Three and four quark systems in the DSE/BSE framework

Christian S. Fischer

Justus Liebig Universität Gießen

Exotic Hadron Spectroscopy 2017

Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602]

Bundesministerium für Bildung und Forschung

Christian S. Fischer (University of Gießen)

Overview - Take home messages

Light and strange baryon spectrum:

Eichmann, CF, Sanchis-Alepuz, PRD 94 (2016) [1607.05748]

Light tetraquarks:

Eichman, CF, Heupel, PLB 753 (2016) 282-287

Christian S. Fischer (University of Gießen)

Light baryon spectrum - quark model

Loring, Metsch, Petry, EPJA 10 (2001) 395

• 'missing resonances': three-body vs. quark-diquark

• level ordering: $N_{\frac{1}{2}}$ vs. $N_{\frac{1}{2}}$

Lattice QCD

baryon ground states well under control
baryon excited states: very tough problem

Three-body vs. Diquark-quark approximation

Bethe-Salpeter equation for baryons:

$$=$$

Christian S. Fischer (University of Gießen)

Three-body vs. Diquark-quark approximation

Bethe-Salpeter equation for baryons:

Christian S. Fischer (University of Gießen)

Three-body vs. Diquark-quark approximation

Bethe-Salpeter equation for baryons:

Diquark-quark approximation:

sc,ax,ps,v

Input: quark-gluon interaction
Diquarks are NOT point like

Quantum numbers: non-relativistic vs relativistic

Quantum numbers: non-relativistic vs relativistic

conventional states more complicated

- baryon octet: 64 tensors with s,p,d wave
- decuplet: I 28 tensors with s,pd,f wave

• mesons: 'exotic' quantum numbers possible: $0^{--}, 0^{+-}, 1^{-+}, 2^{+-} \dots$

The DSE for the quark propagator

II) Quark-diquark model:

ansatz for quark (and diquark wave function)

IV) Beyond rainbow-ladder (bRL):

solve DSEs for quark, gluon, vertex

Sanchis-Alepuz, Williams, PLB 749 (2015) 592 Williams, CF, Heupel, PRD93 (2016) 034026, and refs. therein Binosi, Chang, Papavassiliou, Qin, Roberts PRD95 (2017) 031501 and refs. therein

DSE/BSE/Faddeev landscape

level of sophistication

	I) NJL/contact interaction) Quark- diquark model	III) DSE (RL)	lll) DSE (RL)	IV) DSE (bRL)
N, Δ masses	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
N, Δ em. FFs	\checkmark	\checkmark	\checkmark	\checkmark	
$N\to \Delta\gamma$	\checkmark	\checkmark	\checkmark	\checkmark	
Roper,	\checkmark	\checkmark	\checkmark	\checkmark	
$N \to N^* \gamma$	\checkmark	\checkmark			
$N^{*}(1535),$	\checkmark	\checkmark	\checkmark	\checkmark	
$N \to N^* \gamma$					
Σ, Ξ, Ω	\checkmark	\checkmark	\checkmark	\checkmark	
excited strange	\checkmark		\checkmark	\checkmark	
Σ, Ξ, Ω em. FFs			\checkmark	\checkmark	
	Cloet, Thomas, Roberts, Segovia et al.	Oettel, Alkofer, Roberts, Bloch, Segovia et al.	Eichmann, Alkofer, Krassnigg, Nicmorus, Sanchis-Alepuz, CF	Eichmann, Alkofer, Sanchis-Alepuz, CF	Sanchis-Alepuz, Williams, CF

Christian S. Fischer (University of Gießen)

Lattice: P. O. Bowman, et al PRD 71 (2005) 054507

Quark mass dynamically generated
running important for wave functions, FFs etc.

Light baryon spectrum: DSE-RL

Eichmann, CF, in preparation

- spectrum in one to one agreement with experiment
- correct level ordering (without coupled channel effects...)
- sc,ax diquark always dominate over ps,v

Light baryon spectrum: DSE-RL

Eichmann, CF, in preparation

- spectrum in one to one agreement with experiment
- correct level ordering (without coupled channel effects...)
- sc,ax diquark always dominate over ps,v
- three-body agrees with diquark-quark where applicable

Christian S. Fischer (University of Gießen)

Properties of the Roper

- zero crossing of wave function: 2s-state
- every state is mixture of several partial waves !
- different internal structure of radial excitations

tension with simpler calculations ('contact interaction', 'QCD based model'): Wilson, Cloet, Chang and Roberts, PRC 85 (2012) 025205, Segovia, El-Bennich, Rojas, Cloet, Roberts, Xu and Zong, PRL 115 (2015) 17 Lu, Chen, Roberts et al., PRC 96 (2017) 015208

Christian S. Fischer (University of Gießen)

Strange baryon spectrum: DSE-RL (preliminary !)

Christian S. Fischer (University of Gießen)

Strange baryon spectrum: DSE-RL (preliminary !)

Christian S. Fischer (University of Gießen)

Strange baryon spectrum: DSE-RL (preliminary !)

Christian S. Fischer (University of Gießen)

Overview - Take home messages

Light and strange baryon spectrum:

Eichmann, CF, Sanchis-Alepuz, PRD 94 (2016) [1607.05748]

Light tetraquarks:

Eichman, CF, Heupel, PLB 753 (2016) 282-287

Christian S. Fischer (University of Gießen)

Heavy and light tetraquark

Wolfgang Gradl, BESIII, St Goar 2015

Heavy and light tetraquark

Tetraquarks from the four-body equation

Exact equation:

Two-body interactions

Three- and four-body interactions

Kvinikhidze & Khvedelidze, Theor. Math. Phys. 90 (1992) Heupel, Eichmann, CF, PLB 718 (2012) 545-549 Eichmann, CF, Heupel, PLB 753 (2016) 282-287

Basic idea:

solve four-body equation without any assumption on internal clustering

Key elements: quark propagator and interaction kernels

Tetraquarks from the four-body equation

Exact equation:

Two-body interactions

Three- and four-body interactions

Kvinikhidze & Khvedelidze, Theor. Math. Phys. 90 (1992) Heupel, Eichmann, CF, PLB 718 (2012) 545-549 Eichmann, CF, Heupel, PLB 753 (2016) 282-287

Basic idea:

solve four-body equation without any assumption on internal clustering

Key elements: quark propagator and interaction kernels

Structure of the amplitude

Scalar tetraquark:

reasonable approximation: keep s-waves only;
I6 tensor structures

Four-body equation:

Organise Dirac-Lorentz-tensors into multiplets of S4

=

- Singlet, carries overall scale
- Doublet

Eichmann, CF, Heupel, PLB 753 (2016) 282-287

Christian S. Fischer (University of Gießen)

Christian S. Fischer (University of Gießen)

Mass evolution of tetraquark

- Resonance becomes bound state for large m_q
- Dynamical decision: meson clusters, not diquarks
- **Results**: $m_{\sigma} \sim 350 \,\mathrm{MeV}$

$$m_{\kappa} \sim 750 \,\mathrm{MeV}$$

 $m_{a_0, f_0} \sim 1080 \,\mathrm{MeV}$

 $m_{ss\bar{s}\bar{s}} \sim 1.5 \,\mathrm{GeV}$

 $m_{cc\bar{c}\bar{c}} \sim 5.7 \,\mathrm{GeV}$

qualitatively similar to two-body framework

Heupel, Eichmann, CF, PLB 718 (2012) 545-549

Christian S. Fischer (University of Gießen)

Outlook: heavy-light systems

Dynamical situation in S4-doublet:

Dynamical decision of most important clustering!

Summary

- Baryon spectrum: good agreement with experiment!
- Three-body vs diquark-quark: fair agreement

Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602]

- Four-quarks states dominated by meson-meson configurations
- Dynamical description of σ as π - π resonance

Outlook

- Baryons: J=5/2 and J=7/2
- Tetraquarks: explore heavy-light systems
- Glueballs: $M(0^{++}) = 1.64 \text{ GeV}$

Sanchis-Alepuz, CF, Kellermann and von Smekal, PRD 92 (2015) 3, 034001 (see also Meyers, Swanson, PRD 87 (2013) 3, 036009)

Hybrids: work in progress

Christian S. Fischer (University of Gießen)

Backup

Rainbow-ladder model for quark-gluon interaction

scale Λ from f_{π_i} masses $m_u = m_d$, m_s from $m_{\pi_i} m_K$

- α_{UV} from perturbation theory
- Parameter η : band of results

Binosi, Chang, Papavassiliou and Roberts, PLB 742 (2015) 183

Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602]

Rainbow-ladder model for quark-gluon interaction

scale Λ from f_{π_i} masses $m_u = m_d$, m_s from $m_{\pi_i} m_K$

- α_{UV} from perturbation theory
- Parameter η : band of results

Binosi, Chang, Papavassiliou and Roberts, PLB 742 (2015) 183

Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602]

Rainbow-ladder model for quark-gluon interaction

scale Λ from f_{π_i} masses $m_u = m_d$, m_s from $m_{\pi_i} m_K$

- α_{UV} from perturbation theory
- Parameter η : band of results

Binosi, Chang, Papavassiliou and Roberts, PLB 742 (2015) 183

Eichmann, Sanchis-Alepuz, Williams, Alkofer, CF, PPNP 91, 1-100 [1606.09602]

DSEs and Bethe-Salpeter equation

Kernel K uniquely related to quark-DSE via axialvector Ward-Takahashi-Identity (axWTI):

$$-i\int (K\gamma_5 S_- + KS_+\gamma_5) = \int \gamma_\mu S_+ D_{\mu\nu} \Gamma_\nu \gamma_5 + \int \gamma_5 \gamma_\mu S_- D_{\mu\nu} \Gamma_\nu$$

→Pion is bound state and Goldstone boson

Maris, Roberts, Tandy, PLB 420 (1998) 267

DSEs and Bethe-Salpeter equation

Kernel K uniquely related to quark-DSE via axialvector Ward-Takahashi-Identity (axWTI):

$$-i\int (K\gamma_5 S_- + KS_+\gamma_5) = \int \gamma_\mu S_+ D_{\mu\nu}\Gamma_\nu\gamma_5 + \int \gamma_5\gamma_\mu S_- D_{\mu\nu}\Gamma_\nu$$

→Pion is bound state and Goldstone boson

Maris, Roberts, Tandy, PLB 420 (1998) 267

Charmonium spectrum

good channels: I⁻⁻,2⁺⁺, 3⁻⁻,...

CF, Kubrak, Williams, EPJA 51 (2015) Hilger et al. PRD 91 (2015)

- acceptable channels: 0⁻⁺
- clear deficiencies in other channels: missing spin-structure
- excited states fine ! (in good channels)

Charmonium spectrum

good channels: I⁻⁻,2⁺⁺, 3⁻⁻,...

CF, Kubrak, Williams, EPJA 51 (2015) Hilger et al. PRD 91 (2015)

- acceptable channels: 0⁻⁺
- clear deficiencies in other channels: missing spin-structure
- excited states fine ! (in good channels)

Light meson spectrum

- good channels (ground state): 0⁻⁺, 1⁻⁻
- acceptable channels (ground state) : 2⁺⁺, 3⁻⁻,...
- clear deficiencies in other channels and excited states

Light meson spectrum

- good channels (ground state): 0⁻⁺, 1⁻⁻
- acceptable channels (ground state) : 2⁺⁺, 3⁻⁻,...
- clear deficiencies in other channels and excited states

Light meson spectrum

CF, Kubrak, Williams, EPJA 50 (2014) 126 Williams, CF, Heupel, PRD93 (2016) 034026

- good channels (ground state): 0⁻⁺, 1⁻⁻
- acceptable channels (ground state) : 2⁺⁺, 3⁻⁻,...
- clear deficiencies in other channels and excited states
- drastic improvement beyond rainbow-ladder !

Christian S. Fischer (University of Gießen)

CF, Kubrak, Williams, EPJA 50 (2014) 126 Williams, CF, Heupel, PRD93 (2016) 034026

- nice agreement with experiment (up to scalar)
- exotics as relativistic quark-antiquark states
- drastic improvement beyond rainbow-ladder !

Christian S. Fischer (University of Gießen)

Light meson spectrum (bRL)

CF, Kubrak, Williams, EPJA 50 (2014) 126 Williams, CF, Heupel, PRD93 (2016) 034026

- nice agreement with experiment (up to scalar)
- exotics as relativistic quark-antiquark states
- drastic improvement beyond rainbow-ladder !

Diquarks with modified rainbow-ladder

see also: Williams, CF, Heupel, PRD93 (2016) 034026

Christian S. Fischer (University of Gießen)

• non-relativistic quark model: restriction to certain ang. mom.

here: quark-model forbidden contributions always present

nucleon and delta - channels: good results

but: severe problems in all other channels

nucleon and delta - channels: good results

but: severe problems in all other channels

- nucleon and delta channels: good results
- but: severe problems in all other channels
- artifact of rainbow-ladder: ps and v too strongly bound !

- nucleon and delta channels: good results
- but: severe problems in all other channels
- artifact of rainbow-ladder: ps and v too strongly bound !

reduce binding in ps and v diquark channels, adjust to p-a1-splitting

Mass evolution

Eichmann, CF, Sanchis-Alepuz, PRD 94 (2016) [1607.05748]

Mass evolution as expected for three-body state...

Christian S. Fischer (University of Gießen)

Two-body approximation

Christian S. Fischer (University of Gießen)

Two-body approximation

Two-body approximation

approximation: separable ansatz for interaction kernel

Heupel, Eichman, CF, PLB 718 (2012) 545-549

Tetraquark-BSEs - two-body equations

Input: Covariant Quark-Gluon interaction - Maris-Tandy model

$$\alpha(k^2) = \pi \eta^7 \left(\frac{k^2}{\Lambda^2}\right) e^{-\eta^2 \left(\frac{k^2}{\Lambda^2}\right)} + \alpha_{UV}(k^2)$$

Mesons and Diquarks via Bethe-Salpeter equation

--•• = --••

Dynamical decision between Meson- and Diquark-configurations

Christian S. Fischer (University of Gießen)

Results: scalar tetraquarks

Pion-Pion-contribution dominates !
m(0⁺⁺) = 403 MeV

see also Caprini, Colangelo and Leutwyler, PRL. 96 (2006) 132001 Parganlija, Kovacs, Wolf, Giacosa and Rischke, PRD 87 (2013) 014011

•Narrow scalar ccc: $m(0^{++}) = 5.3 \pm (0.5)$ GeV

Christian S. Fischer (University of Gießen)