# Light-meson spectroscopy and search for exotic heavy-quark states at COMPASS

#### Boris Grube for the COMPASS Collaboration

Institute for Hadronic Structure and Fundamental Symmetries Technische Universität München

Workshop on exotic hadron spectroscopy Edinburgh, 12. Dec 2017







# Exotic Charmonia



S.L. Olsen, Front. Phys. 10 (101401) 2015

# Observed in various production mechanisms

- Direct production in  $e^+e^-$  collisions at CLEO, BESIII, BABAR, and Belle
- Direct production in hadron collisions at DØ, CDF, ATLAS, and CMS
- *B* decays at BABAR, Belle, LHCb, and ATLAS
- Two-photon collisions at BABAR and Belle

### What about photo/leptoproduction?

# Exotic Charmonia



S.L. Olsen, Front. Phys. 10 (101401) 2015

# Observed in various production mechanisms

- Direct production in  $e^+e^-$  collisions at CLEO, BESIII, BABAR, and Belle
- Direct production in hadron collisions at DØ, CDF, ATLAS, and CMS
- *B* decays at BABAR, Belle, LHCb, and ATLAS
- Two-photon collisions at BABAR and Belle

### What about photo/leptoproduction?

# The COMPASS Experiment at the CERN SPS

#### **Experimental Setup**

#### P. Abbon, NIM A 577 (455) 2007

#### Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic ۲ calorimeters
- Final-state particle ID (RICH)



# The COMPASS Experiment at the CERN SPS

#### **Experimental Setup**

P. Abbon, NIM A 577 (455) 2007

#### Physics goals

- Spectroscopy of light mesons: secondary 190 GeV/c hadron beams ( $\stackrel{\leftrightarrow}{p}$ ,  $\pi^{\pm}$ ,  $K^{\pm}$ ) on H<sub>2</sub> or nuclear targets
- Spin structure of the nucleon: tertiary 160 or 200 GeV/c muon beam on (polarized) <sup>6</sup>LiD or NH<sub>3</sub> targets



### (Associated) Muoproduction of Charmonia



#### Measure exclusive events

- Production of  $J/\psi$  and *n* charged pions by virtual photons, n = 0, ..., 3
- Search for exotic charmonia in  $J/\psi\pi$  and  $J/\psi\pi\pi$  channels
- Target recoil N' unobserved

Data set from 7 years

|      | $\mu^+$ , 160 GeV/ $c$ |                 |
|------|------------------------|-----------------|
| 2004 |                        |                 |
|      | $\mu^+$ , 160 GeV/ $c$ |                 |
|      |                        | NH <sub>3</sub> |
|      | $\mu^+$ , 160 GeV/ $c$ | NH <sub>3</sub> |
| 2011 |                        | NH <sub>3</sub> |

### (Associated) Muoproduction of Charmonia



#### Measure exclusive events

- Production of  $J/\psi$  and *n* charged pions by virtual photons, n = 0, ..., 3
- Search for exotic charmonia in  $J/\psi\pi$  and  $J/\psi\pi\pi$  channels
- Target recoil N' unobserved

### Data set from 7 years

| 2002 | $\mu^+$ , 160 GeV/ $c$ | <sup>6</sup> LiD |
|------|------------------------|------------------|
| 2003 | $\mu^+$ , 160 GeV/ $c$ | <sup>6</sup> LiD |
| 2004 | $\mu^+$ , 160 GeV/ $c$ | <sup>6</sup> LiD |
| 2006 | $\mu^+$ , 160 GeV/ $c$ | <sup>6</sup> LiD |
| 2007 | $\mu^+$ , 160 GeV/ $c$ | $NH_3$           |
| 2010 | $\mu^+$ , 160 GeV/ $c$ | $NH_3$           |
| 2011 | $\mu^+$ , 200 GeV/ $c$ | $NH_3$           |



- $J/\psi$  reconstructed via decay to  $\mu^+\mu^-$
- Exclusivity:  $\Delta E \equiv E_{\mu'} + E_{J/\psi} E_{\text{beam}}$ 
  - Energy transfer to nucleon negligible
  - $\Delta E$  resolution  $\approx 3 \,\text{GeV}$
- 18 200 exclusive  $J/\psi$  events
- Dominated by quasi-real photons:  $\langle Q^2 \rangle \approx 1 \, (\text{GeV}/c)^2$
- $\gamma^* N'$  center-of-mass energy  $8 \lesssim \sqrt{s_{\gamma N}} \lesssim 18 \,\text{GeV}$



- $J/\psi$  reconstructed via decay to  $\mu^+\mu^-$
- Exclusivity:  $\Delta E \equiv E_{\mu'} + E_{J/\psi} E_{\text{beam}}$ 
  - Energy transfer to nucleon negligible
  - $\Delta E$  resolution  $\approx 3 \,\text{GeV}$
- 18 200 exclusive  $J/\psi$  events
- Dominated by quasi-real photons:  $\langle Q^2 \rangle \approx 1 \, (\text{GeV}/c)^2$
- $\gamma^* N'$  center-of-mass energy  $8 \lesssim \sqrt{s_{\gamma N}} \lesssim 18 \,\text{GeV}$



Incoherent exclusive  $J/\psi$  production used as normalization

• Known cross section for  $\gamma N \rightarrow J/\psi N$ : (14.0 ± 1.6<sub>stat.</sub> ± 2.5<sub>sys.</sub>) nb at  $\sqrt{s_{\gamma N}} = 13.7 \text{ GeV}$ 

NA-14 Collaboration, ZPC 33 (505) 1987

• Corrected by factor 0.8 to take into account Q<sup>2</sup> dependence

ZEUS, NPB 695 (3) 2004

 Contribution from coherent scattering on target nuclei separated by fit to p<sub>T</sub><sup>2</sup> spectrum



Incoherent exclusive  $J/\psi$  production used as normalization

• Known cross section for  $\gamma N \rightarrow J/\psi N$ : (14.0 ± 1.6<sub>stat.</sub> ± 2.5<sub>sys.</sub>) nb at  $\sqrt{s_{\gamma N}} = 13.7 \text{ GeV}$ 

NA-14 Collaboration, ZPC 33 (505) 1987

• Corrected by factor 0.8 to take into account *Q*<sup>2</sup> dependence

ZEUS, NPB 695 (3) 2004

 Contribution from coherent scattering on target nuclei separated by fit to p<sub>T</sub><sup>2</sup> spectrum



Incoherent exclusive  $J/\psi$  production used as normalization

• Known cross section for  $\gamma N \rightarrow J/\psi N$ : (14.0 ± 1.6<sub>stat.</sub> ± 2.5<sub>sys.</sub>) nb at  $\sqrt{s_{\gamma N}} = 13.7 \text{ GeV}$ 

NA-14 Collaboration, ZPC 33 (505) 1987

• Corrected by factor 0.8 to take into account *Q*<sup>2</sup> dependence

ZEUS, NPB 695 (3) 2004

 Contribution from coherent scattering on target nuclei separated by fit to p<sub>T</sub><sup>2</sup> spectrum

#### X(3900)

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

Mass  $m=3886.6\pm2.4$  MeV ~(S=1.6) Full width  $\Gamma=28.1\pm2.6$  MeV

| X(3900) DECAY MODES           | Fraction $(\Gamma_i/\Gamma)$ | p (MeV/c) |
|-------------------------------|------------------------------|-----------|
| $J/\psi\pi$                   | seen                         | 699       |
| $h_c \pi^{\pm}$               | not seen                     | 318       |
| $\eta_{c} \pi^{+} \pi^{-}$    | not seen                     | 759       |
| $(D\overline{D}^*)^{\pm}$     | seen                         | -         |
| $D^0 D^{*-} + \text{c.c.}$    | seen                         | 150       |
| $D^- D^{*0} + \text{c.c.}$    | seen                         | 141       |
| $\omega \pi^{\pm}$            | not seen                     | 1862      |
| $J/\psi\eta$                  | not seen                     | 509       |
| $D^+ D^{*-} + c.c$            | seen                         | -         |
| $D^0 \overline{D}^{*0}$ + c.c | seen                         | -         |

- Discovered 2013 by BESIII and Belle
- Up to now only seen in  $e^+e^- \rightarrow \pi^{\mp}Z_c^{\pm}$
- $Z_c^0(3900) \rightarrow J/\psi\pi^0$ observed in CLEO-c data and by BESIII experiment
- Nature unclear

• . . .

- Tetraquark?
- $D\overline{D}^*$  molecule?
- Cusp effect? Triangle singularity?

Boris Grube, TU München Light-meson spectroscopy and search for exotic heavy-quark states at COMPASS

#### X(3900)

$$I^{G}(J^{PC}) = 1^{+}(1^{+})^{-}$$

Mass  $m=3886.6\pm2.4$  MeV ~(S=1.6) Full width  $\Gamma=28.1\pm2.6$  MeV

| X(3900) DECAY MODES           | Fraction $(\Gamma_j/\Gamma)$ | p (MeV/c) |
|-------------------------------|------------------------------|-----------|
| $J/\psi \pi$                  | seen                         | 699       |
| $h_c \pi^{\pm}$               | not seen                     | 318       |
| $\eta_c \pi^+ \pi^-$          | not seen                     | 759       |
| $(D\overline{D}^*)^{\pm}$     | seen                         | -         |
| $D^0 D^{*-}$ + c.c.           | seen                         | 150       |
| $D^- D^{*0} + \text{c.c.}$    | seen                         | 141       |
| $\omega \pi^{\pm}$            | not seen                     | 1862      |
| $J/\psi\eta$                  | not seen                     | 509       |
| $D^+ D^{*-} + c.c$            | seen                         | -         |
| $D^0 \overline{D}^{*0}$ + c.c | seen                         | -         |

- Discovered 2013 by BESIII and Belle
- Up to now only seen in  $e^+e^- \rightarrow \pi^{\mp} Z_c^{\pm}$
- $Z_c^0(3900) \rightarrow J/\psi\pi^0$ observed in CLEO-c data and by BESIII experiment
- Nature unclear

• . . .

- Tetraquark?
- $D\overline{D}^*$  molecule?
- Cusp effect? Triangle singularity?

Boris Grube, TU München Light-meson spectroscopy and search for exotic heavy-quark states at COMPASS

### Exclusive Muoproduction of $J/\psi\pi^{\pm}$



Search for  $Z_c^{\pm}(3900)$  in  $J/\psi\pi^{\pm}$  invariant mass spectrum

• Prediction: 50 to 100 nb  $Z_c^{\pm}(3900)$  production cross section at

Q.-Y. Lin et al., PRD 88 (114009) 2013

No signal observed

 $\sqrt{s_{\gamma N}} = 7 \,\text{GeV}$ 

### Exclusive Muoproduction of $J/\psi \pi^{\pm}$



### Exclusive Muoproduction of $J/\psi \pi^{\pm}$



• 
$$\sigma_{\gamma N \to Z_c^{\pm}(3900) N'} \operatorname{BR}[Z_c^{\pm}(3900) \to J/\psi \pi^{\pm}] < 52 \, \mathrm{pb}$$

at  $\sqrt{s_{\gamma N}} = 13.8 \,\text{GeV}$  and 90 % C.L.



# $X(4200)^{\pm}$

$$I(J^P) = ?(1^+)$$

OMITTED FROM SUMMARY TABLE. Reported by CHILIKIN 14 in  $J/\psi\pi^+$  at a significance of 6.2 $\sigma$ . Assignments of 0<sup>-</sup>, 1<sup>-</sup>, 2<sup>-</sup>, and 2<sup>+</sup> excluded at 6.1 $\sigma$ , 7.4 $\sigma$ , 4.4 $\sigma$ , and 7.0 $\sigma$  level, respectively. Needs confirmation.

#### X(4200)<sup>±</sup> MASS

| VALUE (MeV)<br>4196+31+17<br>-29-13 | DOCUMENT ID<br>CHILIKIN | 14 BELL              | $\frac{COMMENT}{\overline{B}^0 \to J/\psi K^- \pi^+}$           |
|-------------------------------------|-------------------------|----------------------|-----------------------------------------------------------------|
| <i>X</i> (4200) <sup>±</sup> WIDTH  |                         |                      |                                                                 |
| VALUE (MeV)<br>370±70+70<br>=132    | DOCUMENT ID<br>CHILIKIN | 14 BELL              | $\frac{COMMENT}{\overline{B}{}^0 \rightarrow J/\psi K^- \pi^+}$ |
| X(4200) <sup>±</sup> DECAY MODES    |                         |                      |                                                                 |
| Mode                                | F                       | raction $(\Gamma_i/$ | Г)                                                              |
| $\Gamma_1 = J/\psi \pi^+$           | se                      | een                  |                                                                 |

- Reported 2014 by Belle in  $B \to KZ_c^{\pm}$  with  $Z_c^{\pm} \to J/\psi \pi^{\pm}$
- Needs confirmation
- Unclear, whether neutral partner  $Z_c^0(4200)$  exists



# $X(4200)^{\pm}$

$$I(J^P) = ?(1^+)$$

OMITTED FROM SUMMARY TABLE. Reported by CHILIKIN 14 in  $J/\psi\pi^+$  at a significance of 6.2 $\sigma$ . Assignments of 0<sup>-</sup>, 1<sup>-</sup>, 2<sup>-</sup>, and 2<sup>+</sup> excluded at 6.1 $\sigma$ , 7.4 $\sigma$ , 4.4 $\sigma$ , and 7.0 $\sigma$  level, respectively. Needs confirmation.

#### X(4200)<sup>±</sup> MASS

| VALUE (MeV)<br>4196+31+17<br>-29-13 | <u>DOCUMENT ID</u><br>CHILIKIN | 14    | TECN<br>BELL          | $\frac{COMMENT}{\overline{B}{}^0 \rightarrow J/\psi  K^-  \pi^+}$ |
|-------------------------------------|--------------------------------|-------|-----------------------|-------------------------------------------------------------------|
|                                     |                                |       |                       |                                                                   |
| VALUE (MeV)                         | DOCUMENT ID                    |       | TECN                  | COMMENT                                                           |
| $370 \pm 70 + 70 - 132$             | CHILIKIN                       | 14    | BELL                  | $\overline{B}{}^0 \rightarrow J/\psi K^- \pi^+$                   |
| X(4200) <sup>±</sup> DECAY MODES    |                                |       |                       |                                                                   |
| Mode                                |                                | Fract | ion (Γ <sub>i</sub> / | Г)                                                                |
| $\Gamma_1 = J/\psi \pi^+$           |                                | seen  | 1                     |                                                                   |

- Reported 2014 by Belle in  $B \to KZ_c^{\pm}$  with  $Z_c^{\pm} \to J/\psi \pi^{\pm}$
- Needs confirmation
- Unclear, whether neutral partner Z<sup>0</sup><sub>c</sub>(4200) exists

### Exclusive Muoproduction of $J/\psi \pi^{\pm}$



### Search for $Z_c^{\pm}(4200)$ in $J/\psi \pi^{\pm}$ invariant mass spectrum

- No signal observed
- $\sigma_{\gamma N \to Z_c^{\pm}(4200) N'} \operatorname{BR}[Z_c^{\pm}(4200) \to J/\psi \pi^{\pm}] < 340 \,\mathrm{pb}$ at  $\sqrt{s_{\gamma N}} = 13.8 \,\mathrm{GeV}$  and 90 % C.L.

#### X(3872)

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

 $\begin{array}{l} {\rm Mass} \ m = 3871.69 \pm 0.17 \ {\rm MeV} \\ m_{X(3872)} \ - \ m_{J/\psi} = 775 \pm 4 \ {\rm MeV} \\ m_{X(3872)} \ - \ m_{\psi(25)} \\ {\rm Full \ width \ \Gamma \ } < 1.2 \ {\rm MeV}, \ {\rm CL} = 90\% \end{array}$ 

| X(3872) DECAY MODES          | Fraction $(\Gamma_i/\Gamma)$ | p (MeV/c) |
|------------------------------|------------------------------|-----------|
| $\pi^{+}\pi^{-}J/\psi(1S)$   | > 2.6 %                      | 650       |
| $\omega J/\psi(1S)$          | > 1.9 %                      | †         |
| $D^0 \overline{D}{}^0 \pi^0$ | >32 %                        | 117       |
| $\overline{D}^{*0} D^0$      | >24 %                        | 3         |
| $\gamma J/\psi$              | $> 6 \times 10^{-3}$         | 697       |
| $\gamma \psi(2S)$            | > 3.0 %                      | 181       |
| $\pi^{+}\pi^{-}\eta_{c}(1S)$ | not seen                     | 746       |
| pp                           | not seen                     | 1693      |

- Discovered 2003 by Belle
- Best studied exotic charmonium-like state
- Mass at  $D^0 \overline{D}^{0*}$  threshold
- Narrow ⇒ so far only upper limit for width

• LHCb: 
$$J^{PC} = 1^{++}$$

• 
$$\frac{\text{BR}[X \to J/\psi\omega]}{\text{BR}[X \to J/\psi\pi^+\pi^-]} = 0.8 \pm 0.3$$

• Nature still unclear

#### X(3872)

$$I^{G}(J^{PC}) = 0^{+}(1^{+})^{+}$$

 $\begin{array}{l} {\rm Mass} \ m = 3871.69 \pm 0.17 \ {\rm MeV} \\ m_{X(3872)} \ - \ m_{J/\psi} = 775 \pm 4 \ {\rm MeV} \\ m_{X(3872)} \ - \ m_{\psi(25)} \\ {\rm Full \ width \ \Gamma \ } < 1.2 \ {\rm MeV}, \ {\rm CL} = 90\% \end{array}$ 

| X(3872) DECAY MODES          | Fraction $(\Gamma_i/\Gamma)$ | p (MeV/c) |
|------------------------------|------------------------------|-----------|
| $\pi^{+}\pi^{-}J/\psi(1S)$   | > 2.6 %                      | 650       |
| $\omega J/\psi(1S)$          | > 1.9 %                      | †         |
| $D^0 \overline{D}{}^0 \pi^0$ | >32 %                        | 117       |
| $\overline{D}^{*0} D^0$      | >24 %                        | 3         |
| $\gamma J/\psi$              | $> 6 \times 10^{-3}$         | 697       |
| $\gamma \psi(2S)$            | > 3.0 %                      | 181       |
| $\pi^{+}\pi^{-}\eta_{c}(1S)$ | not seen                     | 746       |
| pp                           | not seen                     | 1693      |

- Discovered 2003 by Belle
- Best studied exotic charmonium-like state
- Mass at  $D^0 \overline{D}^{0*}$  threshold
- Narrow ⇒ so far only upper limit for width

• LHCb: 
$$J^{PC} = 1^{++}$$

• 
$$\frac{\text{BR}[X \to J/\psi\omega]}{\text{BR}[X \to J/\psi\pi^+\pi^-]} = 0.8 \pm 0.3$$

• Nature still unclear



Search for X(3872) in  $J/\psi\pi^+\pi^-$  invariant mass spectrum

- $\psi(2S)$  peak at (3687.1 ± 0.8) MeV/ $c^2$  (good agreement with PDG)
- No X(3872) signal



Search for X(3872) in  $J/\psi\pi^+\pi^-$  invariant mass spectrum

•  $\sigma_{\gamma N \to X(3872) N'} \operatorname{BR}[X(3872) \to J/\psi \pi^+\pi^-] < 2.9 \,\mathrm{pb} \text{ at } 90 \,\% \,\mathrm{C.L.}$ 

[arXiv:1707.01796]



Search for X(3872) in  $J/\psi\pi^+\pi^-$  invariant mass spectrum

- $\psi(2S)$  peak at (3683.7 ± 6.5) MeV/ $c^2$  (good agreement with PDG)
- Peak at  $(3860.4 \pm 10.0) \text{ MeV}/c^2$  consistent with X(3872)
- $\sigma = (22.8 \pm 6.9) \text{ MeV}/c^2$  for both peaks; dominated by resolution

#### [arXiv:1707.01796]



### Significance

- Integrate background curve over 60 MeV/c<sup>2</sup> wide mass window
  ⇒ expected number of background events
- Assume Poisson distribution  $\Rightarrow$  *p*-value for BG fluctuation

[arXiv:1707.01796]



[arXiv:1707.01796]



### Production of X(3872) is exclusive

- Exclusive events:  $|\Delta E| < 4 \,\text{GeV}$
- Non-exclusive events:  $-12 < \Delta E < -4 \,\text{GeV}$ 
  - *X*(3872) signal disappears

#### [arXiv:1707.01796]



### Mass spectrum of $\pi^{\pm}N'$ system

- Mass region  $\pm 30 \,\text{MeV}/c^2$  around  $\psi(2S)$  and X(3872) peaks
- Smaller  $\pi^{\pm}N'$  masses for  $\psi(2S)$ 
  - Hint for different production mechanism

[arXiv:1707.01796]



- Require  $\pi^{\pm}N'$  mass > 3 GeV/ $c^2$ 
  - Larger significance of *X*(3872) signal

[arXiv:1707.01796]

 $\pi^+\pi^-$  Mass Spectrum for  $\psi(2S)$  and X(3872) Peaks



[arXiv:1707.01796]

 $\pi^+\pi^-$  Mass Spectrum for  $\psi(2S)$  and X(3872) Peaks





[arXiv:1707.01796]

 $\pi^+\pi^-$  Mass Spectrum for  $\psi(2S)$  and X(3872) Peaks





[arXiv:1707.01796]

 $\pi^+\pi^-$  Mass Spectrum for  $\psi(2S)$  and X(3872) Peaks



Light-meson spectroscopy and search for exotic heavy-quark states at COMPASS

Boris Grube, TU München

[arXiv:1707.01796]

 $m_{\pi^+\pi^-}$  Distribution for X(3872) Peak in Tension with previous Observations



#### Performed several studies

- Used sPlot technique to remove effect of background (ca. 40 %)
  ⇒ same result
- Excluded acceptance effects
- Excluded lost  $\pi^0$  in  $X(3872) \rightarrow J/\psi\omega$
- Excluded  $\chi_{c0,1,2} \rightarrow J/\psi\gamma$  with  $\gamma \rightarrow e^+e^-$  misidentified as  $\pi^+\pi^-$
- Excluded that X(3872) peak is faked by  $\psi(2S)N^*$  production

# Exotic Heavy-Quark States

Summary and Outlook

### Photoproduction

• Additional process to study production of exotic charmonia

#### COMPASS

- First measurements of (associated) photoproduction of
  - X(3872)
  - $Z_{c_{i}}^{\pm}(3900)$
  - $Z_c^{\pm}(4200)$
- Based on 7 years worth of data

#### Outlook

- More data from COMPASS runs in 2016 and 2017
- Exotic charmonia can also be studied with high-intensity photon beams at GlueX and CLAS12

# Exotic Heavy-Quark States

Summary and Outlook

### Photoproduction

• Additional process to study production of exotic charmonia

### COMPASS

- First measurements of (associated) photoproduction of
  - X(3872)
  - $Z_{c}^{\pm}(3900)$
  - $Z_c^{\pm}(4200)$
- Based on 7 years worth of data

#### Outlook

- More data from COMPASS runs in 2016 and 2017
- Exotic charmonia can also be studied with high-intensity photon beams at GlueX and CLAS12

# Exotic Heavy-Quark States

Summary and Outlook

### Photoproduction

• Additional process to study production of exotic charmonia

### COMPASS

- First measurements of (associated) photoproduction of
  - X(3872)
  - $Z_{c}^{\pm}(3900)$
  - $Z_c^{\pm}(4200)$
- Based on 7 years worth of data

### Outlook

- More data from COMPASS runs in 2016 and 2017
- Exotic charmonia can also be studied with high-intensity photon beams at GlueX and CLAS12

*Example:*  $\pi^{-}\pi^{-}\pi^{+}$  final state at COMPASS

COMPASS, PRD 95 (2017) 032004



#### Soft scattering of 190 GeV/ $c \pi^-$ beam off proton target

- Interaction dominated by space-like pomeron exchange
- Excitation of beam pion into intermediate resonances X
- X dissociate into forward-going  $\pi^-\pi^-\pi^+$  final state
- Target proton stays intact

#### Rich spectrum of intermediate states X

• Disentangle all contributing X by partial-wave analysis (PWA)

*Example:*  $\pi^-\pi^-\pi^+$  final state at COMPASS

COMPASS, PRD 95 (2017) 032004



#### Soft scattering of 190 GeV/c $\pi^-$ beam off proton target

- Interaction dominated by space-like pomeron exchange
- Excitation of beam pion into intermediate resonances X
- X dissociate into forward-going  $\pi^-\pi^-\pi^+$  final state
- Target proton stays intact

#### Rich spectrum of intermediate states X

• Disentangle all contributing X by partial-wave analysis (PWA)

*Example:*  $\pi^{-}\pi^{-}\pi^{+}$  final state at COMPASS



*Example:*  $\pi^{-}\pi^{-}\pi^{+}$  final state at COMPASS



- Exclusive measurement
- Squared four-momentum transfer  $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- Well-known  $3\pi$  resonances
- 46 M  $\pi^-\pi^-\pi^+$  events spectrum

*Example:*  $\pi^{-}\pi^{-}\pi^{+}$  final state at COMPASS





$$\mathcal{I}(\tau; m_{3\pi}) = \left| \sum_{i}^{\text{waves}} \mathcal{T}_{i}(m_{3\pi}) \Psi_{i}(\tau; m_{3\pi}) \right|^{2}$$

- Fit model: coherent sum of partial-wave amplitudes
- Decay amplitudes  $\Psi_i(\tau; m_{3\pi})$ 
  - Describe kinematic distribution of partial waves
  - Calculated using isobar model and helicity formalism (Wigner *D*-functions)
- Transition amplitudes  $T_i(m_{3\pi}) \Rightarrow$  interesting physics
  - $m_{3\pi}$  dependence unknown
  - Extracted from data by performing PWA fit in narrow  $m_{3\pi}$  bins

#### COMPASS, PRD 95 (2017) 032004



$$\mathcal{I}(\tau; m_{3\pi}) = \left| \sum_{i}^{\text{waves}} \mathcal{T}_{i}(m_{3\pi}) \Psi_{i}(\tau; m_{3\pi}) \right|^{2}$$

- Fit model: coherent sum of partial-wave amplitudes
- Decay amplitudes  $\Psi_i(\tau; m_{3\pi})$ 
  - Describe kinematic distribution of partial waves
  - Calculated using isobar model and helicity formalism (Wigner *D*-functions)
- Transition amplitudes  $T_i(m_{3\pi}) \Rightarrow$  interesting physics
  - $m_{3\pi}$  dependence unknown
  - Extracted from data by performing PWA fit in narrow  $m_{3\pi}$  bins



$$\mathcal{I}(\tau; m_{3\pi}) = \left| \sum_{i}^{\text{waves}} \mathcal{T}_{i}(m_{3\pi}) \Psi_{i}(\tau; m_{3\pi}) \right|^{2}$$

- Fit model: coherent sum of partial-wave amplitudes
- Decay amplitudes  $\Psi_i(\tau; m_{3\pi})$ 
  - Describe kinematic distribution of partial waves
  - Calculated using isobar model and helicity formalism (Wigner *D*-functions)
- Transition amplitudes  $T_i(m_{3\pi}) \Rightarrow$  interesting physics
  - $m_{3\pi}$  dependence unknown
  - Extracted from data by performing PWA fit in narrow  $m_{3\pi}$  bins

#### COMPASS, PRD 95 (2017) 032004



$$\mathcal{I}(\tau; m_{3\pi}) = \left| \sum_{i}^{\text{waves}} \mathcal{T}_{i}(m_{3\pi}) \Psi_{i}(\tau; m_{3\pi}) \right|^{2}$$

- Fit model: coherent sum of partial-wave amplitudes
- Decay amplitudes  $\Psi_i(\tau; m_{3\pi})$ 
  - Describe kinematic distribution of partial waves
  - Calculated using isobar model and helicity formalism (Wigner *D*-functions)
- Transition amplitudes  $T_i(m_{3\pi}) \Rightarrow$  interesting physics
  - $m_{3\pi}$  dependence unknown
  - Extracted from data by performing PWA fit in narrow  $m_{3\pi}$  bins



Light-meson spectroscopy and search for exotic heavy-quark states at COMPASS



Boris Grube, TU München

Light-meson spectroscopy and search for exotic heavy-quark states at COMPASS



Boris Grube, TU München



Boris Grube, TU München Light-meson spectroscopy and

### Resonance-Model Fit of $\pi^-\pi^-\pi^+$ Data



### Resonance-Model Fit of $\pi^-\pi^-\pi^+$ Data







### Novel analysis method

#### inspired by E791, PRD 73 (2006) 032204

- Replace fixed J<sup>PC</sup> = 0<sup>++</sup> isobar parametrizations by piece-wise constant amplitudes in m<sub>π<sup>-</sup>π<sup>+</sup></sub> bins
- Extract  $m_{3\pi}$  dependence of  $J^{PC} = 0^{++}$  isobar amplitude from data
  - Advantage: drastic reduction of model bias
  - Caveat: significant increase in number of fit parameters



### Novel analysis method

#### inspired by E791, PRD 73 (2006) 032204

- Replace fixed  $J^{PC} = 0^{++}$  isobar parametrizations by piece-wise constant amplitudes in  $m_{\pi^-\pi^+}$  bins
- Extract  $m_{3\pi}$  dependence of  $J^{PC} = 0^{++}$  isobar amplitude from data
  - Advantage: drastic reduction of model bias
  - Caveat: significant increase in number of fit parameters



# $\pi\pi$ *S*-Wave Amplitude in $J^{PC} = 0^{-+} 3\pi$ Wave

COMPASS, PRD 95 (2017) 032004



• Coupling of  $\pi(1800)$  to  $f_0(980)\pi$  and  $f_0(1500)\pi$  decay modes

- $\pi\pi$  S-wave phase similar to the one extracted from  $D_s^+ \to \pi^+\pi^-\pi^+$  (black) BABAR, PRD 79 (2009) 0320
- Input/constraint for CP violation analyses in multi-body heavy-meson decays?

# $\pi\pi$ *S*-Wave Amplitude in $J^{PC} = 0^{-+} 3\pi$ Wave



- Coupling of  $\pi(1800)$  to  $f_0(980)\pi$  and  $f_0(1500)\pi$  decay modes
- $\pi\pi$  S-wave phase similar to the one extracted from  $D_s^+ \to \pi^+\pi^-\pi^+$  (black) BABAR, PRD **79** (2009) 032003
- Input/constraint for CP violation analyses in multi-body heavy-meson decays?

# Light-Meson Spectroscopy at COMPASS

Summary and Outlook

### *Example:* diffractively produced $\pi^-\pi^-\pi^+$

COMPASS, PRD 95 (2017) 032004

- Large data set
- Most comprehensive analysis so far
- Paper about resonance-model fit in collaboration review

#### Novel analysis techniques

- Extraction of  $\pi\pi$  amplitude from data
  - New insights into dynamics of  $\pi\pi$  subsystem in the presence of third  $\pi$
  - Work in progress: extension to subsystems with  $J^{PC} = 1^{--}$  and  $2^{++}$
  - Challenge: resolution of mathematical ambiguities

F. Krinner et al. [arXiv:1710.09849]

- *t'-resolved analysis:* better separation of resonant and nonresonant contributions
- Tight collaboration with theorists to improve analysis model

JPAC and COMPASS [arXiv:1707.02848]

# Light-Meson Spectroscopy at COMPASS

Summary and Outlook

### *Example:* diffractively produced $\pi^-\pi^-\pi^+$

COMPASS, PRD 95 (2017) 032004

- Large data set
- Most comprehensive analysis so far
- Paper about resonance-model fit in collaboration review

### Novel analysis techniques

- Extraction of  $\pi\pi$  amplitude from data
  - New insights into dynamics of  $\pi\pi$  subsystem in the presence of third  $\pi$
  - Work in progress: extension to subsystems with  $J^{PC} = 1^{--}$  and  $2^{++}$
  - Challenge: resolution of mathematical ambiguities

F. Krinner et al. [arXiv:1710.09849]

- *t'-resolved analysis:* better separation of resonant and nonresonant contributions
- Tight collaboration with theorists to improve analysis model

JPAC and COMPASS [arXiv:1707.02848]