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• the hierarchy of NREFT is based on the 
hierarchy of scales in quarkonium  

• in this framework  quarkonium becomes a 
golden system for the extraction of SM 

parameters (quark masses, alphas) and the 
study of confinement
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• In this talk: NREFT from QCD at and 
above the strong decay threshold

• van der Waals bottomonia interaction : 
bound states?

• QQbar and glue: Hybrids multiplets 
Lambda doubling  effect and spin structure

• models & degrees of freedom

•Tetra quarks
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In QCD another scale is relevant ΛQCD

Quarkonium with NR EFT: pNRQCD
strongly 
coupled 
pNRQCD

weakly 
coupled 
pNRQCD

Pineda, Soto 97, N.B., Pineda, Soto, Vairo 99 
N.B. Vairo,   Pineda, Soto  00--014 

N.B., Pineda, Soto, Vairo Review of Modern Physis 77(2005) 1423



pNRQCD for quarkonia with small radius      r ⌧ ⇤�1
QCD

pNRQCD formv ≫ ΛQCD

Degrees of freedom that scale like mv are integrated out:

!  "  V(µr)

NRQCD pNRQCD

• Degrees of freedom: quarks and gluons

Q-Q̄ states, with energy ∼ ΛQCD, mv2

momentum <∼ mv

⇒ i) singlet S ii) octet O

Gluons with energy and momentum ∼ ΛQCD, mv2
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entirely determined by the quark anomalous mag-
netic moment. Since the quark magnetic moment
appears at the scale m, it is accessible by pertur-
bation theory: κQ = 2αs(m)/(3π) + O(αs

2). As a
consequence, κQ is a small positive quantity, about
0.05 in the bottomonium case and about 0.08 in the
charmonium one. This is confirmed by lattice cal-
culations [423] and by the analysis of higher-order
multipole amplitudes (see Sect. 3.1.6).

• QCD does not allow for a scalar-type contribution
to the magnetic transition rate. A scalar interac-
tion is often postulated in phenomenological mod-
els.

The above conclusions were shown to be valid at any
order of perturbation theory as well as nonperturbatively.
They apply to magnetic transitions from any quarkonium
state. For ground state magnetic transitions, we expect
that perturbation theory may be used at the scale mv.
Under this assumption, the following results were found
at relative order v2.

• The magnetic transition rate between the vector
and pseudoscalar quarkonium ground state, includ-
ing the leading relativistic correction (parametrized
by αs at the typical momentum-transfer scale
miαs/2) and the leading anomalous magnetic mo-
ment (parametrized by αs at the mass scale mi/2),
reads

Γ(i → γ + f) =
16

3
α e2

Q

E3
γ

m2
i

×
[

1 +
4

3

αs(mi/2)

π
−

32

27
αs

2(miαs/2)

]
, (97)

in which i = 1301 and f = 1101. This expression
is not affected by nonperturbative contributions.
Applied to the charmonium and bottomonium case
it gives: B(J/ψ → γηc(1S)) = (1.6 ± 1.1)%
(see Sect. 3.1.2 for the experimental situation) and
B(Υ(1S) → γηb(1S)) = (2.85 ± 0.30) × 10−4 (see
Sect. 3.1.8 for some experimental perspectives).

• A similar perturbative analysis, performed for hin-
dered magnetic transitions, mischaracterizes the
experimental data by an order of magnitude, point-
ing either to a breakdown of the perturbative ap-
proach for quarkonium states with principal quan-
tum number n > 1, or to large higher-order rela-
tivistic corrections.

The above approach is well suited to studying the line-
shapes of the ηc(1S) and ηb(1S) in the photon spectra of
J/ψ → γηc(1S) and Υ(1S) → γηb(1S), respectively. In
the region of Eγ ≪ mαs, at leading order, the lineshape

is given by [424]

dΓ

dEγ
(i → γ + f) =

16

3

α e2
Q

π

E3
γ

m2
i

×

Γf/2

(mi − mf − Eγ)2 + Γ2
f/4

, (98)

which has the characteristic asymmetric behavior around
the peak seen in the data (compare with the discussion
in Sect. 3.1.2).

No systematic analysis is yet available for relativis-
tic corrections to electromagnetic transitions involving
higher quarkonium states, i.e., states for which ΛQCD

is larger than the typical binding energy of the quarko-
nium. These states are not described in terms of a
Coulombic potential. Transitions of this kind include
magnetic transitions between states with n > 1 and all
electric transitions, n = 2 bottomonium states being on
the boundary. Theoretical determinations rely on phe-
nomenological models, which we know do not agree with
QCD in the perturbative regime and miss some of the
terms at relative order v2 [407]. A systematic analysis
is, in principle, possible in the same EFT framework de-
veloped for magnetic transitions. Relativistic corrections
would turn out to be factorized in some high-energy coef-
ficients, which may be calculated in perturbation theory,
and in Wilson-loop amplitudes similar to those that en-
code the relativistic corrections of the heavy quarkonium
potential [174]. At large spatial distances, Wilson-loop
amplitudes cannot be calculated in perturbation theory
but are well-suited for lattice measurements. Realizing
the program of systematically factorizing relativistic cor-
rections in Wilson-loop amplitudes and evaluating them
on the lattice, would, for the first time, produce model-
independent determinations of quarkonium electromag-
netic transitions between states with n > 1. These are
the vast majority of transitions observed in nature.

Higher-order multipole transitions have been observed
in experiments (see Sect. 3.1.6), Again, a systematic
treatment is possible in the EFT framework outlined
above, but has not yet been realized.

3.1.2. Study of ψ(1S, 2S) → γηc(1S)

Radiative transitions in the charmonium system have
recently been explored using both lattice QCD [423] and
effective field theory techniques [407]. Key among these
are the magnetic dipole (M1) transitions J/ψ → γηc(1S)
and ψ(2S) → γηc(1S). Using a combination of inclusive
and exclusive techniques, CLEO [69] has recently mea-
sured

B(J/ψ → γηc(1S)) = (1.98 ± 0.09 ± 0.30)%

B(ψ(2S) → γηc(1S)) = (0.432± 0.016 ± 0.060)% , (99)

reducing the discrepancy between experiment and pre-
dictions from the nonrelativistic quark model [31]. The

57

entirely determined by the quark anomalous mag-
netic moment. Since the quark magnetic moment
appears at the scale m, it is accessible by pertur-
bation theory: κQ = 2αs(m)/(3π) + O(αs

2). As a
consequence, κQ is a small positive quantity, about
0.05 in the bottomonium case and about 0.08 in the
charmonium one. This is confirmed by lattice cal-
culations [423] and by the analysis of higher-order
multipole amplitudes (see Sect. 3.1.6).

• QCD does not allow for a scalar-type contribution
to the magnetic transition rate. A scalar interac-
tion is often postulated in phenomenological mod-
els.

The above conclusions were shown to be valid at any
order of perturbation theory as well as nonperturbatively.
They apply to magnetic transitions from any quarkonium
state. For ground state magnetic transitions, we expect
that perturbation theory may be used at the scale mv.
Under this assumption, the following results were found
at relative order v2.

• The magnetic transition rate between the vector
and pseudoscalar quarkonium ground state, includ-
ing the leading relativistic correction (parametrized
by αs at the typical momentum-transfer scale
miαs/2) and the leading anomalous magnetic mo-
ment (parametrized by αs at the mass scale mi/2),
reads

Γ(i → γ + f) =
16

3
α e2

Q

E3
γ

m2
i

×
[

1 +
4

3

αs(mi/2)

π
−

32

27
αs

2(miαs/2)

]
, (97)

in which i = 1301 and f = 1101. This expression
is not affected by nonperturbative contributions.
Applied to the charmonium and bottomonium case
it gives: B(J/ψ → γηc(1S)) = (1.6 ± 1.1)%
(see Sect. 3.1.2 for the experimental situation) and
B(Υ(1S) → γηb(1S)) = (2.85 ± 0.30) × 10−4 (see
Sect. 3.1.8 for some experimental perspectives).

• A similar perturbative analysis, performed for hin-
dered magnetic transitions, mischaracterizes the
experimental data by an order of magnitude, point-
ing either to a breakdown of the perturbative ap-
proach for quarkonium states with principal quan-
tum number n > 1, or to large higher-order rela-
tivistic corrections.

The above approach is well suited to studying the line-
shapes of the ηc(1S) and ηb(1S) in the photon spectra of
J/ψ → γηc(1S) and Υ(1S) → γηb(1S), respectively. In
the region of Eγ ≪ mαs, at leading order, the lineshape

is given by [424]

dΓ

dEγ
(i → γ + f) =

16

3

α e2
Q

π

E3
γ

m2
i

×

Γf/2

(mi − mf − Eγ)2 + Γ2
f/4

, (98)

which has the characteristic asymmetric behavior around
the peak seen in the data (compare with the discussion
in Sect. 3.1.2).

No systematic analysis is yet available for relativis-
tic corrections to electromagnetic transitions involving
higher quarkonium states, i.e., states for which ΛQCD

is larger than the typical binding energy of the quarko-
nium. These states are not described in terms of a
Coulombic potential. Transitions of this kind include
magnetic transitions between states with n > 1 and all
electric transitions, n = 2 bottomonium states being on
the boundary. Theoretical determinations rely on phe-
nomenological models, which we know do not agree with
QCD in the perturbative regime and miss some of the
terms at relative order v2 [407]. A systematic analysis
is, in principle, possible in the same EFT framework de-
veloped for magnetic transitions. Relativistic corrections
would turn out to be factorized in some high-energy coef-
ficients, which may be calculated in perturbation theory,
and in Wilson-loop amplitudes similar to those that en-
code the relativistic corrections of the heavy quarkonium
potential [174]. At large spatial distances, Wilson-loop
amplitudes cannot be calculated in perturbation theory
but are well-suited for lattice measurements. Realizing
the program of systematically factorizing relativistic cor-
rections in Wilson-loop amplitudes and evaluating them
on the lattice, would, for the first time, produce model-
independent determinations of quarkonium electromag-
netic transitions between states with n > 1. These are
the vast majority of transitions observed in nature.

Higher-order multipole transitions have been observed
in experiments (see Sect. 3.1.6), Again, a systematic
treatment is possible in the EFT framework outlined
above, but has not yet been realized.

3.1.2. Study of ψ(1S, 2S) → γηc(1S)

Radiative transitions in the charmonium system have
recently been explored using both lattice QCD [423] and
effective field theory techniques [407]. Key among these
are the magnetic dipole (M1) transitions J/ψ → γηc(1S)
and ψ(2S) → γηc(1S). Using a combination of inclusive
and exclusive techniques, CLEO [69] has recently mea-
sured

B(J/ψ → γηc(1S)) = (1.98 ± 0.09 ± 0.30)%

B(ψ(2S) → γηc(1S)) = (0.432± 0.016 ± 0.060)% , (99)

reducing the discrepancy between experiment and pre-
dictions from the nonrelativistic quark model [31]. The
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TABLE 23: Comparison of measured χcJ decay-width ra-
tios (using PDG08 [18] and its online update for 2009) with
LO and NLO determinations, assuming mc = 1.5 GeV and
αs(2mc) = 0.245, but without corrections of relative order v2.
LH ≡ light hadrons

Ratio PDG LO NLO

Γ(χc0 → γγ)
Γ(χc2 → γγ)

4.9 3.75 5.43

Γ(χc2 → LH) − Γ(χc1 → LH)
Γ(χc0 → γγ)

440 347 383

Γ(χc0 → LH) − Γ(χc1 → LH)
Γ(χc0 → γγ)

4000 1300 2781

Γ(χc0 → LH) − Γ(χc2 → LH)
Γ(χc2 → LH) − Γ(χc1 → LH)

8.0 2.75 6.63

Γ(χc0 → LH) − Γ(χc1 → LH)
Γ(χc2 → LH) − Γ(χc1 → LH)

9.0 3.75 7.63

matrix elements is to go to the lower-energy EFT, pN-
RQCD, and to exploit the hierarchy mv ≫ mv2. In
pNRQCD, NRQCD matrix elements factorize into two
parts: one, the quarkonium wave-function or its deriva-
tive at the origin, and the second, gluon-field correlators
that are universal, i.e., independent of the quarkonium
state. The pNRQCD factorization has been exploited for
P-wave and S-wave decays in [176].

Quarkonium ground states have typical binding en-
ergy larger than or of the same order as ΛQCD. Matrix
elements of these states may be evaluated in perturba-
tion theory with the nonperturbative contributions being
small corrections encoded in local or nonlocal conden-
sates. Many higher-order corrections to spectra, masses,
and wave functions have been calculated in this man-
ner [152], all of them relevant to the quarkonium ground
state annihilation into light hadrons and its electromag-
netic decays. For some recent reviews about applica-
tions, see [445, 446]. In particular, Υ(1S), ηb(1S), J/ψ,
and ηc(1S) electromagnetic decay widths at NNLL have
been evaluated [248, 447]. The ratios of electromagnetic
decay widths were calculated for the ground state of char-
monium and bottomonium at NNLL order [447], finding,
e.g.,

Γ(ηb(1S) → γγ)

Γ(Υ(1S) → e+e−)
= 0.502± 0.068 ± 0.014 . (107)

A partial NNLL-order analysis of the absolute widths of
Υ(1S) → e+e− and ηb(1S) → γγ can be found in [248].

As the analysis of Γ(Υ(1S) → e+e−) of [248] illus-
trates, for this fundamental quantity there may be prob-
lems of convergence of the perturbative series. Prob-
lems of convergence are common and severe for all the
annihilation observables of ground state quarkonia and

may be traced back to large logarithmic contributions, to
be resummed by solving suitable renormalization group
equations, and to large β0αs contributions of either re-
summable or nonresummable nature (these last ones are
known as renormalons). Some large β0αs contributions
were successfully treated [448] to provide a more reliable
estimate for

Γ(ηc(1S) → LH)

Γ(ηc(1S) → γγ)
= (3.26 ± 0.6) × 103 , (108)

or (3.01 ± 0.5)× 103 in a different resummation scheme.
A similar analysis could be performed for the ηb(1S),
which combined with a determination of Γ(ηb(1S) → γγ)
would then provide a theoretical determination of the
ηb(1S) width. At the moment, without any resummation
or renormalon subtraction performed,

Γ(ηb(1S) → LH)

Γ(ηb(1S) → γγ)
≃ (1.8–2.3) × 104 . (109)

Recently a new resummation scheme has been suggested
for electromagnetic decay ratios of heavy quarkonium
and applied to determine the ηb(1S) decay width into
two photons [449]:

Γ(ηb(1S) → γγ) = 0.54 ± 0.15 keV . (110)

Substituting Eq. (110) into Eq. (109) gives Γ(ηb(1S) →
LH) = 7-16 MeV.

3.2.2. Measurement of ψ, Υ → γgg

In measurements of the γgg rate from J/ψ [223],
ψ(2S) [224], and Υ(1S, 2S, 3S) [218], CLEO finds that
the most effective experimental strategy to search for
γgg events is to focus solely upon those with energetic
photons (which are less prone to many backgrounds),
then to make the inevitable large subtractions of ggg,
qq̄, and transition backgrounds on a statistical basis,
and finally to extrapolate the radiative photon energy
spectrum to zero with the guidance of both theory and
the measured high energy spectrum. The most trouble-
some background remaining is from events with energetic
π0 → γγ decays which result in a high-energy photon in
the final state. One of several methods used to estimate
this background uses the measured charged pion spectra
and the assumption of isospin invariance to simulate the
resulting photon spectrum with Monte Carlo techniques;
another measures the exponential shape of the photon-
from-π0 distribution at low photon energy, where γgg de-
cays are few, and extrapolates to the full energy range.
Backgrounds to γgg from transitions require the input of
the relevant branching fractions and their uncertainties.
The rate for ggg decays is then estimated as that fraction
of decays that remains after all dileptonic, transition, and
qq̄ branching fractions are subtracted, again requiring in-
put of many external measurements and their respective
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In measurements of the γgg rate from J/ψ [223],
ψ(2S) [224], and Υ(1S, 2S, 3S) [218], CLEO finds that
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the relevant branching fractions and their uncertainties.
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High-lying quarkonia away from threshold: 1/m potentials

• Singlet states described by the long tails of the potentials in pNRQCD:
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•Lattice calculations of the pNRQCD  potentials

•Exact relations among the potentials from the EFT

•QCD vacuum calculation of the potential (need only one assumption on the Wilson loop 
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• Singlet states described by the long tails of the potentials in pNRQCD:

V = V0 +
1

m
V1 +

1

m2
(VSD + VV D)

•Lattice calculations of the pNRQCD  potentials

•Exact relations among the potentials from the EFT

•QCD vacuum calculation of the potential (need only one assumption on the Wilson loop 

Quarkonium singlet static potential 
and from this we obtain the  



 QCD Spin dependent potentials  

 -factorization: the NRQCD matching coefficients encode the 
physics at the large scale m, the potentials are given in terms of 
low energy nonperturbative Wilson loops 

power counting; QM divergences absorbed   NRQCD matching 
coefficients

Pineda, Vairo 00
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The EFT  has been constructed 

Several cases for the physics at hand

*Work at calculating higher order perturbative corrections

in v and alpha_s

*Resumming the log

*Calculating/extracting  nonperturbatively the low energy  

quantities  

*Extending the theory (electromagnetic effect, 3 bodies)

The EFT  has not yet been  constructed 

*Degrees of freedom still to be identified
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*Results in the static limit that hints at a new physical picture
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*Degrees of freedom still to be identified

The EFT  is being   constructed 

*Results in the static limit that hints at a new physical picture

(Exotics close to threshold) 

(Finite T ) 

The  issue here is  precision physics  and the study of confinement 

For states close or above  the strong decay threshold the situation is 
much more complicated.

there is no mass gap between  quarkonium and the creation 
 of a heavy-light  mesons couple 

mQq̄ +mQ̄q = 2m+ 2⇤QCD

Near theshold heavy-light mesons and gluons excitations    
have to be included   and many additional states built using 

the light quark quantum numbers  may appear
No systematic treatment is yet available;  also lattice  

calculations  are challenging
 Many phenomenological models exist



maiani, Piccinini, Polosa et al. 2005--



maiani, Piccinini, Polosa et al. 2005--

choosing one of these degrees of freedom and an 
interaction originates a model for exotics.
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Heavy-quark heavy antiquark plus glue 

Define the symmetries of the system and the system static 
energies in NRQCD

Lattice energies

◦ Juge Kuti Morningstar PRL 90 (2003) 161601

Symmetries

◦ Brambilla Pineda Soto Vairo NPB 566 (2000) 275
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Juge Kuti Morningstar 2003
Static
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pNRQCD gives the multiplets at short distance:gluelumps
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octet 
potential

gluelump  
mass correction softly  

breaking the symmetry 
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r2
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Match to pNRQCD: one can determine the form of the potential

EH(r) = VO(r) + ⇤H + bHr2

Octet potential at two loops;  renormalon subtraction realised 
among pole mass, octet potential and gluelump mass, use RS 

scheme
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EH(r) = VO(r) + ⇤H + bHr2

The Lambda -doubling effect breaks the degeneracy between opposite 
parity spin-symmetry 

multiplets and lowers the mass of the multiplets that get mixed 
contributions of different static 

energies.
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Lattice data:Bali, Pineda 2004; Juge, Kuti, Morningstar 2003, dashed line V (0.5), solid line V (0.25)

V (0.25)

! r ≤ 0.25 fm: pNRQCD potential.

• Lattice data fitted for the r = 0 − 0.25 fm range with the same energy offsets as in
V (0.5).

b
(0.25)
Σ = 1.246GeV/fm2, b

(0.25)
Π = 0.000GeV/fm2 .

! r > 0.25 fm: phenomenological potential.

• V
′(r) =

a1
r +

√

a2r2 + a3 + a4.

• Same energy offsets as in V (0.25).
• Constraint: Continuity up to first derivatives.
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Berwein,N.B. , Tarrus, Vairo arXiv:1510.04299 

http://arxiv.org/abs/arXiv:1510.04299








new lattice data from hadron spectrum collaboration
JHEP 1612 (2016) 089 with pion mass 240 MeV but no continuum limit 

Comparison to direct lattice calculations



Introducing the spin of the quark

Up to now we have worked at the leading order, now we want to include  
the correction coming from the quark spin 

N.B, Wk Lai, J. Segovia, J. Tarrus, A. Vairo  2017 , in preparation

We calculate the spin dependent potentials matching NRQCD 
and pNRQCD: we get a purely perturbative contribution in the 

form of spin dependent octet potential integrating out  
mv and then we get nonperturbative  correlators depending 

only on glue when integrating out Lambda_QCD. 

 the nonperturbative correlators  should be calculated  
on the lattice or in QCD vacuum models

we fix them on lattice data of charmonium—> we can then 
predict hybrids spin multiplet for bottomonium (in progress) 



















we  can consider  
more general  

eigenstates of the  
octet sector the  

pNRQCD hamiltonian   

light flavour project on

obtain

gives origin to a coupled Schroedinger equation 

that can describe “tetraquarks” —> needs lattice calculations of tetraquarks static 
energies

coefficients C in calculation for any J M. Berwein, N. Brambilla, Wk Lai, A. Vairo



Conclusions
Quarkonium is a golden system to study strong interactions  

For states below threshold non relativistic EFTs  provide a systematic tool 
to investigate a wide range of observables in the realm of QCD and  

quarkonium becomes a 

For states close or above  the strong decay threshold the situation is 
much more complicated.

Many degrees of freedom show up  and the absence of a clear 
systematic is an obstacle to a universal picture

We have presented results obtained for the hybrid masses  
in pNRQCD that show a very rich structure of multiplets. 

NREFT Allow us to make calculations with unprecented precision, where 
high order perturbative calculations are possible 

and to systematically factorize short from long range contributions where 
observables are sentitive to the nonperturbative dynamics of QCD



Conclusions

We have included spin  in the hybrids multiplet structure: 
—could interpret the lattice result          
—make independent predictions for the bottomonium sector

Same approach can be used to include light quarks: “tetraquarks”
This approach holds the promise to be able to explain all exotics (including 
pentaquark)  from QCD in the same framework

Input from the lattice is needed: more precise calculations of the  
gluelump masses, static energies for the hybrids and the tetra quarks, 
correlators of gluons fields..

Exotics may be generated also by QCD van der Waals forces: for example  
eta_b-eta_b bound states?
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4-quark state with JPC = 1++

X(3872): interpretations

c c̄

q q̄

Maiani et al 04

X ∼ (cq)3̄S=1 ⊗ (c̄q̄)3S=0 + (cq)3̄S=0 ⊗ (c̄q̄)3S=1

the dynamical assumption (there is no scale separation like
in the doubly heavy baryons) is that quark pair cluster in
tightly bound color triplet diquarks (see 1-gluon exchange);
the difficulty in breaking the system explains the narrow width.

• Predictions based on the phenomenological Hamiltonian: H =
P

ij κij σ ⊗ σ; the
framework has been applied to a large variety of systems (Ds, X, Y , ...) and observables.

•
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X(3872)

  3952
Y(3943)

J/! "

DD3723

3832

3882

3754

++
0 ++1 +-1 ++2

Input

?

Tetraquark model

X(3872): interpretations

c c̄

q q̄

Høgassen et al 05

X ∼ (cc̄)8S=1 ⊗ (qq̄)8S=1
∼ (cq̄)1S=0 ⊗ (qc̄)1S=1 + (cq̄)1S=1 ⊗ (qc̄)1S=0

• Predictions based on the phenomenological Hamiltonian:
H = −

P

ij Cij T a ⊗ T a
σ ⊗ σ;

• decays into charmonium plus light vector mesons are suppressed with respect to
those into heavy-light mesons like DD̄∗;

• decays into charmonium plus light pseudoscalar mesons are not allowed by simple
quark rearrangements.

• Two neutral states made of cuc̄ū and cdc̄d̄ and two charged ones made of cuc̄d̄

and cdc̄ū are predicted.

X(3872): interpretations

c c̄

q̄ q

Törnqvist 93, Swanson 04

X ∼ (cq̄)1S=0 ⊗ (qc̄)1S=1 + (cq̄)1S=1 ⊗ (qc̄)1S=0
∼ D D̄∗ + D∗ D̄

This is assumed to be the dominant long-range Fock component;
short-range components of the type (cc̄)1S=1 ⊗ (qq̄)1S=1
∼ J/ψ ρ, ω are assumed as well.

• Predictions are strongly based on the assumed phenomenological Hamiltonians:
short range (∼ ΛQCD): potential model interaction at the quark level;
long range (∼ mπ): one pion exchange.

• The prediction Γ(X → π+π−J/ψ) ≈ Γ(X → π+π−π0J/ψ) turned out to be
consistent with BELLE 05.

• However, Γ(X → π+π−J/ψ) ≈ 20 Γ(X → D0D̄0π0) is two orders of magnitude
far from BELLE 06. This may point to a smaller J/ψ ρ component in the Fock
space, which may conflict with the charmonium-like production mechanism.

Molecular model



In some cases it is possible to develop an EFT owing to special 
dynamical condition

Braaten Hammer 06 

X(3872): interpretations

c c̄

q̄ q

a

Voloshin 04, Braaten Kusunoki 04,
Al Fiky et al 05

ΛQCD ≫ mπ ≫ m2
π/(2mred) ≈ 10 MeV ≫ Ebinding

Ebinding ≈ MX − (MD0 ∗ + MD0 ) = (0.1 ± 1.0) MeV
or = −(0.4 ± 0.7) MeV
using new MD0 from CLEO Skwarnicki @ ICHEP 06
• BELLE measure of MX in D0D̄0π0 is 3-4 MeV larger.

• Systems with a short-range interaction and a large scattering length a ≫ 1/mπ

have universal properties. If γre = Re(1/a) > 0 there is a shallow bound state of
binding energy EX = γ2

re/(2mred), width ΓX = 2γreγim/mred and wave function

φ(r) =

r

1

2πa

e−r/a

r

• Mass and width of the X constrain γre and γim and imply ⟨r⟩X > 3 fm.

this happens if the state is 
sufficiently close to a threshold  

and if it has   S-wave coupling to 
the threshold—> loosely bound 

molecule with universal properties






