) upper limits on the relative production rate $R = \sigma_B / \sigma_{B_2S}$ of a hypothetical X_b parent state decaying isotropically to $\pi^+ \pi^- \Upsilon(1S)$

- The median expectation (dashed) and the corresponding $\pm 1\sigma$ and $\pm 2\sigma$ bands shown in green and yellow
What is X(3872)?

‘Exotic’ resonance first observed by Belle in 2003 in $J/\psi\pi^+\pi^-$ final state.

Soon after confirmed by BaBar, CDF, D0 and now LHC experiments.

Current world average (3871.69 ± 0.17) MeV places X(3872) mass very close to the $D^0 D^{0*}$ threshold.

What is it? No clear picture yet!

Loosely bound $D^0 – D^{0*}$ molecule? Unlikely: NRQCD with this premise over-predicts production compared to CMS 2011 measurement.

New excited charmonium state? Unlikely: LHCb measured $J^{PC} = 1^{++}$, no such state expected around that mass.

A mix of these two, $\chi_{c1}(2P) - (D^0 D^{0*})$, with hadronic decays dominated by the $\chi_{c1}(2P)$ component? Maybe, if the mixture is determined through fit to CMS results (arxiv:1304.6710).

Tetraquark (diquark – diantiquark)? Possible, but hard to make any solid predictions.

ATLAS has performed a measurement that may help answer some of these questions, and/or create new ones.

Measuring X(3872) and the well-studied $\psi(2S)$ in the same analysis and in the same final state $J/\psi\pi^+\pi^-$ helps reduce systematics for various ratios and comparisons.
Event selection

Di-muon trigger with 4 GeV p_T threshold on each muon

Effective integrated luminosity 11.4 fb$^{-1}$ at 8 TeV

Muon cuts:
- Opposite sign `combined' muons
- MCP cuts, $p_T > 4$ GeV, $|\eta| < 2.3$
- Good trigger object matching ($\Delta R < 0.01$)

J/ψ cuts:
- $\chi^2_{dimu_{vtx}} < 200$, $p_T > 8$ GeV & $|y| < 2.3$
- $|m(J/\psi) - m(J/\psi)_{PDG}| < 120$ MeV

Pion cuts
- Opposite sign, $p_T > 600$ MeV, $|\eta| < 2.4$

$J/\psi\pi^+\pi^-$ background suppression cuts
- $P(\chi^2_{J/\psi\pi\pi}) > 4\%$
- Opening angle $\Delta R(J/\psi, \pi^{\pm}) < 0.5$
- $Q = m(J/\psi\pi^+\pi^-) - m(J/\psi)_{PDG} - m(\pi^+\pi^-) < 300$ MeV

Constrained vertex fit on each $\mu^+\mu^-\pi^+\pi^-$ candidate:
- di-muon with $(2.8 < m_{\mu\mu} < 3.4)$ GeV fitted to a common vertex
- di-muon mass constrained to the J/ψ mass
- pion mass hypothesis used for the other two tracks
Outline of the Analysis

Analysis performed for $|y| < 0.75$ of the $J/\psi \pi^+ \pi^-$ system, for optimal tracking resolution.

p_T bin boundaries: [10, 12, 16, 22, 40, 70] GeV

Effective pseudo-proper lifetime $\tau = \frac{L_{xy} m}{p_T}$ with $L_{xy} = \frac{\vec{L} \cdot \vec{p_T}}{p_T}$

bin boundaries: [-0.3, 0.025, 0.3, 1.5, 15.0] ps

Each $J/\psi \pi^+ \pi^-$ candidate weighted to correct for trigger/reco/acceptance losses.

For each p_T and lifetime bin, binned minimum χ^2 fit in the $J/\psi \pi^+ \pi^-$ invariant mass to determine $\psi(2S)$ and $X(3872)$ signal yields.

For each p_T bin, the yields in individual lifetime windows are subsequently fitted:
 - to determine lifetime dependence and hence separate the signal into prompt and non-prompt components.

The lifetime fits are performed separately for $\psi(2S)$ and $X(3872)$.
Mass fits in lifetime windows

Mass fits: double-Gaussian signal peaks on a smooth background:

\[
f(m) = f_{12} \left(Y^\psi G_1^\psi (m) + Y^X G_1^X (m) \right) + \left(1 - f_{12} \right) \left(Y^\psi G_2^\psi (m) + Y^X G_2^X (m) \right) + N_{\text{bkg}} (m - m_0)^p e^{p_1(m-m_0)} P(m-m_0)
\]

Fraction of narrow Gaussian \(f_{12} \) shared between \(\psi(2S) \) and \(X(3872) \)

Resolution parameters linked by

\[\sigma_X = \kappa \sigma_\psi\]

Values of parameters \(f_{12} \) and \(\kappa \) determined from global fits

Verified with MC and varied during systematic studies

\[p_T: \text{12-16 GeV}\]

Pull distributions
Assumption: non-prompt $\psi(2S)$ and $X(3872)$ are produced from the same mix of parent b-hadrons:
- same lifetimes for $\psi(2S)$ and $X(3872)$ in each p_T bin
- p_T spectra of $\psi(2S)$ and $X(3872)$ linked through kinematics

Effective lifetimes
- for $\psi(2S)$ independent of p_T
- for $X(3872)$ possibly slightly shorter in low p_T bins

Kinematic template obtained from simulations of various b-hadron decays into $\psi(2S)$ and $X(3872)$
- takes into account mass difference and
- possible variation in mass of hadronic association

Non-prompt $X(3872) : \psi(2S)$ ratio
- fit to kinematic template

$$R^\text{NP}_{B} = \frac{\mathcal{B}(B \to X(3872) + \text{any})\mathcal{B}(X(3872) \to J/\psi \pi^+\pi^-)}{\mathcal{B}(B \to \psi(2S) + \text{any})\mathcal{B}(\psi(2S) \to J/\psi \pi^+\pi^-)} = (3.95 \pm 0.32(\text{stat}) \pm 0.08(\text{sys})) \times 10^{-2}$$
Alternative lifetime model: two-lifetime fit

\[F_{NP}^i(\tau) = (1 - f_{SL}^i)F_{LL}(\tau) + f_{SL}^i F_{SL}(\tau) \]

- non-prompt component presented as a sum of short-lived and long-lived
- two single-sided exponentials smeared with the same resolution function
- \(f_{SL} \) is a fraction of short-lived within non-prompt – supposedly from \(B_c \) decays
- statistical power of data does not allow determination of two free lifetimes
- the two lifetimes fixed, the fraction of short-lived contribution left free in the fit

Fixing the two lifetimes

- effective pseudo-proper lifetime depends on parent’s lifetime and decay kinematics
- \(\tau_{LL} \) determined from fits to \(\psi(2S) \), allowing for some SL contribution
- \(\tau_{SL} \) obtained from simulation, varying \(B_c \) decay mode
 (low mass association gives shorter effective lifetime)
- both varied within shown limits during systematic studies

Two-lifetime fit results quoted from now on, unless stated otherwise

\[\tau(B^\pm) = 1.638 \pm 0.004 \text{ ps} \]
\[\tau(B^0) = 1.525 \pm 0.009 \text{ ps} \]
\[\tau(B_s^0) = 1.465 \pm 0.031 \text{ ps} \]
\[\tau(\Lambda_b) = 1.451 \pm 0.013 \text{ ps} \]

\[\tau_{LL} = 1.45 \pm 0.05 \text{ ps} \]
\[\tau(B_c) 0.507 +/- 0.009 \text{ ps} \]

\[\tau_{SL} = 0.40 \pm 0.05 \text{ ps} \]
Prompt: Described well by NLO NRQCD

assumes X(3872) is a mix \(\chi_{c1}(2P) - (D^0 D^{0*}) \)

\(\chi_{c1}(2P) \) coupling assumed responsible for production
parameters fitted to CMS data

not surprising, CMS and ATLAS consistent

Non prompt:

use the same kinematic template to recalculate FONLL from \(\psi(2S) \)

BR not measured – used estimate from Artoisenet, Braaten
based on Tevatron data \([\text{hep-ph:0911.2016}]\)

\[R_B = \frac{Br(B \to X(3872)) Br(X(3872) \to J/\psi \pi^+ \pi^-)}{Br(B \to \psi(2S)) Br(\psi(2S) \to J/\psi \pi^+ \pi^-)} \]

= 18 \pm 8 \%

Clearly overshoots the data:

factor of 4 to 8, increasing with \(p_T \)
Non-prompt fraction of $X(3872)$:
- no visible p_T dependence
- consistent with CMS result within errors

Ratio of non-prompt $X(3872) : \psi(2S)$
- long-lived part fitted to kinematic template

$$R^{2L}_B = \frac{\mathcal{B}(B \rightarrow X(3872) + \text{any})\mathcal{B}(X(3872) \rightarrow J/\psi\pi^+\pi^-)}{\mathcal{B}(B \rightarrow \psi(2S) + \text{any})\mathcal{B}(\psi(2S) \rightarrow J/\psi\pi^+\pi^-)} = (3.57 \pm 0.33(\text{stat}) \pm 0.11(\text{sys})) \times 10^{-2}$$

- fit with $A \cdot p_T^{-2}$
- integrate the fits to determine the fraction of non-prompt $X(3872)$ that is short-lived, for $p_T > 10$ GeV:

$$\frac{\sigma(pp \rightarrow B_c) Br(B_c \rightarrow X(3872))}{\sigma(pp \rightarrow \text{non-prompt } X(3872))} = (25 \pm 13(\text{stat}) \pm 2(\text{sys}) \pm 5(\text{spin})) \%$$

B_c production much smaller than other $B \Rightarrow X(3872)$ production enhanced in B_c decays?
Di-pion mass distributions: results

In $\psi(2S)$ to $J/\psi \pi^+\pi^-$ decays
- dipion mass distribution peaks at high masses
- fit to Voloshin-Zakharov function

$$\frac{1}{\Gamma} \frac{d\Gamma}{dm_{\pi\pi}} \propto \left(m_{\pi\pi}^2 - \lambda m_{\pi}^2\right)^2 \times \text{PS}$$
- found $\lambda = 4.16 \pm 0.06\text{(stat)} \pm 0.03\text{(syst)}$
- in agreement with previous measurements

In $X(3872)$ to $J/\psi \pi^+\pi^-$ decays
- dipion mass distribution has an even sharper peak at high masses
- in agreement with simulation where the di-pion system is produced via ρ^0 meson decay
- also in agreement with previous observations
Summary of $X(3872)$ results

- Differential cross sections are measured for prompt and non-prompt production of $\psi(2S)$ and $X(3872)$ states in the $J/\psi \pi^+\pi^-$ decay mode.

- Prompt production is described reasonably well by NRQCD with previously determined LDMEs.

- Two lifetime models for non-prompt production:
 - single-lifetime model (with fitted effective lifetime)
 - two-lifetime model (two fixed lifetimes, fitted fraction)

- Cross section results, non-prompt fractions largely indifferent to lifetime model

- Branching fraction ratios measured in the two models are slightly different:
 \[
 R_{B}^{1L} = \frac{\mathcal{B}(B \to X(3872) + \text{any}) \mathcal{B}(X(3872) \to J/\psi \pi^+\pi^-)}{\mathcal{B}(B \to \psi(2S) + \text{any}) \mathcal{B}(\psi(2S) \to J/\psi \pi^+\pi^-)} = (3.95 \pm 0.32(\text{stat}) \pm 0.08(\text{sys})) \times 10^{-2}
 \]
 \[
 R_{B}^{2L} = \frac{\mathcal{B}(B \to X(3872) + \text{any}) \mathcal{B}(X(3872) \to J/\psi \pi^+\pi^-)}{\mathcal{B}(B \to \psi(2S) + \text{any}) \mathcal{B}(\psi(2S) \to J/\psi \pi^+\pi^-)} = (3.57 \pm 0.33(\text{stat}) \pm 0.11(\text{sys})) \times 10^{-2}
 \]

- Both are smaller than $18 \pm 8\%$ estimated from Tevatron data, made under implicit same-parent-mix assumption.

- Two-lifetime model allows for a significant fraction of non-prompt $X(3872)$ to be produced in decays of B_c, which have shorter lifetime and expected to have steeper p_T dependence.

- In this model the fraction of non-prompt $X(3872)$ produced from B_c decays is measured to be (for $p_T>10$ GeV)
 \[
 \frac{\sigma(pp \to B_c + \text{any}) \mathcal{B}(B_c \to X(3872) + \text{any})}{\sigma(pp \to \text{non-prompt } X(3872) + \text{any})} = (25 \pm 13(\text{stat}) \pm 2(\text{sys}) \pm 5(\text{spin}))\%
 \]
Perspectives

- ATLAS is a “general purpose” experiment, not optimised for spectroscopic studies

- Nevertheless, due to the universality of the detector and ingenuity of analysers, a number of important contributions to heavy quark physics have been made

- No clear signs of X_b production have been found yet, but $X(3872)$ production have been studied in some detail, with potentially interesting results

- A large amount of data collected at 13 TeV still has to be studied, but new challenges are related to increasing trigger thresholds and very high pileup

- Will keep trying to contribute to this area, provided enthusiastic manpower can be found
THANK YOU!
Backup: Table of results for $\psi(2S)$ and $X(3872)$

<table>
<thead>
<tr>
<th></th>
<th>p_T range [GeV]</th>
<th>Cross sections times branching fractions [pb / GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10–12</td>
<td>12–16</td>
</tr>
<tr>
<td>$\psi(2S)_P$</td>
<td>$92.4 \pm 1.9 \pm 4.8$</td>
<td>$27.97 \pm 0.27 \pm 1.02$</td>
</tr>
<tr>
<td>$\psi(2S)_{NP}$</td>
<td>$61.9 \pm 1.9 \pm 3.4$</td>
<td>$23.66 \pm 0.27 \pm 0.85$</td>
</tr>
<tr>
<td>$\psi(2S)_{LL}^{NP}$</td>
<td>$60.8 \pm 1.6 \pm 4.0$</td>
<td>$23.09 \pm 0.27 \pm 1.46$</td>
</tr>
<tr>
<td>$\psi(2S)_{SL}^{NP}$</td>
<td>$1.1 \pm 2.4 \pm 3.9$</td>
<td>$0.56 \pm 0.37 \pm 1.14$</td>
</tr>
<tr>
<td>$X(3872)_P$</td>
<td>$6.05 \pm 1.30 \pm 0.38$</td>
<td>$2.75 \pm 0.20 \pm 0.13$</td>
</tr>
<tr>
<td>$X(3872)_{NP}$</td>
<td>$2.90 \pm 1.20 \pm 0.21$</td>
<td>$1.28 \pm 0.20 \pm 0.07$</td>
</tr>
<tr>
<td>$X(3872)_{LL}^{NP}$</td>
<td>$1.87 \pm 0.82 \pm 0.14$</td>
<td>$0.92 \pm 0.16 \pm 0.06$</td>
</tr>
<tr>
<td>$X(3872)_{SL}^{NP}$</td>
<td>$1.02 \pm 1.49 \pm 0.20$</td>
<td>$0.35 \pm 0.25 \pm 0.06$</td>
</tr>
</tbody>
</table>

Fractions

<table>
<thead>
<tr>
<th>Fraction</th>
<th>$10–12$</th>
<th>$12–16$</th>
<th>$16–22$</th>
<th>$22–40$</th>
<th>$40–70$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{\psi(2S)}^{NP}$</td>
<td>$0.40 \pm 0.01 \pm 0.02$</td>
<td>$0.46 \pm 0.00 \pm 0.01$</td>
<td>$0.54 \pm 0.00 \pm 0.01$</td>
<td>$0.63 \pm 0.00 \pm 0.01$</td>
<td>$0.69 \pm 0.01 \pm 0.02$</td>
</tr>
<tr>
<td>$F_{\psi(2S)}^{SL}$</td>
<td>$0.02 \pm 0.04 \pm 0.06$</td>
<td>$0.02 \pm 0.02 \pm 0.05$</td>
<td>$0.02 \pm 0.01 \pm 0.04$</td>
<td>$0.04 \pm 0.01 \pm 0.04$</td>
<td>$0.03 \pm 0.03 \pm 0.05$</td>
</tr>
<tr>
<td>$F_{X(3872)}^{NP}$</td>
<td>$0.32 \pm 0.12 \pm 0.02$</td>
<td>$0.32 \pm 0.04 \pm 0.01$</td>
<td>$0.33 \pm 0.04 \pm 0.01$</td>
<td>$0.34 \pm 0.06 \pm 0.01$</td>
<td>$0.34 \pm 0.18 \pm 0.03$</td>
</tr>
<tr>
<td>$F_{X(3872)}^{SL}$</td>
<td>$0.35 \pm 0.39 \pm 0.05$</td>
<td>$0.28 \pm 0.16 \pm 0.04$</td>
<td>$0.03 \pm 0.19 \pm 0.05$</td>
<td>$0.03 \pm 0.26 \pm 0.05$</td>
<td>$0.03 \pm 0.63 \pm 0.13$</td>
</tr>
</tbody>
</table>

Ratios

<table>
<thead>
<tr>
<th>Ratio</th>
<th>$10–12$</th>
<th>$12–16$</th>
<th>$16–22$</th>
<th>$22–40$</th>
<th>$40–70$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X(3872)_P/\psi(2S)_P$</td>
<td>$0.065 \pm 0.014 \pm 0.004$</td>
<td>$0.098 \pm 0.007 \pm 0.004$</td>
<td>$0.106 \pm 0.008 \pm 0.004$</td>
<td>$0.107 \pm 0.011 \pm 0.004$</td>
<td>$0.128 \pm 0.044 \pm 0.012$</td>
</tr>
<tr>
<td>$X(3872){NP}/\psi(2S){NP}$</td>
<td>$0.047 \pm 0.019 \pm 0.004$</td>
<td>$0.054 \pm 0.008 \pm 0.003$</td>
<td>$0.044 \pm 0.006 \pm 0.002$</td>
<td>$0.033 \pm 0.007 \pm 0.001$</td>
<td>$0.030 \pm 0.019 \pm 0.003$</td>
</tr>
<tr>
<td>$X(3872){LL}^{NP}/\psi(2S)^{LL}{NP}$</td>
<td>$0.031 \pm 0.014 \pm 0.002$</td>
<td>$0.040 \pm 0.007 \pm 0.003$</td>
<td>$0.044 \pm 0.006 \pm 0.003$</td>
<td>$0.033 \pm 0.006 \pm 0.002$</td>
<td>$0.030 \pm 0.019 \pm 0.003$</td>
</tr>
<tr>
<td>$X(3872){SL}^{NP}/\psi(2S)^{LL}{NP}$</td>
<td>$0.016 \pm 0.024 \pm 0.003$</td>
<td>$0.015 \pm 0.011 \pm 0.003$</td>
<td>$0.001 \pm 0.008 \pm 0.002$</td>
<td>$0.001 \pm 0.009 \pm 0.004$</td>
<td>$0.001 \pm 0.024 \pm 0.005$</td>
</tr>
</tbody>
</table>