
Introduction to deep
learning for LArTPCs

Andy Chappell and Leigh Whitehead

31/10/2024 9th UK LArTPC Software and Analysis Workshop

2Introduction

• So far, we’ve looked predominantly at general deep learning concepts

• Now we’ll look at some more specific architectures and application to LArTPCs
• Convolutions, activations, normalisation and ResNets

• Introduction to semantic segmentation

• Pandora’s vertex finding network in DUNE

3

• Multiple input pixels map to one output
pixel

• Each layer increases number of kernels to
build more complex features

• Stride 2 (sliding the convolution filter 2
pixels) down-samples to reduce
computational overhead

Convolution and transpose convolution

Up-sampleDown-sample

• Each input pixel maps to multiple output
pixels

• Effective stride 1/2 up-samples to return to
original image size

• Higher-resolution activations from down-
sampling layer can then be added to the
up-sampled images

Credit: V. Dumoulin & F. Visin Credit: T. Lane

https://github.com/vdumoulin/conv_arithmetic
https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8

4What are these features?

arXiv:1311.2901v3puppy detectors

• ResNet18 is one of many pretrained networks available through, e.g., PyTorch torchvision

• Pretrained on ImageNet – a database of millions of photographs, comprising 1000 classes

• 11,178,051 trainable parameters (this is the smallest ResNet)

• It’s possible to look at which learned convolutional kernels are activated by given
inputs
• Networks learn features at different scales

• Shallow layers learn the most primitive structures

• Deep layers learn the most abstract features

• Those early layers are still relevant in neutrino
interactions

https://image-net.org/index

5

• Why normalise?

• Input data changes with each batch/epoch, so input distribution
can vary and these variations build up deep in the network

• Small/large gradients can vanish/explode as they are multiplied in
deep networks

• Batch normalisation ensures each batch has zero mean and unit
variance, giving consistent input distributions and avoiding
gradient problems, but also scales and shifts to avoid loss of
representational power

• Why ReLU?

• Non-linear activations have high representational power

• It’s fast. Simple gradient calculation (0 or 1)

• Doesn’t squash activations with repeated activation (unlike
sigmoid)

Normalisation and activation function

ො𝑥𝑖 =
𝑥𝑖 − 𝜇𝐵
𝜎𝐵

𝑦𝑖 = 𝛾ො𝑥𝑖 + 𝛽

Batch normalisation

0

1

-1 0 1

Rectified Linear Unit

6ResNet

• We’ll now return to take a brief look at probably the most famous CNN for classification, ResNet

• ResNet was introduced in 2015
• There are a lot of neat ideas introduced in this paper, but the key one is the introduction of the residual (the Res

in ResNet) shortcut connection

• This innovation allowed networks to get much deeper and still train effectively

• Instead of learning the mapping from input to output, you learn the residuals that get you from
input to output

• e.g, if the optimal mapping is the identity, it’s easier to push the residuals to zero than to relearn
the identity

ReLU

Conv

Input

Conv

ReLU

ReLU

Conv

Input

Conv

ReLU

Instead of this

This

https://arxiv.org/abs/1512.03385

7

Semantic segmentation

8U-Nets for semantic segmentation

• U-Net concept introduced in 2015 for biomedical image segmentation

• The name comes from the conceptual
structure of the network

Pooling merges neighbouring pixels: MaxPool picks the largest pixel from a group
DropOut randomly turns off weights during training to reduce over-fitting

MaxPool

DropOut TConvBlock

ConvBlock

ConvBlock

DropOut

ConvBlock Sigmoid

x4 x4

View

ConvBlock TConvBlock

Conv2D
Cx3x3

GroupNorm

ReLU

Conv2D
Cx3x3

GroupNorm

GroupNorm

ReLU

TConv2D
Cx3x3

cat

ReLU

Input
Skip

https://arxiv.org/abs/1505.04597

9U-Nets for semantic segmentation

• Down-sampling and feature extraction is performed via a Convolutional
Neural Network (CNN) in the left arm of the U

• Result of each intermediate convolution block is
retained for use in skip connections

MaxPool

DropOut TConvBlock

ConvBlock

ConvBlock

DropOut

ConvBlock Sigmoid

x4 x4

View

ConvBlock TConvBlock

Conv2D
Cx3x3

GroupNorm

ReLU

Conv2D
Cx3x3

GroupNorm

GroupNorm

ReLU

TConv2D
Cx3x3

cat

ReLU

Input
Skip

10What are skip connections?

• The final output of a U-Net needs to be the same size as the original input.

• Repeatedly down-sampling means we have to get back to high resolution from very low
resolution

• Skip connections provide a means to augment up-sampled images with higher-resolution
activations from earlier network layers

DS Layer 1View

Bridge

US Layer 4

DS Layer 2

DS Layer 3

DS Layer 4

US Layer 3

US Layer 2

US Layer 1

Skip connection

11U-Nets for semantic segmentation

• Up-sampling and image augmentation is performed via transpose convolutions (discussed later)
in the right arm of the U

• Intermediate results from down-sampling are
added to the up-sampled images via skip
connections to “fill in the gaps” from up-sampling

MaxPool

DropOut TConvBlock

ConvBlock

ConvBlock

DropOut

ConvBlock Sigmoid

x4 x4

View

ConvBlock TConvBlock

Conv2D
Cx3x3

GroupNorm

ReLU

Conv2D
Cx3x3

GroupNorm

GroupNorm

ReLU

TConv2D
Cx3x3

cat

ReLU

Input
Skip

12U-Nets for semantic segmentation

• The base of the U is known as the bridge
• Performs additional feature extraction

• Ensures matching tensor sizes between down-sampling
and up-sampling arms

MaxPool

DropOut TConvBlock

ConvBlock

ConvBlock

DropOut

ConvBlock Sigmoid

x4 x4

View

ConvBlock TConvBlock

Conv2D
Cx3x3

GroupNorm

ReLU

Conv2D
Cx3x3

GroupNorm

GroupNorm

ReLU

TConv2D
Cx3x3

cat

ReLU

Input
Skip

13U-Nets for semantic segmentation

• Key goal of the U structure is to classify every pixel from the input image
• Track versus shower

• Particle ID

• …

MaxPool

DropOut TConvBlock

ConvBlock

ConvBlock

DropOut

ConvBlock Sigmoid

x4 x4

View

ConvBlock TConvBlock

Conv2D
Cx3x3

GroupNorm

ReLU

Conv2D
Cx3x3

GroupNorm

GroupNorm

ReLU

TConv2D
Cx3x3

cat

ReLU

Input
Skip

14

Pandora’s DL vertex finding

15

Network classification

Using semantic segmentation in Pandora

• Semantic segmentation forms the basis of Pandora’s vertex finding algorithm for DUNE

• Why would you use a classification network to find an interaction vertex?
• Regression for vertex finding in LArTPCs is hard

• You ask a network to learn a single (or small set of) target location(s) in a complex image

• Semantic segmentation treats the whole image as a target to learn

• Classify each pixel according to its distance from the estimated vertex location
• Adjacent pixels are obviously correlated, so context helps learning

• The network doesn’t return a vertex location

• How do we extract the vertex?

16

Image from a single wire plane

Mixing deep learning with ‘traditional’ algorithms

• We have a set of distance classes for each occupied pixel

• For each hit, convert the class to the known lower and upper distance bounds

• Draw a ring, centred on the hit with radii corresponding to those distance bounds

• Weight the pixels in the ring inversely proportional to its area

• Vertex could be anywhere within the shaded region of one ring

• Many rings for a heat map, where high weight indicates likely location

Heat map from one classified pixel

17

Heat map from one classified pixel

Mixing deep learning with ‘traditional’ algorithms

• We have a set of distance classes for each occupied pixel

• For each hit, convert the class to the known lower and upper distance bounds

• Draw a ring, centred on the hit with radii corresponding to those distance bounds

• Weight the pixels in the ring inversely proportional to its area

• Vertex could be anywhere within the shaded region of one ring

• Many rings for a heat map, where high weight indicates likely location

Heat map from two classified pixels

18

Heat map from two classified pixels

Mixing deep learning with ‘traditional’ algorithms

• We have a set of distance classes for each occupied pixel

• For each hit, convert the class to the known lower and upper distance bounds

• Draw a ring, centred on the hit with radii corresponding to those distance bounds

• Weight the pixels in the ring inversely proportional to its area

• Vertex could be anywhere within the shaded region of one ring

• Many rings for a heat map, where high weight indicates likely location

Heat map from three classified pixels

19

Heat map from 3 classified pixels

Mixing deep learning with ‘traditional’ algorithms

• We have a set of distance classes for each occupied pixel

• For each hit, convert the class to the known lower and upper distance bounds

• Draw a ring, centred on the hit with radii corresponding to those distance bounds

• Weight the pixels in the ring inversely proportional to its area

• Vertex could be anywhere within the shaded region of one ring

• Many rings for a heat map, where high weight indicates likely location

Heat map from all classified pixels

20A brief aside on TorchScript

• Currently, LArSoft expects PyTorch networks to be C++-based and CPU-bound for inference

• This will hopefully change in time, but until it does, if you have a deep neural network you’d like
to use in, Pandora, for example, you need to know about TorchScript

• Pandora’s vertex finding network was trained using Python on GPUs, but you can’t run that in
Pandora, you need to convert it

device = torch.device('cpu')

model = load_model(filename, device) # custom code to load your specific model

sm = torch.jit.script(model)

sm.save(output_filename)

• TorchScript can take a model defined using standard PyTorch code and convert it to a format that
can be run on a CPU

• Such a network can now be used in Pandora (you’ll need to manage the inputs and outputs of
course, but we won’t cover that today)

21Getting some practical experience

• It’s now time to build a CNN to classify some neutrino interactions…

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

