Exotic Hadrons at LHCb

Sebastian Neubert

Uni Heidelberg

Workshop on Exotic Hadron Spectroscopy Edinburgh, December 11th-13th 2017

		e - , , , , , , , , , , , , , , , , , ,		γ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$Y(4260)$ Z^{\pm}	p p incl.	рр incl.
$J/\psi \pi^+\pi^-$	X(3872)	Y(4260) Y(4008)				X(3872)	X(3872)
$\psi(2S)\pi^+\pi^-$		Y(4360) Y(4660)					
$\Lambda_{c}\overline{\Lambda}_{c}$		Y(4630)					
$\psi \gamma$	X(3872)						
$\chi_{c1}(1P)\gamma$	X(3832)						
$\chi_{c1}(1P)\omega$				Y(4220)			
${\rm J}/\psi\omega$	X(3872) Y(3940)			X(3915)			
${ m J}/\psi\phi$	X(4140) X(4274) X(4500) X(4700)			X(4350)			
${ m J}/\psi\pi$	Z(4430) Z(4200) Z(4240)				Z(3900)		
$\psi(2S)\pi^{-}$	Z(4430)						
$\chi_{\rm c1}(1{\rm P})\pi$	Z(4051) Z(4248)						
$h_c(1P)\pi$					Z(4020)		
$D\overline{D}$				Z(3930)			
$D\overline{D}^*$	X(3872)		X(3940)		Z(3885)		
$D^*\overline{D}^*$			X(4160)		Z(4025)		
${ m J}/\psi{ m p}$	P _c (4380) P _c (4430)						

Ф

		$\overset{e^-}{\underset{e^+}{\longrightarrow}} \overset{\gamma}{\underset{\gamma^+}{\longrightarrow}} \overset{c}{\underset{c}{\longrightarrow}} \overset{c}{\underset{c}{\longrightarrow}}$	e^{-} e^{+} e^{-} e^{-} e^{-}	γ ~ ~ ~ c γ ~ ~ ~ c	۲(4260)	p p incl.	рр incl.
$J/\psi \pi^+\pi^-$	X(3872)	Y(4260) Y(4008)				X(3872)	X(3872)
$\psi(2S)\pi^{+}\pi^{-}$		Y(4360) Y(4660)					
$\Lambda_c \overline{\Lambda}_c$		V(%620)		I			
$\psi \gamma$	X(3872)	ି <u>।</u>	1				
$\chi_{c1}(1P)\gamma$	X(3832)	Ž 120	- 1 0 1	LHCb			
$\chi_{c1}(1P)\omega$		_ <u> </u>	- Hunner (111)	_			
${\rm J}/\psi\omega$	X(3872) Y(3940)	didate didate					
${ m J}/\psi\phi$	X(4140) X(4274) X(4500) X(4700)	- 60					
${\rm J}/\psi\pi$	Z(4430) Z(4200) Z(4240)	20	and the second s		Z(3900)		
$\psi(2S)\pi^{-}$	Z(4430)	ولتبيع المحافظ	rel contra a decent				
$\chi_{\rm c1}(1{\rm P})\pi$	Z(4051) Z(4248)	- 4100 4200	4300 4400 4500 46	$m_{J/\psi\phi}^{00}$ [MeV] (MeV]			
$h_c(1P)\pi$					Z(4020)		
DD				Z(3930)			
$D\overline{D}^*$	X(3872)		X(3940)		Z(3885)		
$D^*\overline{D}^*$			X(4160)		Z(4025)		
${ m J}/\psi{ m p}$	P _c (4380) P _c (4430)						

ф.

		e ⁻ , , , , , , , , , , , , , , , , , , ,		γ γ	τ Υ(4260) z [±]	p p incl.	рр incl.
$J/\psi \pi^+\pi^-$	X(3872)	Y(4260) Y(4008)				X(3872)	X(3872)
$\psi(2S)\pi^+\pi^-$		Y(4360) Y(4660)					
$\Lambda_c \overline{\Lambda}_c$		Y(4630)					
ψγ	X(3872)						
$\chi_{c1}(1P)\gamma$	X(3832)						
$\chi_{c1}(1P)\omega$				Y(4220)			
$J/\psi \omega$	X(3872) Y(3940)			X(3915)			
${ m J}/\psi\phi$	X(4140) X(4274) X(4500) X(4700)			X(4350)			
$J/\psi \pi$	Z(4430) Z(4200) Z(4240)	000 900 900 100 100 100 100 100 100 100	LHCb		Z(3900)		
$\psi(2S)\pi^{-}$	Z(4430)	E 600					
$\chi_{\rm c1}(1{\rm P})\pi$	Z(4051) Z(4248)	<u>а</u> 500					
$h_c(1P)\pi$		400 E 💉			Z(4020)		
DD		soo⊨ # ‴n	<u>N</u>	Z(3930)			
$D\overline{D}^*$	X(3872)	T 200 F 4 1	N		Z(3885)	1	
$D^*\overline{D}^*$			Mar Carl		Z(4025)		
$\mathrm{J}/\psi\mathrm{p}$	P _c (4380) P _c (4430)		4.6 4.8 5 m				
		_		•	LHCb con	tribut	ions
🖞 Sebastian	Neubert (Uni Heidelberg) I	Exotic Hadrons at LH	Cb		11.12.2017	2 / 32 🧹

Sebastian Neubert (Uni Heidelberg)

Ū,

11.12.2017 3 / 32

The X (3872)

Experimental Status of the X(3872)

- J^{PC} = 1⁺⁺ established at LHCb [PRL110(2013)222001][PRD92(2015)011102] <
- Mass m = 3871.69 ± 0.17 MeV (in X(3872) → J/ψ X decays)
- **D** $\bar{\mathbf{D}}$ * threshold: 3871.81 \pm 0.09 MeV
- **Very narrow Width** $\Gamma < 1.2 \, \text{MeV}$

Belle [PRD84(2011)052004]

- Observed in Charmonium-like decay modes: $D^{*0}\overline{D}^0$, $J/\psi\pi\pi$, $J/\psi\omega$, $J/\psi\gamma$, $\psi(2S)\gamma$
- \blacksquare Mass and (partial) width disfavour pure $c\overline{c}$ state.
- No charged partner, no C = -1 partner found
 - Small coupling to $J/\psi \rho^+$? No bound state?

The X (3872)

Search for X(3872) in $p\overline{p}$

[PLB769(2017)10]

Ð

The X (3872)

Search for X(3872) in $p\overline{p}$

[PLB769(2017)10]

🛈 Sebastiar

11.12.2017 5 / 32

X(3872) Plans at LHCb

Location of resonance relative to $D\overline{D}^*$ threshold

- Precision measurement $\Delta m = m(X(3872)) - m(\psi(2S))$
- Needs to take into account coupled channels

Explore other decay channels, $\blacksquare D\overline{D}^*$ threshold region

Differential production cross section

- Theory prediction in (NLO) NRQCD [PRD96(2017)074014]
- CMS and ATLAS data well described [JHEP04(2013)154][JHEP01(2017)117]
- $\blacksquare\,$ misses LHCb total cross section by factor ~ 2

[[EPJ C72(2012)1972]

Resonances decaying to $J/\psi\phi$

ccss Tetraquarks?

Resonances in $J/\psi \phi$

Narrow resonances in $J/\psi\phi$ (from B-decays)

- Narrow structures in J/\u03c6 \u03c6 discovered by CDF in 2008
- Subsequent observations by D0 and CMS
- BaBar, Belle and LHCb (0.37 fb⁻¹): no significant signal

[PRL104(2010)112004][PRD91(2015)012003][PRD85(2012)091103]

Averages	M [MeV]	$\Gamma\left[MeV ight]$
X (4140)	4143.4 ± 1.9	15.7 ± 6.3
X(4274)	4293 ± 20	35 ± 16

 No amplitude analysis so far
 CDF/CMS X(4274) mass measurements disagree at 3.16σ

Resonances in $J/\psi \phi$

LHCb: $B^+ \rightarrow J/\psi \phi K^+$ amplitude analysis

[PRL118(2017)022003] [PRD95(2017)012002]

- 3 fb⁻¹ yield 4289 ± 151 B⁺ → J/ $\psi \phi K^+$ candidates
- 7 K^{*} resonances
 - + non-resonant $\phi \ {\rm K}$ amplitude
- **4** exotic resonances in $\mathrm{J}/\psi~\phi$
- Fit quality on Dalitz-Plot: p_{2D} = 17%
- **No** J/ψ K resonances needed

 $\chi^2_{1\rm D}/{\rm ndof} = 21.1/23$

Results for X(4140), X(4274), X(4500) & X(4700)

[PRL118(2017)022003][PRD95(2017)012002]					
State	M [MeV]	$\Gamma\left[extsf{MeV} ight]$	signi	JPC	J ^{PC} signi
X (4140)	$4146.5 \pm 4.5^{+4.6}_{-2.8}$	$83 \pm 21^{+21}_{-14}$	8.4σ	1^{++}	5.7σ
X(4274)	$4273.3 \pm 8.3^{+17.2}_{-3.6}$	$56.2 \pm 10.9^{+8.4}_{-11.1}$	6.0σ	1^{++}	5.8σ
X(4500)	$4506 \pm 11^{+12}_{-15}$	$92 \pm 21^{+21}_{-20}$	6.1σ	0^{++}	4.0σ
X(4700)	$4704 \pm 10^{+14}_{-24}$	$120 \pm 31^{+42}_{-33}$	5.6σ	0^{++}	4.5σ

X(4140) & X(4274) confirmed but with larger width than previous analyses

- First evidence of two new states X(4500) and X(4700)
- Large contribution from K^{*} resonances, including first observation of $K^*(1680) \rightarrow K^+ \phi$
- non-resonant contribution in 0^{++} amplitude.

Resonances in ${\rm J}/\psi\,\phi$

Close-by two body thresholds: cusps?

- First fits with D_s^(*)D_s^(*) cusp-amplitudes included in fit
- Many cusps to consider, needs future investigation (and more data)

Detailed coupled channel models becoming available ⇔arXiv:1710.02061

The charged exotic meson $Z^+(4430)$

- $Z(4430)^{-}$ has first been claimed by Belle in $B \to K(\pi^{-}\psi(2S))$
- Minimal quark content: ccdu
- BaBar could explain this through reflections of the $K\pi$ system (K^{*})
- Amplitude analysis by Belle confirms new state (assuming a resonant shape)

Ð

$B \to K \pi^- \psi(2S)$ at LHCb

Data sample:

■ $\sim 25\,000 \text{ B} \rightarrow \text{K}\pi^{-}\psi(2\text{S})$ candidates in 3 fb⁻¹ at LHCb with $\sim 3\%$ residual background

2 Analysis methods:

- 4D amplitude analysis a'la Belle model the decay matrix element extract resonant phase
- Moments analysis a'la BaBar model independent confirms existence of Z(4430)

Charged exotic states

Amplitude Analysis of ${ m B} o { m K}(\pi^-\psi(2{ m S}))$ [PRL112(2014)222002]

 Φ

Charged exotic states

Amplitude Analysis of ${ m B} o { m K}(\pi^-\psi(2{ m S}))$ [PRL112(2014)222002]

Extracting Resonant Phase Motion of Z(4430)

Replace the Breit-Wigner amplitude in the model with a complex valued cubic spline $A(m_{\pi\psi})$ in 6 bins of $m(\pi^-\psi(2S))$

- Argand plot: amplitude in complex plane
- Circular shape corresponds to resonant phase motion (anti-clockwise)
- Model amplitude (Breit-Wigner) overlaid in red
- Note: Offset in phase from reference amplitude(s)

Modelindependent analysis of Z(4430)

Extract the angular structure of the K π system by moments:

$$\frac{\mathrm{d}\mathbf{N}}{\mathrm{d}\cos\theta_{\mathbf{K}^*}} = \sum_{\mathbf{k}=0}^{\mathbf{I}_{\mathrm{max}}} \langle \mathbf{P}_{\mathbf{k}}^{\mathbf{U}} \rangle \mathbf{P}_{\mathbf{k}}(\cos\theta_{\mathbf{K}^*})$$

- with Legendre polynomials P_k
- Moments are determined in bins of m_{Kπ}:

$$\langle \mathbf{P}_{\mathbf{k}}^{\mathbf{U}}\rangle = \sum_{\mathbf{i}=0}^{\mathbf{N}_{\text{events}}} \frac{\mathbf{W}_{\mathbf{i}}}{\epsilon_{\mathbf{i}}} \mathbf{P}_{\mathbf{k}}(\cos\theta_{\mathbf{K}^{*}}^{\mathbf{i}})$$

Reflections from K^{*} Resonances not sufficient

- **K** $_{3}^{*}(1780)$ is outside the Dalitz plot
- Hypothesis that K^{*} reflections alone cause $\psi(2S) \pi$ shape rejected:

Higher moments are reflections of **Z(4430) into** K π !

Side remark on connection to ${\rm B} \to {\rm K}^* \mu^+ \mu^-$

 Φ

Exotic $\psi \pi$ resonances and $B \to K^* \mu^+ \mu^-$

Angular analysis of $B \to K^* \mu^+ \mu^-$ in low $q^2 = m_{\mu\mu}^2 \in [1, 6] \text{ GeV}^2$ [JHEP02(2016)104]

Major theory uncertainty from hadronic contributions in charmonium region

Long distance effects from analyticity: $\hookrightarrow \texttt{arXiv:} 1707.07305$

- analyticity constraint to "bridge" SM calculation through charmonium region
- Uses input from $B \rightarrow \psi K^*$
- **Caveat:** neglects $\psi \pi$ resonances

"More recent results for the full angular distributions, stemming from amplitude analyses that take into account tetra-guark contributions, are not used here. The ansatz involving tetra-quark amplitudes is incompatible with the basis of our analysis. Although we expect to be able to use these additional results in future studies, this requires further dedicated work."

Exotic $\psi \pi$ resonances and $B \to K^* \mu^+ \mu^-$

Angular analysis of $B \to K^* \mu^+ \mu^-$ in low $q^2 = m_{\mu\mu}^2 \in [1, 6] \text{ GeV}^2$ [JHEP02(2016)104]

- Major theory uncertainty from hadronic contributions in charmonium region

Long distance effects from analyticity: $\hookrightarrow \texttt{arXiv:} 1707.07305$

- analyticity constraint to "bridge" SM calculation through charmonium region
- Uses input from $B \rightarrow \psi K^*$
- **Caveat:** neglects $\psi \pi$ resonances

Reaching sensitivities where multiquark hadronic effects will need to be taken into account in NP searches.

Future avenues to Exotic Mesons at LHCb

Future possibilities

		e - , , , , , , , , , , , , , , , , , ,		7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	۲(4260)	pp incl.	рр incl.
$J/\psi \pi^+\pi^-$	X(3872)	Y(4260) Y(4008)				X(3872)	X(3872)
$\psi(2S)\pi^+\pi^-$		Y(4360) Y(4660)					
$\Lambda_c \overline{\Lambda}_c$		Y(4630)					
$\psi \gamma$	X(3872)						
$\chi_{c1}(1P)\gamma$	X(3832)						
$\chi_{c1}(1P)\omega$				Y(4220)			
${\rm J}/\psi\omega$	X(3872) Y(3940)			X(3915)			
${ m J}/\psi\phi$	X(4140) X(4274) X(4500) X(4700)			X(4350)			
${ m J}/\psi\pi$	Z(4430) Z(4200) Z(4240)				Z(3900)		
$\psi(2S)\pi^{-}$	Z(4430)						
$\chi_{\rm c1}(1{\rm P})\pi$	Z(4051) Z(4248)						
$h_c(1P)\pi$					Z(4020)		
DD				Z(3930)			
$D\overline{D}^*$	X(3872)		X(3940)		Z(3885)		
$D^*\overline{D}^*$			X(4160)		Z(4025)		
${ m J}/\psi{ m p}$	P _c (4380) P _c (4430)						

LHCb contributions

The B^0_s as a source of Exotic Mesons??

Z(4430) in
$$\mathsf{B}^0_{(\mathsf{s})} o \psi(\mathsf{2S})\pi\pi$$

(see also [JHEP1602(2016)009])

Compare exotic contributions in both channels!

Y(4260) in B-decays?

■ Limit from BaBar:

 $\mathcal{B}(B \to \mathbf{Y}(4260)K \to J/\psi\pi\pi K) < 2.9 \times 10^{-5}$

[PRD73(2006)011101]

QCD sum rules: $3.0 \times 10^{-8} < B < 1.8 \times 10^{-6}$

 $\hookrightarrow \texttt{arXiv:} 1502.00119$

- Could also be produced in $B_s^0 \rightarrow \mathbf{Y}(4260)\phi$
- Isolate strangeness in well defined state (\u03c6)

Prompt prod. of charged mesons with hidden charm?

Challenge: all known Z^{\pm} states have significant widths $\sim 150 \, \text{MeV}$

Extraction of resonances depends on observation of interference effects in three body B-decay.

- We would need another signature to isolate the states clever ideas welcome!
- Are there more narrow charged exotics?

Extremely challenging measurement.

6D Amplitude analysis allows to measure resonance parameters

State	Mass [MeV]	Width [MeV]	JP
$P_{c}(4380)^{+}$	$4380\pm8\pm29$	$205\pm18\pm86$	$3/2^{-}$
$P_{c}(4450)^{+}$	$4449.8 \pm 1.7 \pm 2.5$	$39\pm5\pm19$	$5/2^{+}$

- Spin parity assignment not unique
- Excluded: same parity solution
- Exotic contributions needed in two subsequent analyses
 - $\label{eq:Ab} \Lambda_{\rm b} \to J/\psi p K \text{ moments analysis} \\ \text{[PRL117(2016)082002]}$

Models overview

Proximity of thresholds suggests two-body contributions

Closeby thresholds			
[MeV]	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$	
Mass	$4380\pm8\pm29$	$4449.8 \pm 1.7 \pm 2.5$	
$\Sigma_{c}^{*+}\overline{D}^{0}$	4382.3 ± 2.4		
$\chi_{c1}(1P)p$		4448.93 ± 0.07	
$\Lambda_{c}^{+*}\overline{D}^{0}$		4457.09 ± 0.35	
$\Sigma_c \overline{D}^{0*}$		4459.9 ± 0.5	
$\Sigma_{\rm c}\overline{\rm D}^0\pi^0$		4452.7 ± 0.5	
[EPJ A51(2015)11.152]			

Rescattering	Hadronic molecules	Tightly bound states
kinematic effect	loosely bound system of color-singlets	constituents carrying color (di-quarks)
above threshold	below threshold	no association
_	S-wave binding restricts J ^P	large multiplets

Models overview

Proximity of thresholds suggests two

-body contributions			Closeby thresholds		
body contributions		[MeV]	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$	
		Mass	$4380\pm8\pm29$	$4449.8 \pm 1.7 \pm 2.5$	
		$\Sigma_{c}^{*+}\overline{D}^{0}$	4382.3 ± 2.4		
	\longrightarrow	$\chi_{c1}(1P)p$		4448.93 ± 0.07	
		$\Lambda_{\rm c}^{+*}\overline{\rm D}^0$		4457.09 ± 0.35	
		$\Sigma_{c}\overline{D}^{0*}$		4459.9 ± 0.5	
		$\Sigma_{\rm c}\overline{\rm D}^0\pi^0$		4452.7 ± 0.5	
			[EPJ A51(2015)	11,152]	
1	I				

Rescattering	Hadronic molecules	Tightly bound states
kinematic effect	loosely bound system	constituents
	of color-singlets	carrying color (di-quarks)
above threshold	below threshold	no association
_	S-wave binding restricts J ^P	large multiplets

Testing Rescattering Models: $\Lambda_b \rightarrow \chi_{c1}(1P) \ p \ K$

- Cusps need to be taken into account in amplitude analyses
- phase motion: resonance vs cusp

■ Add complementary data: investigate near threshold region in the channel $\chi_{c1}(1P)$ p

Testing Rescattering Models: $\Lambda_{\rm b} \rightarrow \chi_{c1}(1P) \ p \ K$

- Cusps need to be taken into account in amplitude analyses
- phase motion: resonance vs cusp

Add complementary data: investigate near threshold region in the channel $\chi_{c1}(1P)$ p

[PRL119(2017)062001] First observation of $\Lambda_b \rightarrow \chi_{c1(2)} pK$ $5 \text{ MeV}/c^2$ 180 LHCb 160 140 453 ± 25 $pK^{-}285 \pm 23$ 120 Events / 100 80 60 5500 5450 5550 5600 5650 5700 $m(\chi_{c1} p K^{-}) [\text{MeV}/c^2]$ kinematic constraint

Next: amplitude analysis

 $\chi_{c} = \chi_{c1} \rightarrow J/\psi \gamma$

Pentaquarks with Strangeness?

Both final states provide access to strange pentaquarks usdcc

- [EPJ C76(2016)446]
- $J/\psi\phi$ system accessible

Discussed in [PRC93(2016)065203]

First Observation of $\Xi_{b}^{-} \rightarrow J/\psi \Lambda K^{-}$

[PLB772(2017)265]

$$\frac{\mathbf{f}_{\Xi_{\mathbf{b}}}\mathcal{B}(\Xi_{\mathbf{b}} \to \mathbf{J}/\psi\Lambda\mathbf{K})}{\mathbf{f}_{\Lambda_{\mathbf{b}}}\mathcal{B}(\Lambda_{\mathbf{b}} \to \mathbf{J}/\psi\Lambda)}$$
$$= (4.19 \pm 0.29 \pm 0.14) \times 10^{-2}$$
$$\mathbf{m}(\Xi_{\mathbf{b}}^{-}) - \mathbf{m}(\Lambda_{\mathbf{b}})$$
$$= 177.08 \pm 0.47 \pm 0.16 \,\mathbf{MeV/c^{2}}$$

■ Need Run II data set to study J/ψΛK⁻ amplitudes

More Exotic Baryons?

Five new Ω_c states in the decay $\Xi_c^+ K^-$

[PRL118(2017)182001]

Resonance	Γ (MeV)
$\Omega_{c}(3000)^{0}$	$4.5\pm0.6\pm0.3$
$\Omega_{c}(3050)^{0}$	$0.8\pm0.2\pm0.1$
	$< 1.2\mathrm{MeV}, 95\%\;\mathrm{CL}$
$\Omega_{c}(3066)^{0}$	$3.5\pm0.4\pm0.2$
$\Omega_{c}(3090)^{0}$	$8.7\pm1.0\pm0.8$
$\Omega_{c}(3119)^{0}$	$1.1\pm0.8\pm0.4$
	$<2.6\mathrm{MeV},95\%\;\mathrm{CL}$

- Pentaquarks? [PRD96(2017)014009]
- Meson-baryon molecules?

 $\hookrightarrow arXiv: 1709.08737$

\rightarrow Need quantum numbers and isospin partner channels

Summary and Outlook

LHCb is making key discoveries

- Charmonium-like exotics
- Charged exotic mesons with hidden charm
- Exotic heavy baryons
- Non-exotic spectroscopy extremely important information

Lively interaction with phenomenologists

- New ideas what measurements to perform
- Progress on analytic amplitude structure
- Improved analysis methods (eg. coupled channel effects)

RUN II set will enable amplitude analyses of more complicated final states

Backup

Charmonium: The cc̄ spectrum

Observed charmonium Sebastian Neubert (Uni Heidelberg)

Ф

Potential model

 $\hookrightarrow arXiv:hep-ph/0701117$

Exotic Hadrons at LHCb

Exotic states

11.12.2017 34 / 32

for a more details and precise values see the review $\hookrightarrow arXiv: 1601.02092$

Search for narrow charmonia: $p\overline{p}$ fit model [PLB769(2017)10]

State	Parametrisation	Signal Yield	
$\eta_{ m c}(1{ m S})$ +non res.	rel. BW+gaussian	11246 ± 119	_
	+ interference		
J/ψ	double gaussian	6721 ± 93	
$\chi_{\rm c0}(1{\rm P})$	rel. BW+gaussian	84 ± 22	
$\chi_{c1}(1P)$	gaussian	95 ± 16	
$\eta_{ m c}$ (2S)	rel. BW+gaussian	106 ± 22	first obs. 6.0a
ψ (2S)	double gaussian	588 ± 30	
ψ (3770)	rel. BW+gaussian	-6 ± 9	
X(3872)	gaussian	-14 ± 8	

- $\eta_c(1S)$ allowed to interfere with $\ell = 0 p\overline{p}$ non-resonant component (phase-space distribution)
- **•** $\chi_{c0}(1P)$, $\chi_{c1}(1P)$,**X**(3872) and ψ (3770) masses fixed to PDG values

 $\Delta \mathbf{M}_{J/\psi,\eta_{c}(1\mathbf{S})} = 110.2 \pm 0.5 \pm 0.9 \, \mathbf{MeV}$

$$\Delta \mathbf{M}_{\psi(2\mathbf{S}),\eta_{c}(2\mathbf{S})} = 52.5 \pm 1.7 \pm 0.6 \, \mathbf{MeV}$$

State	M [MeV]	$\Gamma\left[MeV ight]$	M ^{LHCb} [MeV]	$\Gamma^{LHCb}\left[MeV ight]$	J ^{PC}
X(4140)	4143.4 ± 1.9	15.5 ± 6.3	$4146.5 \pm 4.5^{+4.6}_{-2.8}$	$83 \pm 21^{+21}_{-14}$	1^{++}
X(4274)	4293 ± 20	35 ± 16	$4273.3 \pm 8.3^{+17.2}_{-3.6}$	$56.2 \pm 10.9^{+8.4}_{-11.1}$	1^{++}
X(4350)	$4350.6^{+4.6}_{-5.1} \pm 0.7$	$13^{+18}_{-9} \pm 4$			$0^+ \text{ or } 2^+$
X(4500)			$4506 \pm 11^{+12}_{-15}$	$92 \pm 21^{+21}_{-20}$	0^{++}
X(4700)			$4704 \pm 10^{+14}_{-24}$	$120\pm 31^{+42}_{-33}$	0^{++}

- **J**^PC = 1⁺⁺ assignment of X(4140) and X(4274) consistent with non-observation in $\gamma\gamma$ fusion
- Are X(4350) and X(4500) the same state? masses and widths don't match well
- \blacksquare X(4140) consistent with ${\rm D_s D_s}^*$ cusp

Charged Exotic Hadrons with Hidden Charm

[PRD90(2014)112009]

■ $30\,000 \ \overline{\mathrm{B}} \to \mathrm{K}^{-}\pi^{+}\mathrm{J}/\psi$ decays (711 fb⁻¹)

4D amplitude analysis

Z(4430) with $J^{P} = 1^{+}$ confirmed

Z(4200) with J^P = 1⁺ observed

Ongoing analyses on charged Exotics in LHCb

- $\overline{B} \to K^- \pi^+ J/\psi$
 - LHCb Run I: $\sim 20 \times$ Belle statistics
 - 3 analysis techniques:
 - Amplitude analysis
 - Moments analysis
 - Novel 3D moments analysis

$$\overline{\mathrm{B}} \to \mathrm{K}^- \pi^+ \chi_{\mathbf{c}}$$

Amplitude analysis well advanced

→ PRL115(2015)072001

Exotic Baryons

Why a second state with opposing parity?

- The peaking structure in $m_{J/\psi p}$ is asymmetric as a function of $\cos \theta_{P_c}$)
- This can be explained by interference of two states with opposing parity

Decay of the P_c to Open Charm

 P_c discovery in $\Lambda_b \rightarrow J/\psi p K^-$

Molecular-Models: $P_c^+ \rightarrow \Lambda_c^+ \overline{D}^{0(*)}$ favoured decay mode [PRC85(2012)044002][PRD95(2017)114017]

D.

Are there isospin partners to the P^+_c ? <code>uudcc</code> \leftrightarrow <code>uddcc</code>

Neutron not detectable in LHCb

Decay into open charm hadrons accessible

Combined Analysis $\Lambda_b \to \Lambda_c^+ \overline{D}^0 K$ and $\Lambda_b \to \Lambda_c^+ \overline{D}^{0*} K$

Predictions on relative widths \hookrightarrow arXiv:1703.01045

	Widths (MeV)				
Mode	$P_c(4380)$		$P_{c}(4450)$		
	$\bar{D}\Sigma_c^*(\frac{3}{2})$	$\bar{D}^*\Sigma_c(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{3}{2})$	$\bar{D}^*\Sigma_c(\frac{5}{2}^+)$	
$\bar{D}^*\Lambda_c$	131.3	41.6	80.5	22.6	
$J/\psi p$	3.8	8.4	8.3	2.0	
$\bar{D}\Lambda_c$	1.2	17.0	41.4	18.8	

Possible spin-parity combinations for the $\Lambda_c^+ \overline{D}^{0^{(*)}}$ system

Complementary information on quantum numbers

Exotic Hadrons at LHCb

Meson-Baryon Molecules

Building color-neutral objects from color-neutral constituents

- Small binding energy
 - \rightarrow state just below 2-body thresholds
- Different parametrisations of the binding force available
- Predictions from coupled channel dynamics [Nucl.Phys.A776(2006)17][PRC 85 (2012) 044002]
- Constituents in S-wave
 - Opposite parity problematic to explain

Channel	$\Sigma_{c}^{*}\overline{\mathrm{D}}/\Sigma_{c}\overline{\mathrm{D}}^{*}$	$J/\psi N(1440/1520)$	
Features	Pion exchange	opposite parity with S-wave for both states	
Exp.Sign.	Isospin I $=rac{3}{2}$	150 MeV binding?	
considered here: $\mathtt{J}^{P} \in \left\{ rac{3}{2}^{\pm}, rac{5}{2}^{\pm} ight\}$			

D

[PLB749(2015)289]

Diquark color configuration: $3 \otimes 3 \rightarrow \bar{3}$

Opposite parity understood: additional orbital angular momentum ℓ

 $\mathbf{P} = \{ \bar{\mathbf{c}} [\mathbf{cq}]_{\mathbf{s}} [\mathbf{qq}]_{\mathbf{s}}, \ell \}$

- One unit ℓ costs: $\delta \mathbf{m} \approx \mathbf{m}(\Lambda(1405)) - \mathbf{m}(\Lambda(1116)) \approx 300 \, \mathbf{MeV}$
- Coupling spins to s = 1 in the light-light di-quark: $\delta m \approx m(\Sigma_c(2455)) - m(\Lambda_c(2286)) \approx 200 \text{ MeV}$

$$\begin{array}{ll} \mathbf{P_{c}}(4380) & \frac{3}{2}^{-} & \{\bar{\mathbf{c}}[\mathbf{cq}]_{\mathbf{s}=1}[\mathbf{qq}]_{\mathbf{s}=1}, \ell=0\} \\ \mathbf{P_{c}}(4450) & \frac{5}{2}^{+} & \{\bar{\mathbf{c}}[\mathbf{cq}]_{\mathbf{s}=1}[\mathbf{qq}]_{\mathbf{s}=0}, \ell=1\} \end{array}$$

- Can explain the small mass gap!
- Predicts a large multiplet of states

Pentaquark program at LHCb

Amplitude analyses will leverage Run II data

What are they?

\blacksquare Observe $\mathbf{P_c} \to J/\psi p$ as subsystems in different final states

	DONE
• $\Upsilon \rightarrow J/\psi p \overline{p}$	in progress
	in progress

- Search for new decay modes of P_c
 - $\begin{tabular}{ll} & \Lambda_{\rm b} \to \chi_{\rm c1}(1{\rm P}) \mbox{ p } {\rm K} \\ & & \Lambda_{\rm b} \to \Lambda_{\rm c}^+ \overline{\rm D}^{0^{(*)}} {\rm K} \\ \end{tabular}$

observed $\Lambda_b\text{-decay}$ mode in progress

Are there more of their kind?

Explore a possible multiplet of pentaquarks

$$\Lambda_{\rm b} \to {\rm J}/\psi \Lambda \phi$$

in progress in preparation observed Ξ_b decay-mode in progress

Rescattering: hadronic loops

[PRD92(2015)071502]

Nonrelativistic loop integral:

$$\mathbf{G}_{\Lambda}(\mathbf{E}) = \int \frac{\mathbf{d}^{3}\mathbf{q}}{\left(2\pi\right)^{3}} \frac{\vec{\mathbf{q}}^{2} \mathbf{f}_{\Lambda}(\vec{\mathbf{q}}^{2})}{\mathbf{E} - \mathbf{m}_{1} - \mathbf{m}_{2} - \vec{\mathbf{q}}^{2}/2\mu}$$

with a form factor $f_{\Lambda}(\vec{q}^2)$.

Triangle Singularity given by Landau-equation

$$1 + 2\mathbf{y}_{12}\mathbf{y}_{23}\mathbf{y}_{13} = \mathbf{y}_{12}^2 + \mathbf{y}_{23}^2 + \mathbf{y}_{13}^2$$

$$\textbf{y}_{\textbf{i}\textbf{j}} = \left(\textbf{m}_{\textbf{i}}^2 + \textbf{m}_{\textbf{j}}^2 - \left(\textbf{p}_{\textbf{i}} + \textbf{p}_{\textbf{j}}\right)^2\right) / 2\textbf{m}_{\textbf{i}}\textbf{m}_{\textbf{j}}$$

Rescattering: hadronic loops

[PRD92(2015)071502]

Nonrelativistic loop integral:

$$\mathbf{G}_{\Lambda}(\mathbf{E}) = \int \frac{\mathbf{d}^{3}\mathbf{q}}{\left(2\pi\right)^{3}} \frac{\vec{\mathbf{q}}^{2} \, \mathbf{f}_{\Lambda}(\vec{\mathbf{q}}^{2})}{\mathbf{E} - \mathbf{m}_{1} - \mathbf{m}_{2} - \vec{\mathbf{q}}^{2}/2\mu}$$

with a form factor $f_{\Lambda}(\vec{q}^2)$.

Triangle Singularity given by Landau-equation

$$1 + 2\mathbf{y}_{12}\mathbf{y}_{23}\mathbf{y}_{13} = \mathbf{y}_{12}^2 + \mathbf{y}_{23}^2 + \mathbf{y}_{13}^2$$

$$\mathbf{y}_{ij} = \left(\mathbf{m}_{i}^{2} + \mathbf{m}_{j}^{2} - \left(\mathbf{p}_{i} + \mathbf{p}_{j}\right)^{2}\right) / 2\mathbf{m}_{i}\mathbf{m}_{j}$$

The Di-Quark Model

Building color-neutral objects from coloured constituents

qq mesons are bound through attractive $3\overline{3}$ color coupling

- \blacksquare qqq is also bound \Rightarrow 3 \otimes 3 \rightarrow 3
- At short distances the 3 qq binding is still half as strong as the color singlet binding
- $\blacksquare \Rightarrow$ qq di-quark correlations

The Di-Quark Model

Building color-neutral objects from coloured constituents

qq mesons are bound through attractive $3\overline{3}$ color coupling

- \blacksquare qqq is also bound \Rightarrow 3 \otimes 3 \rightarrow 3
- At short distances the 3 qq binding is still half as strong as the color singlet binding
- $\blacksquare \Rightarrow$ qq di-quark correlations

The Di-Quark Model

Building color-neutral objects from coloured constituents

- Tetraquark in the di-quark model
- Qualitatively explains relations between X(3872), Z(3900), Z(4430) and Y(4260) exotic mesons

 $\textbf{e.g.} \hookrightarrow \texttt{arXiv:} 1405.1551$

- qqq is also bound \Rightarrow 3 \otimes 3 \rightarrow 3
- At short distances the 3 qq binding is still half as strong as the color singlet binding
- $\blacksquare \Rightarrow$ qq di-quark correlations

Predictions from low-energy QCD?

Few predictions for states with hidden charm are available.

- M. Lutz and J. Hofmann [Nucl.Phys.A776(2006)17]
 - Building baryon resonances from coupled-channel dynamics within ground state multiplets
 - 16-plet 0^- mesons × 20-plet $\frac{3}{2}^+$ baryons
 - ⇒ narrow octet of $J^{P} = \frac{3}{2}^{-}$ crypto-exotics

(\mathbf{I},\mathbf{S})	M[MeV]	$\Gamma[MeV]$
$(\frac{1}{2}, 0)$	3430	0.50
(0, -1)	3538	0.63
(1, -1)	3720	0.83
$(\frac{1}{2}, -2)$	3752	1.1

- No tuning
- Resonant states predicted!
- Very narrow width

Dynamically Generated N^{*} with Hidden Charm

- Meson-Baryon interaction with vector exchange force
- Vector forces from local hidden gauge formalism
- **Coupled channels** $\overline{D} \Lambda_{c}^{+}$, $\overline{D} \Sigma_{c}$, \overline{D}^{*} , Λ_{c}^{+} , $\overline{D}^{*}\Sigma_{c}$, $\overline{D}\Sigma^{*}$, $\overline{D}^{*}\Sigma_{c}$ ($\eta_{c} N, \pi N, \eta N, \eta'N, K \Sigma, K \Lambda$)
- \blacksquare tuned to reproduce $\Lambda_{\rm c}^+$ (2592) and $\Lambda_{\rm c}^+$ (2625)
- A provide the second second

Several similar models: [PRC 84 (2011) 015202] [PRC 85 (2012) 044002] [EPJ A52 (2016) 43]

Main channel	JP	$\mathbf{M}\pm 20~\mathbf{MeV}$	Γ [MeV]	Main decay
$\frac{1}{\sqrt{2}}(\overline{D}^*\Sigma_c + \overline{D}\Sigma_c)$	$1/2^{-}$	4228	21-51	$\overline{\mathrm{D}} \Lambda_{\mathrm{c}}^+$
$\frac{1}{\sqrt{2}}(\overline{D}^*\Sigma_c - \overline{D}\Sigma_c)$	$1/2^{-}$	4295	11-41	$\overline{D} \Lambda_{c}^{+}$
$\overline{\mathrm{D}}^*\Sigma_{\mathrm{c}}$	$3/2^{-}$	4218	103	$\overline{\mathrm{D}} \Lambda_{\mathrm{c}}^+$
$\overline{\mathrm{D}}^* {\Sigma_{\mathrm{c}}}^*$	$1/2, 5/2^{-}$	4344	0	-
$\frac{1}{\sqrt{2}}(\overline{D}^* \Sigma_c^* + \overline{D} \Sigma_c^*)$	$3/2^{-}$	4325	0	-
$\frac{1}{\sqrt{2}} (\overline{D}^* \Sigma_c^* - \overline{D} \Sigma_c^*)$	$3/2^{-}$	4378	0	-

Only negative parity

D

Ð.