Ciaran Hughes, Estia Eichten, Christine Davies

EHS, 2017

Ciaran Hughes, Estia Eichten, Christine Davies

Fhis talk will be a bigger picture sketch of results from <u>arxiv</u>: <u>1710.03236</u>

For more details, please contact me (<u>chughes@fnal.gov</u>)!

Ciaran Hughes, Estia Eichten, Christine Davies

QCD - For The Particle Physicists

QCD - For The Particle Physicists

"The fundamental theory of the strong nuclear force"

"The fundamental theory of the strong nuclear force"

No general consensus for XYZ's despite being over a decade!!!

Compact tetraquark

"The fundamental theory of the strong nuclear force"

- Secondary Compact tetraquark
- Loosely bound molecular state

"The fundamental theory of the strong nuclear force"

- Compact tetraquark
- Loosely bound molecular state
- Kinematical effect Cusps

"The fundamental theory of the strong nuclear force"

- Compact tetraquark
- Loosely bound molecular state
- Kinematical effect Cusps
- 🗳 Hydro-quarkonium

"The fundamental theory of the strong nuclear force"

- Compact tetraquark
- Loosely bound molecular state
- Kinematical effect Cusps
- 🗳 Hydro-quarkonium
- Diquark-quarkonium

"The fundamental theory of the strong nuclear force"

- Compact tetraquark
- Loosely bound molecular state
- Kinematical effect Cusps
- 🗳 Hydro-quarkonium
- Diquark-quarkonium
- 🗳 Hybrids

"The fundamental theory of the strong nuclear force"

- Compact tetraquark
- Loosely bound molecular state
- Kinematical effect Cusps
- 🗳 Hydro-quarkonium
- Diquark-quarkonium
- ĕ Hybrids
- Ş

"The fundamental theory of the strong nuclear force"

- Secompact tetraquark
- Loosely bound molecular state
- Kinematical effect Cusps
- 🖗 Hydro-quarkonium
- Diquark-quarkonium
- 🗳 Hybrids
- Ş

"The fundamental theory of the strong nuclear force"

- Secompact tetraquark
- Loosely bound molecular state
- Kinematical effect Cusps
- 🗳 Hydro-quarkonium
- Diquark-quarkonium
- 🗳 Hybrids
- Ş

Ciaran Hughes, Estia Eichten, Christine Davies

Ciaran Hughes, Estia Eichten, Christine Davies

Model Predictions for 0^{++} **2b2** \overline{b} tetraquark

Model Predictions for 0^{++} **2b2** \overline{b} tetraquark

Results Very Model Dependent!!
Not from first-principles
Inconclusive whether tetraquark bound or not?

- QCD is non-perturbative
 - Solution: 'solve' numerically via LQCD

- QCD is non-perturbative
 - Solution: 'solve' numerically via LQCD
- Fine Lattice is **not** a model: the Lattice is a UV regulator of a QFT
- Lattice QCD results are from first-principles

- QCD is non-perturbative
 - Solution: 'solve' numerically via LQCD
- Fine Lattice is **not** a model: the Lattice is a UV regulator of a QFT
- Lattice QCD results are from first-principles

- QCD is non-perturbative
 - Solution: 'solve' numerically via LQCD
- Fine Lattice is **not** a model: the Lattice is a UV regulator of a QFT
- Lattice QCD results are from first-principles

- QCD is non-perturbative
 - Solution: 'solve' numerically via LQCD
- The Lattice is not a model: the Lattice is a UV regulator of a QFT
- Lattice QCD results are from first-principles

$$C_{ab}^{\text{2pt.}}(x_4 - y_4) = \left\langle \right\rangle$$

Feynman Path Integral Approach to QFT: (Numerically) Integrate over all field configurations

$$C_{ab}^{2\text{pt.}}(x_4 - y_4) = \left\langle \right\rangle$$

- Feynman Path Integral Approach to QFT: (Numerically) Integrate over all field configurations
 - Create some (superposition of) state with $\mathcal{O}_a^{\dagger}(x_4)$

- Feynman Path Integral Approach to QFT: (Numerically) Integrate over all field configurations
 - Create some (superposition of) state with $\mathcal{O}_a^{\dagger}(x_4)$
 - Propagate elementary fields for time t

- Feynman Path Integral Approach to QFT: (Numerically) Integrate over all field configurations
 - Create some (superposition of) state with $\mathcal{O}_a^{\dagger}(x_4)$
 - Propagate elementary fields for time t
 - Solution Destroy some (superposition of) state with $\mathcal{O}_b(y_4)$

- Hilbert Space Formalism:
 - Insert a complete set of QCD eigenstates

- Hilbert Space Formalism:
 - Insert a complete set of QCD eigenstates

$$C_{ab}^{2pt.}(t,\mathbf{P}) \equiv \langle 0|\mathcal{O}_b(t,\mathbf{P})\mathcal{O}_a^{\dagger}(0,\mathbf{P})|0\rangle = \sum_n Z_{b,n} Z_{a,n}^{\dagger} e^{-E_n t}$$

A (Bigger Picture) Lattice Spectrum Calculation: The Two-Point Correlator $C_{ab}^{2\text{pt.}}(t) = \langle 0 | \mathcal{O}_b(y_4) \mathcal{O}_a^{\dagger}(x_4) | 0 \rangle$ **Hilbert Space Formalism:** Ş Insert a complete set of QCD eigenstates Ş $C_{ab}^{2pt.}(t,\mathbf{P}) \equiv \langle 0|\mathcal{O}_b(t,\mathbf{P})\mathcal{O}_a^{\dagger}(0,\mathbf{P})|0\rangle = \sum Z_{b,n} Z_{a,n}^{\dagger} e^{-E_n t}$ Extract QCD Energy Eigenstates $C_{ab}^{2\text{pt.}}(x_4 - y_4) = 0$ $t = y_4$ $t = x_4$

Operators Used for $0^{++} 2b2\bar{b}$ State

Operators Used for $0^{++} 2b2\bar{b}$ State

Operators Used for $0^{++} 2b2\bar{b}$ State

	0++	
source		sink
$\mathcal{O}^{A_1}_{(\eta_b,\eta_b)}$		$\mathcal{O}^{A_1}_{(\eta_b,\eta_b)}$
$\mathcal{O}^{A_1}_{(\eta_b,\eta_b)}$		$\mathcal{O}^{A_1}_{(\Upsilon,\Upsilon)}$
$\mathcal{O}^{A_1}_{(\Upsilon,\Upsilon)}$		$\mathcal{O}^{A_1}_{(\eta_b,\eta_b)}$
$\mathcal{O}^{A_1}_{(\Upsilon,\Upsilon)}$		$\mathcal{O}^{A_1}_{(\Upsilon,\Upsilon)}$

0	++
source	$_{ m sink}$
$\mathcal{O}^{A_1}_{(\eta_b,\eta_b)}$	$\mathcal{O}^{A_1}_{(\eta_b,\eta_b)}$
$\mathcal{O}^{A_1}_{(\eta_b,\eta_b)}$	$\mathcal{O}^{A_1}_{(\Upsilon,\Upsilon)}$
$\mathcal{O}^{A_1}_{(\Upsilon,\Upsilon)}$	$\mathcal{O}^{A_1}_{(\eta_b,\eta_b)}$
$\mathcal{O}^{A_1}_{(\Upsilon,\Upsilon)}$	$\mathcal{O}^{A_1}_{(\Upsilon,\Upsilon)}$
$\mathcal{O}^{A_1}_{(D_{ar{3}_c},A_{3_c})}$	$\mathcal{O}^{A_1}_{(D_{ar{3}_c},A_{3_c})}$

We perform a Bayesian fit to all the data within a certain channel

We perform a Bayesian fit to all the data within a certain channel
 But you want to see the actual data! What can we easily show?

$$aE^{\text{eff}} = \log\left(\frac{C(t)}{C(t+1)}\right)$$

$$aE^{\text{eff}} = \log\left(\frac{C(t)}{C(t+1)}\right)$$
$$= aE_0 + \frac{Z_1^2}{Z_0^2}e^{-(E_1 - E_0)t}(1 - e^{-(E_1 - E_0)}) + \dots$$

Summary of Energies from Lattice

Summary of Energies from Lattice

Summary of Energies from Lattice

Bound on $0^{++} 2b2\overline{b}$ state to be stable

"How would it have missed?"

For a stable tetraquark exists, at a particular time t^* , $C(t^*) = |\langle 0|\mathcal{O}|4b\rangle|^2 e^{-aE_{4b}t^*} + |\langle 0|\mathcal{O}|2\eta_b\rangle|^2 e^{-aE_{2\eta_b}t^*}$

$$= Z_{4b}^2 e^{-aE_{4b}t^*} + \tilde{Z}_{2\eta_b}^2 e^{-aE_{2\eta_b}t^*}$$

Bound on $0^{++} \mathbf{2b} \mathbf{2} \mathbf{\overline{b}}$ state to be stable

"How would it have missed?"

Bound on $0^{++} \mathbf{2b} \mathbf{2} \mathbf{\overline{b}}$ state to be stable

"How would it have missed?"

Bound on $0^{++} 2b2\overline{b}$ state to be stable

"How would it have missed?"

In Summary, lattice QCD finds no evidence of a stable 2b2b̄ tetraquark

What The Models Need!

What The Models Need!

What The Models Need!

Future Work

Future Work

Future Work

Thank You to Raul Briceno for slide template and pretty graphics!

Back-Up Slides

Individual Wick Contraction Correlator Data

1. Take Euclidean QCD and discretise it on a **Finite-Volume Lattice** of length **L** and spacing **a**

Complication: b-quarks do not fit on current lattices!!

Solution: Use a Non-Relativistic Effective Field Theory to simulate the b-quarks

- ightarrow Has Expansion Parameter $v^2 \sim 0.1$
- N.B.: Matching Coefficients Need to be Calculated in
 Lattice Perturbation Theory

1. Take Euclidean QCD and discretise it on a **Finite-Volume Lattice** of length **L** and spacing **a**

- 1. Take Euclidean QCD and discretise it on a **Finite-Volume Lattice** of length **L** and spacing **a**
- 2. Get one of these:

3. Buy one of these:

4. Numerically evaluate the Feynman Path Integral (the first-principles approach to QFT)

- 5. Do all the computations/analysis
- 6. Pay the Electricity Bill....

1. Take Euclidean QCD and discretise it on a **Finite-Volume Lattice** of length **L** and spacing **a**

$$\begin{split} a\delta H &= aH_0 + a\delta H_{v^4} + a\delta H_{v^6};\\ aH_0 &= -\frac{\Delta^{(2)}}{2am_b}\\ a\delta H_{v^4} &= -c_1 \frac{(\Delta^{(2)})^2}{8(am_b)^3} + c_2 \frac{i}{8(am_b)^2} \left(\nabla \cdot \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \cdot \nabla\right)\\ &- c_3 \frac{1}{8(am_b)^2} \sigma \cdot \left(\tilde{\nabla} \times \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \times \tilde{\nabla}\right)\\ &- c_4 \frac{1}{2am_b} \sigma \cdot \tilde{\mathbf{B}} + c_5 \frac{\Delta^{(4)}}{24am_b} - c_6 \frac{(\Delta^{(2)})^2}{16n(am_b)^2}\\ a\delta H_{v^6} &= -c_7 \frac{1}{8(am_b)^3} \left\{ \Delta^{(2)}, \sigma \cdot \tilde{\mathbf{B}} \right\}\\ &- c_8 \frac{3}{64(am_b)^4} \left\{ \Delta^{(2)}, \sigma \cdot \left(\tilde{\nabla} \times \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \times \tilde{\nabla}\right) \right\}\\ &- c_9 \frac{i}{8(am_b)^3} \sigma \cdot \tilde{\mathbf{E}} \times \tilde{\mathbf{E}} \end{split}$$

4. Numerically evaluate the Feynman Path Integral (the first-principles approach to QFT)

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}U \mathcal{D}\psi \mathcal{D}\bar{\psi}e^{-S} \mathcal{O}[U,\psi,\bar{\psi}]$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}[G^{(i)}]$$

• where the integral is approximated as a sum over configurations $\{\mathbf{G}^{(i)}\}$ distributed according to the probability density: $\exp(-S_{YM}) \prod \det(D + m_q)$

Two-Meson Wick Contractions

Table 1: Fierz relations in the $\overline{b}\overline{b}bb$ system relating the two-meson and the diquark-antidiquark bilinears.

J^{PC}	Diquark-AntiDiquark	Two-Meson
0^{++}	$\overline{3}_c imes 3_c$	$-rac{1}{2} 0;\Upsilon\Upsilon angle+rac{\sqrt{3}}{2} 0;\eta_b\eta_b angle$
0^{++}	$6_c \times \overline{6}_c$	$\frac{\sqrt{3}}{2} 0;\Upsilon\Upsilon angle+rac{1}{2} 0;\eta_b\eta_b angle$
1^{+-}	$\overline{3}_c imes 3_c$	$\frac{1}{\sqrt{2}}(1;\Upsilon\eta_b\rangle+ 1;\eta_b\Upsilon\rangle)$
2^{++}	$\bar{3}_c \times 3_c$	$ 2;\Upsilon\Upsilon angle$

Diquark-Antidiquark Wick Contractions

Correlator Data With Harmonic Oscillator

Add to the NRQCD Hamiltonian the harmonic oscillator scalar potential

$$\delta H_{HO} = \frac{m_b \omega^2}{2} |\mathbf{x} - \mathbf{x_0}|^2$$

This would bind a hypothetical compact tetraquark more, relative to the lowest threshold, and hence this hypothetical tetraquark would show up more easily in our calculation

Correlator Data With Harmonic Oscillator

$$C_{i,j}^{J^{PC}}(t,\omega) = \sum_{n} \frac{Z_{n}^{i} Z_{n}^{j,*}}{(1+e^{-2\omega t})^{\frac{3}{2}}} e^{-(M(\omega)_{n}+\frac{3}{2}\omega)t}$$

$$C_{i,j}^{J^{PC}}(t,\omega) = \sum_{X_{2}} Z_{X_{2}}^{i} Z_{X_{2}}^{j,*} \left(\frac{2\omega\mu_{r}\pi^{-1}}{1-e^{-4\omega t}}\right)^{\frac{3}{2}}$$

$$\times e^{-(M_{1}^{S}(\omega)+M_{2}^{S}(\omega)+3\omega)t} + \cdots$$

The single and two-
particle correlators get
modified in the presence
of the HO

Correlator Data With Harmonic Oscillator

No indication of a new bound state despite the addition of the scalar potential!!!

Individual Wick Contraction Correlator Data HO

$$\begin{split} E(X^2) &= \sqrt{M_1^2 + |\mathbf{k}|^2} + \sqrt{M_2^2 + |\mathbf{k}|^2} \\ &\approx M_1^S + M_2^S + \frac{|\mathbf{k}|^2}{2\mu_r} \end{split}$$

where we have defined the static, kinetic and reduced masses by M^S , M^K and $\mu_r = M_1^K M_2^K / (M_1^K + M_2^K)$

back-to-back states on our ensembles. As an example, examining the a = 0.09 fm ensemble, and taking $M_{\eta_b} = 9.399(2)$ GeV from the PDG [4], the smallest allowed $|\mathbf{k}|^2/2\mu_r \approx 20$ MeV or 0.0092 in lattice units with all other back-to-back states separated by multiples of

$$C(t) = \sum_{X^2} \int \frac{d^3k}{(2\pi)^3} Z_{X^2}(\mathbf{k})^2 e^{-E(X^2)t}$$

$$C(t) = \sum_{X^2} e^{-(M_1^S + M_2^S)t} \sum_k \Big\{ \sum_{i=0}^\infty Z_{X^2}^{2l} \frac{|\mathbf{k}|^{2l}}{\mu_r^{2l}} \Big\} e^{-\frac{|\mathbf{k}|^2}{2\mu_r}t}$$
(A5)

When does the two-body scattering states look like a continuum within stat. precision?

$$I^{(l)}(t) = \frac{1}{\mu_r^{2l}} \int_{-\infty}^{\infty} d|\mathbf{k}| |\mathbf{k}|^{2l+2} e^{-\frac{|\mathbf{k}|^2}{2\mu_r}t}$$
$$D^{(l)}(t) = \frac{1}{\mu_r^{2l}} \sum_{|\mathbf{k}|} |\mathbf{k}|^{2l+2} e^{-\frac{|\mathbf{k}|^2}{2\mu_r}t}.$$

$$\frac{\sum_{l=0}^{l_{max}} Z^{2,(l)} I^{(l)}(t) - \sum_{l=0}^{\infty} Z^{2,(l)} D^{(l)}(t)}{\sum_{l=0}^{l_{max}} Z^{2,(l)} I^{(l)}(t)}$$

$$\leq \sum_{l=0}^{l_{max}} \frac{\left|I^{(l)}(t) - D^{(l)}(t)\right|}{I^{(0)}} + \sum_{l=l_{max}+1}^{\infty} \frac{D^{(l)}(t)}{I^{(0)}}$$

