BARYON SPECTROSCOPY AT LHCb

Marco Pappagallo University of Edinburgh

Exotic Hadron Spectroscopy 2017 11-13 December 2017, Edinburgh, UK

HOW TO DO SPECTROSCOPY?

Prompt Production: (e.g. $pp \rightarrow D_s^{**}(\rightarrow D^0K) + X$)

- Large cross sections
- X Large combinatorial background
- ✗ Hard to disentangle broad structures
- X Difficult to assess spin
- Presence of "reflections"/"feed-downs"

b-hadron decays (e.g. $B_s \rightarrow D_s^{**}(\rightarrow D^0K) \pi$)

- Small background
- Access to the phase of the amplitude and spin-parity
- X Limited cross sections
- × High spin resonances suppressed
- ✗ Presence of "shadows"

MeV/c²)

Candidates / (9

100 50

2.4

[PRL 113 (2014) 162001]

Exotic Hadron Spectroscopy 2017

M. Pappagallo

TRIGGER: TURBO STREAM [Comput. Phys. Commun. 208 (2016) 35] ➢ Novel approach in Run 2 that

alignment capabilities \succ Crucial for states with large production cross-sections (i.e. charmed hadrons, hyperons,...)

exploits the LHCb real-time

- Large disk space saving
- New intermediate solution in 2017: Turbo SP (Selective Persistence) that allows to save candidates and a subset of the reconstruction
- > Allows particles nearby the PV to be chosen for further analysis

vent size: 70 kB

LĿ

THE bqq (q=u,d,s) BARYONS (B=1, C=0)

							- dbb ubb
Notation	Quark	J^P	SU(3)	(I, I_3)	\mathbf{S}	В	Sphare Sphare
	$\operatorname{content}$						ddb udb usb
Λ_b	b[ud]	$1/2^{+}$	3*	(0, 0)	0	1	<i>⁻b</i> ssb ⁻⁰
Ξ_b^0	b[su]	$1/2^{+}$	3*	(1/2, 1/2)	-1	1	Σ dds ds Λ, Σ^0
Ξ_b^-	b[sd]	$1/2^{+}$	3*	(1/2, -1/2)	-1	1	<u>=</u> <u>=</u>
Σ_b^+	buu	$1/2^{+}$	6	(1, 1)	0	1	The sys
Σ_b^0	$b{ud}$	$1/2^{+}$	6	(1, 0)	0	1	quark
Σ_b^-	bdd	$1/2^{+}$	6	(1, -1)	0	1	despite
$\Xi_b^{0'}$	$b\{su\}$	$1/2^{+}$	6	(1/2, 1/2)	-1	1	exp
$\Xi_b^{-\prime}$	$b\{sd\}$	$1/2^{+}$	6	(1/2, -1/2)	-1	1	$ \longrightarrow $
Ω_b^-	bss	$1/2^{+}$	6	(0, 0)	-2	1	Mi Mi
Σ_b^{*+}	buu	$3/2^{+}$	6	(1, 1)	0	1	
Σ_b^{*0}	bud	$3/2^{+}$	6	(1, 0)	0	1	ר /// י
Σ_b^{*-}	bdd	$3/2^{+}$	6	(1, -1)	0	1	
Ξ_{b}^{*0}	bus	$3/2^{+}$	6	(1/2, 1/2)	-1	1	-/- L "
Ξ_b^*	bds	$3/2^{+}$	6	(1/2, -1/2)	-1	1	•/
Ω_b^{*-}	bss	$3/2^{+}$	6	(0, 0)	-2	1	

J = 3/2 b Baryons

The system of baryons containing a b quark remains largely unexplored, despite recent progress made at the experiments at the Tevatron

> Missing states before LHC era

"Spin excited states"

Exotic Hadron Spectroscopy 2017

Exotic Hadron Spectroscopy 2017

EXCITED Ω_{c}^{0} STATES DECAYING TO $\Xi_{c}^{+}K^{-}$

[PRL 118 (2017) 182001]

- > Only the ground states Ω_c^0 (J^P=1/2⁺) and Ω_c^{*0} (J^P=3/2⁺) are known so far
- ► Reconstruction of Cabibbo suppressed $\Xi_c^+ \rightarrow pK^-\pi^+$ decays
- ► Data sample: $1.0 \text{ fb}^{-1}(7 \text{ TeV}) + 2.0 \text{ fb}^{-1}(8 \text{ TeV}) + 0.3 \text{ fb}^{-1}(13 \text{ TeV}) = 3.3 \text{ fb}^{-1}$
- A dedicated trigger (and the larger collision energy) boosted the number of the reconstructed Ξ_c^+ in the 13 TeV sample (x 3)

Exotic Hadron Spectroscopy 2017

FIVE NEW EXCITED $\Omega^0_{\rm c}$ STATES!

[PRL 118 (2017) 182001]

- \succ Observation of **5** new excited Ω_c states! Two of them extremely narrow
- Many interpretations proposed (including pentaquarks)
- > The broad state could be a superposition of several states
- → Threshold enhancement consistent with being due to the partially reconstructed decay $\Omega_c(3066)^0 \rightarrow \Xi_c'^+ K^-$

Resonance	Mass~(MeV)	$\Gamma ~({ m MeV})$
$\Omega_c(3000)^0$	$3000.4 \pm 0.2 \pm 0.1 \substack{+0.3 \\ -0.5}$	$4.5\pm0.6\pm0.3$
$\Omega_c(3050)^0$	$3050.2 \pm 0.1 \pm 0.1 \substack{+0.3 \\ -0.5}$	$0.8\pm0.2\pm0.1$
		$< 1.2 \mathrm{MeV}, 95\%$ Cl
$\Omega_c(3066)^0$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$
$\Omega_c(3090)^0$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$
$\Omega_c(3119)^0$	$3119.1 \pm 0.3 \pm 0.9 \substack{+0.3 \\ -0.5}$	$1.1\pm0.8\pm0.4$
		$< 2.6 { m MeV}, 95\%$ Cl
$\Omega_{c}(3188)^{0}$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$

Exotic Hadron Spectroscopy 2017

WHAT ARE THEY? WHY ARE THEY SO NARROW?

Most of the authors identified these states as the orbitally or radially excitations of the Ω^0_c baryon

The narrowness of the states might be a hint that it is difficult to get apart the two *s* quark in a *c(ss)* system. The decays **ED** would have been favored (if allowed kinematically)

Exotic Hadron Spectroscopy 2017 M. Pappagallo

WHAT ARE THEY? WHY ARE THEY SO NARROW?

Are they orbitally excited (L=1) states? Or radiatally excitations? Or...

TABLE II: Spin-parity (J^P) numbers of the newly observed Ω_c states suggested in various works.

State	[<u>19</u>]	[20]	[21]	[23]	[29]	[25]	[27]	[28]	<u>[32]</u>	[26]	This work
$\Omega_c(3000)$		1/2-	1/2- (3/2-)	$1/2^{-}$	$1/2^{-}$	1/2-	1/2-	1/2 ⁺ or 3/2 ⁺	1/2-		1/2-
$\Omega_c(3050)$		$1/2^{-}$	1/2- (3/2-)	$1/2^{-}$	$5/2^{-}$	$3/2^{-}$	$1/2^{-}$	$5/2^{+}$ or $7/2^{+}$	$3/2^{-}$		3/2-
$\Omega_c(3066)$	$1/2^{+}$	$1/2^+$ or $1/2^-$	$3/2^{-}(5/2^{-})$	$3/2^{-}$	$3/2^{-}$	$5/2^{-}$	$3/2^{-}$	3/2-	$1/2^{+}$		3/2-
$\Omega_c(3090)$			$3/2^{-}(1/2^{+})$	$3/2^{-}$	$1/2^{-}$	$1/2^{+}$	$3/2^{-}$	5/2-	$1/2^{+}$		5/2-
$\Omega_c(3119)$	$3/2^{+}$	3/2+	5/2- (3/2+)	$5/2^{-}$	$3/2^{-}$	$3/2^{+}$	$5/2^{-}$	5/2 ⁺ or 7/2 ⁺	$3/2^{+}$	$1/2^{-}$	$1/2^+$ or $3/2^+$

[K.-L. Wang, L.-Y. Xiao, X.-H. Zhong, Q. Zhao, Phys. Rev. D95 (2017) 116010]

...or are they pentaquarks? (N.B. The lack of signals in the $\Xi_c^+K^+$ spectrum should be addressed in the latter scenario)

Exotic Hadron Spectroscopy 2017

CONFIRMATION OF EXCITED $\Omega^0_{\rm c}$ AT BELLE

arXiv:1711.07927

- ➤ 4 out of 5 states confirmed
- > The narrow state at high mass is missing (not in disagreement with the LHCb observation)
- ➢ If the 5th state is a pentaquark, suppression expected in the e⁺e[−] production

Exotic Hadron Spectroscopy 2017

Exotic Hadron Spectroscopy 2017 M. Pappagallo

AMPLITUDE ANALYSIS OF $\Lambda_{\rm h} \rightarrow D^0$ p π^-

[JHEP 05 (2017)

3000 W 2900 \succ The spectrum of the excited Λ_c baryon is still 1D, 5/2⁺ $\Lambda_{c}(2880)^{+}$ incomplete X 2800 X 2700 9 1D, 3/2⁺ 5D amplitude analysis of $\Lambda_{\rm b} \rightarrow D^0$ p π^- aiming to 1P, 3/2⁻ $\Lambda_{c}(2625)^{+}$ study the excited $\Lambda_c^{**} \rightarrow D^0 p$ 2600 $\Lambda_{c}(2595)^{+}$ 1P, 1/2⁻ 2500 2400 E $\Lambda_c(2860)^+$ with $J^P = 3/2^+$ (preferred) $2300 = 1S, 1/2^+$ Λ^+ $m(\Lambda_c(2860)^+) = 2856.1^{+2.0}_{-1.7}(\text{stat}) \pm 0.5(\text{syst})^{+1.1}_{-5.6}(\text{model}) \text{ MeV}$ 2200 $\Gamma(\Lambda_c(2860)^+) = 67.6^{+10.1}_{-8.1}(\text{stat}) \pm 1.4(\text{syst})^{+5.9}_{-20.0}(\text{model}) \text{ MeV}$ $\Lambda_c(2880)^+$ with $J^P = 3/2$ (preferred) $m(\Lambda_c(2880)^+) = 2881.75 \pm 0.29(\text{stat}) \pm 0.07(\text{syst})^{+0.14}_{-0.20}(\text{model}) \text{ MeV}$ $\Gamma(\Lambda_c(2880)^+) = 5.43^{+0.77}_{-0.71}(\text{stat}) \pm 0.29(\text{syst})^{+0.75}_{-0.00}(\text{model}) \text{ MeV}$ Candidates / 150 100 $\Lambda_c(2940)^+$ with $J^P = 3/2^-$ (preferred) 50 $m(\Lambda_c(2940)^+) = 2944.8^{+3.5}_{-2.5}(\text{stat}) \pm 0.4(\text{syst})^{+0.1}_{-4.6}(\text{model}) \text{ MeV}$ $\Gamma(\Lambda_c(2940)^+) = 27.7^{+8.2}_{-6.0}(\text{stat}) \pm 0.9(\text{syst})^{+5.2}_{-10.4}(\text{model}) \text{ MeV}$ 2.85 2.9 $M(D^0p)$ [GeV]

Exotic Hadron Spectroscopy 2017 M. Pappagallo 2.95

$\Lambda_c^{**} \rightarrow \Lambda_c \ \pi \pi \ IN \ SEMILEPTONIC \ DECAYS$

arXiv:1709.01920

► Observation of 4 excited Λ_c baryons

Searches for dipion decays are challenging in prompt production

PLAN & PROSPECTS

Exotic Hadron Spectroscopy 2017 M. Pappagallo

LHCb GOING TO UPGRADE

Upgrade I

- Main limitation that prevents exploiting higher luminosity with the present detector is the Level-0 (hardware) trigger
 - \checkmark Level-0 output rate < 1 MHz (readout rate) requires raising thresholds
- > This is particularly problematic for hadronic final states
- ➢ Running at 2x10³³ cm⁻² s⁻¹ with full software trigger, running at 40 MHz

Upgrade II

To be installed in Long Shutdown 4 of the LHC:

- Subsystems redesigned to operate at a luminosity of 1-2 x 10³⁴ cm⁻² s⁻¹
- > Integrated luminosity of > 300 fb^{-1}
- > Extension of the experiment's capabilities into selecting π^0 , η , γ and low-momentum tracks [CERN-LHCC-2017-003]

		LHC era	HL-LHC era			
	Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-24)	Run 4 (2027-30)	Run 5+ (2031+)	
	3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	>300 fb ⁻¹	
			Phase-1 Upgrade!!	Phase-1b Upgrade!?	Phase-2 Upgrade??	
Exotic Hadron Sp	ectroscopy	2017 N	I. Pappagall	0		

THE bqq (q=u,d,s) BARYONS (B=1, C=0) J = 3/2 b Baryons

3 b

<u></u>,Ω_{bbb}

 $J = 1/2 \ b$ Baryons

							$\frac{z_{bb}}{z_{bb}} = \frac{z_{bb}}{z_{bb}} = 2b$
Notation	Quark	J^P	SU(3)	(I, I_3)	S	В	$\Sigma_{b}^{*} \qquad \qquad \Sigma_{b}^{*} \qquad \qquad \qquad \Sigma_{b}^{*} \qquad \qquad \qquad \Sigma_{b}^{*} \qquad \qquad$
	$\operatorname{content}$						$ = \begin{bmatrix} z_b \\ z_b \end{bmatrix} \end{bmatrix} \begin{bmatrix} z_b \\ z_b \end{bmatrix} \begin{bmatrix} z_b \\ z_b \end{bmatrix} \begin{bmatrix} z_b \\ z$
Λ_b	b[ud]	$1/2^{+}$	3*	(0, 0)	0	1	Σ dds udd uds Σ^+ 0 b Σ^- dds udd uds Σ^0 uus Σ^+
Ξ_b^0	b[su]	$1/2^{+}$	3*	(1/2, 1/2)	-1	1	Ξ^{-} Ξ^{0} Ξ^{-} Ξ^{0}
Ξ_b^-	b[sd]	$1/2^{+}$	3*	(1/2, -1/2)	-1	1	The system of baryons containing a <i>b</i>
Σ_b^+	buu	$1/2^{+}$	6	(1, 1)	0	1	quark remains largely unexplored,
Σ_b^0	$b\{ud\}$	$1/2^{+}$	6	(1, 0)	0	1	despite recent progress made at the
Σ_b^-	bdd	$1/2^{+}$	6	(1, -1)	0	1	experiments at the Tevatron
$\Xi_b^{0'}$	$b\{su\}$	$1/2^{+}$	6	(1/2, 1/2)	-1	1	
$\Xi_b^{-'}$	$b\{sd\}$	$1/2^{+}$	6	(1/2, -1/2)	-1	1	Missing states
Ω_b^-	bss	$1/2^{+}$	6	(0, 0)	-2	1	
Σ_b^{*+}	buu	$3/2^{+}$	6	(1, 1)	0	1	
Σ_b^{*0}	bud	$3/2^{+}$	6	(1, 0)	0	1	
Σ_b^{*-}	bdd	$3/2^{+}$	6	(1, -1)	0	1	"Spin avaited states"
Ξ_b^{*0}	bus	$3/2^{+}$	6	(1/2, 1/2)	-1	1	Spin excited states
Ξ_b^{*-}	bds	$3/2^{+}$	6	(1/2, -1/2)	-1	1	. /
Ω_b^{*-}	bss	$3/2^{+}$	6	(0, 0)	-2	1	
LAULIC	liauron	Shecr	ruscun	V 4U11		га	appagallo 16

Search For $\Sigma^{(*)\mathbf{0}}_{\mathbf{b}} o \Lambda^{\mathbf{0}}_{\mathbf{b}} \pi^{\mathbf{0}}$

Notation	Quark	J^P	SU(3)	(I, I_3)	S	В
	$\operatorname{content}$					
Λ_b	b[ud]	$1/2^{+}$	3*	(0, 0)	0	1
Ξ_b^0	b[su]	$1/2^{+}$	3*	(1/2, 1/2)	-1	1
Ξ_b^-	b[sd]	$1/2^{+}$	3*	(1/2, -1/2)	-1	1
Σ_b^+	buu	$1/2^{+}$	6	(1, 1)	0	1
Σ_b^0	$b{ud}$	$1/2^{+}$	6	(1, 0)	0	1
Σ_b^-	bdd	$1/2^{+}$	6	(1, -1)	0	1
$\Xi_b^{0'}$	$b\{su\}$	$1/2^{+}$	6	(1/2, 1/2)	-1	1
$\Xi_b^{-'}$	$b\{sd\}$	$1/2^{+}$	6	(1/2, -1/2)	-1	1
Ω_b^-	bss	$1/2^{+}$	6	(0, 0)	-2	1
Σ_b^{*+}	buu	$3/2^{+}$	6	(1, 1)	0	1
Σ_b^{*0}	bud	$3/2^{+}$	6	(1, 0)	0	1
Σ_b^{*-}	bdd	$3/2^{+}$	6	(1, -1)	0	1
Ξ_b^{*0}	bus	$3/2^{+}$	6	(1/2, 1/2)	-1	1
Ξ_b^{*-}	bds	$3/2^{+}$	6	(1/2, -1/2)	-1	1
Ω_b^{*-}	bss	$3/2^{+}$	6	(0, 0)	-2	1

 $m(\Sigma_b^0) \sim 5813 \,\mathrm{MeV}$ $m(\Sigma_b^{*0}) \sim 5833 \,\mathrm{MeV}$

Large Λ_b sample available
 Suppression of background is challenging, even more than Σ^{(*)±}_b

[PRD85 (2012) 092011]

SEARCH FOR $\Xi_{\mathbf{b}}^{'}$ and $\Omega_{\mathbf{b}}^{*}$

Notation	Quark	J^P	SU(3)	(I, I_3)	\mathbf{S}	В
	$\operatorname{content}$					
Λ_b	b[ud]	$1/2^{+}$	3*	(0, 0)	0	1
Ξ_b^0	b[su]	$1/2^{+}$	3*	(1/2, 1/2)	-1	1
Ξ_b^-	b[sd]	$1/2^{+}$	3*	(1/2, -1/2)	-1	1
Σ_b^+	buu	$1/2^{+}$	6	(1, 1)	0	1
Σ_b^0	$b{ud}$	$1/2^{+}$	6	(1, 0)	0	1
Σ_b^-	bdd	$1/2^{+}$	6	(1, -1)	0	1
$\Xi_b^{0'}$	$b\{su\}$	$1/2^{+}$	6	(1/2, 1/2)	-1	1
$\Xi_b^{-\prime}$	$b\{sd\}$	$1/2^{+}$	6	(1/2, -1/2)	-1	1
Ω_b^-	bss	$1/2^{+}$	6	(0, 0)	-2	1
Σ_b^{*+}	buu	$3/2^{+}$	6	(1, 1)	0	1
Σ_b^{*0}	bud	$3/2^{+}$	6	(1, 0)	0	1
Σ_b^{*-}	bdd	$3/2^{+}$	6	(1, -1)	0	1
Ξ_b^{*0}	bus	$3/2^{+}$	6	(1/2, 1/2)	-1	1
Ξ_b^{*-}	bds	$3/2^{+}$	6	(1/2, -1/2)	-1	1
Ω_b^{*-}	bss	$3/2^{+}$	6	(0, 0)	-2	1

$$\begin{aligned} \Xi_b' - \Xi_b &\sim 120 \, \mathrm{MeV} \\ & \Downarrow \\ \mathcal{B}(\Xi_b' \to \Xi_b \gamma) &\sim 100\% \end{aligned}$$

➢ Soft photon →Low efficiency
 ➢ Small Ω_b sample

Exotic Hadron Spectroscopy 2017

WHAT ABOUT Ξ_{bc} ? \succ The B_c meson was discovered almost two decades ago In LHCb, ~5000 B_c \rightarrow J/ $\psi \pi$ in Run I So, why have we not yet seen bcq baryons $(\Xi_{\rm bc})$? Lower production rates, guess $\sigma(X_{\rm bc}) \sim (0.1 - 0.5) \times \sigma(B_c^+)$ In J/ ψ modes, (usually) get a charm baryon: yield reduced by BF(X_c) × $\varepsilon_{sel}(X_c)$ Shorter lifetime (~0.15 – 0.4 ps range, compared to ~0.5 ps for B_c) $(e.g.) N(\Xi_{bc}^0 \to J/\psi \Lambda_c^+ K^-; \operatorname{Run1}) = N(B_c^+ \to J/\psi D_s^{(*)+}; \operatorname{Run1})$ $\times \frac{\sigma(pp \to \Xi_{bc} X)}{\sigma(pp \to B_c^+ X)} \times f_{\Xi_{bc} \to \Xi_{bc}^0}$ $\times \frac{Br(\Xi_{bc}^0 \to J/\psi \Lambda_c^+ K^-)}{Br(B_c^+ \to J/\psi D_s^{(*)+})}$ $\times \epsilon_{K^-}$ $\simeq 3 \,\mathrm{candidates}$ $N(\Xi_{hc}^0 \to J/\psi \Lambda_c^+ K^-; \operatorname{Run} 5) \simeq 6 \times 10^2$

Exotic Hadron Spectroscopy 2017

Exotic Hadron Spectroscopy 2017

EXCITED \Omega_c: DETERMINATION OF SPIN-PARITY J^P

Study of Ω_c^{**} in fully reconstructed decays: (e.g.) $\Omega_b^- \rightarrow \Xi_c^+ K^- \pi^-$

The decays $\Omega_b^- \rightarrow \Omega_c^0$ ($\rightarrow pKK\pi$) π^- already observed. Same number and type of tracks in the final state

EXCITED \Omega_c: NEW DECAY MODES

The nature of Ω_c^{**0} states can be probed by looking for new decay modes which can constrain the quantum numbers as well

✓ $\Omega_c^0 \pi^+ \pi^-$ and $\Omega_c^0 \gamma$ Cabibbo suppressed decays $\Omega_c^0 \rightarrow pKK\pi$ are suitable to these searches. Low efficiency due to the large number of tracks or presence of a photon

✓ $\Xi_c' K$ Since m(Ξ_c') - m(Ξ_c) ≈ 110 MeV, low efficiency into detecting the soft photons from $\Xi_c' \rightarrow \Xi_c \gamma$ decays. However possibility to study the feed-downs in the prompt search and from $\Omega_b^- \rightarrow \Xi_c'^+ K^- \pi^-$ decays

EXCITED \Omega_c: SEARCH FOR EXOTIC PENTAQUARK

The structure of pentaquarks Ω_c^0 in the chiral quark model

Gang Yang¹, Jialun Ping¹ ¹Department of Physics and Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023, P. R. China

Recently, the experimental results of LHCb Collaboration suggested the existence of five new excited states of Ω_c^0 , $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3060)^0$, $\Omega_c(30300)^0$ and $\Omega_c(3119)^0$, the quantum numbers of these new particles are not determined now. To understand the nature of the states, a dynamical calculation of 5-quark systems with quantum numbers $IJ^P = 0(\frac{1}{2})^-$, $0(\frac{3}{2})^-$ and $0(\frac{5}{2})^-$ is performed in the framework of chiral quark model with the help of gaussian expansion method. The results show the ΞD , $\Xi_c K$ and $\Xi_c^* K$ are possible the candidates of these new particles. The distances between quark pairs suggest that the nature of pentaquark states.

Narrow pentaquarks as diquark-diquark-antiquark systems

V.V. Anisovich⁺, M.A. Matveev⁺, J. Nyiri^{*}, A.N. Semenova⁺,

June 6, 2017

+Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute", Gatchina, 188300, Russia

*Institute for Particle and Nuclear Physics, Wigner RCP, Budapest 1121, Hungary

Abstract

The diquark-diquark-antiquark model describes pentaquark states both in terms of quarks and hadrons. The latest LHCb data for pentaquarks with open charm emphasize the importance of hadron components in the structure of pentaquarks. We discuss pentaquark states with hidden charm P(couud) and those with open charm P(uusse) which were discovered recently in LHCb data (J/Ψ) and $\Xi_{\perp}^{-}K \sim$ pectra correspondingly). Considering the observed states as members of the lowest (s-wave) multiplet we discuss the mass splitting of states and the dumping of their widths.

The observed Ω_c^0 resonances as pentaquark states

C. S. An^{*} and H. Chen

School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China (Dated: May 25, 2017)

Abstract

In present work, we investigate the spectrum of several low-lying sscq \ddot{q} pentaquark configurations employing the constituent quark model, within which the hyperfine interaction between quarks is taken to be mediated by Goldstone boson exchange. Our numerical results show that four $sscq\ddot{q}$ configurations with $J^P = 1/2^-$ or $J^P = 3/2^-$ lie at energies very close to the recently observed five Ω^0_c states by LHCb collaboration, this indicates that the $sscq\ddot{q}$ pentaquark configurations may form sizable components of the observed Ω^0_c resonances.

On a possibility of charmed exotica

Hyun-Chul Kim,^{1,2} Maxim V. Polyakov,^{3,4} and Michał Praszałowicz⁵ ¹Department of Physics, Inha University, Incheon 22212, Republic of Kored. ²School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455, Republic of Korea ³Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780, Bochum, Germang. ⁴Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188 300, Russia ⁵M. Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Kraków, Poland.

We employ the chiral quark-soliton model to describe excited baryons with one heavy quark. Identifying known charmed baryons with multiplets allowed by the model, we argue that apart from regular excitations of the ground state multiplets, some of recently reported by the LHCb collaboration narrow Ω_c^0 states, may correspond to the exotic pentaquarks. This interpretation can be easily verified experimentally, since exotic Ω_c^0 states – contrary to the regular excitations – form isospin triplets, rather than singlets.

No peaks in the Ξ_c⁺K⁺ spectrum
 Search for exotic Ω_c^{**-}→ Ξ_c⁰ K⁻ by Ξ_c⁰ → pKKπ
 Similar selection to Ω_c^{**0}→ Ξ_c⁺ K⁻

LIGHT BARYON SPECTROSCOPY

- ➤ The poor knowledge of the light sector (A*, N*, etc...) has had a large impact on the amplitude analyses aiming to the search for the pentaquarks
- ➤ LHCb can contribute to study the spectroscopy of the light sector as well

Exotic Hadron Spectroscopy 2017

SUMMARY	
 LHCb experiment very active in spectroscopy filling th many spectra Turbo stream will exploit data at the best 	e gaps in
Excited Ω_c : Many interpretations proposed. Determining spin-parity in prompt production of from Ω_b decays	ation of
Excited Ω_b : Narrow peaks expected according to HQS	
Ξ_{cc}^{++} : Measurement of the lifetime, search for Ξ_{cc}^{++} as	nd Ω_{cc}^{+}
∧*, N*: Study of light baryon spectroscopy from ampl	itude

analysis of charmed baryons

SUMMARY II

- Great interest into spectroscopy
- > The observation of the two pentaquarks is the most cited LHCb paper
- The large data set collected, together with an upgraded detector, will boost sensitivity in searches for heavy states with small production cross sections and/or small decay rates

Exotic Hadron Spectroscopy 2017

BACK UP

Exotic Hadron Spectroscopy 2017 M. Pappagallo

Exotic Hadron Spectroscopy 2017

LHCb has just doubled the RUN I (2010-2012) dataset. So far 1 fb⁻¹ at 7 TeV + 2 fb⁻¹ at 8 TeV + 3.7 fb⁻¹ at 13 TeV

Exotic Hadron Spectroscopy 2017

INTERMEZZO

Exotic Hadron Spectroscopy 2017

[LHCb: PRL 113, 162001 (2014)]

M. Pappagallo

31