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Reconstruction session

Key references: Pandora ProtoDUNE paper
  Pandora MicroBooNE paper

Credit: These slides are based on previous
LArSoft workshop slides by John Marshall
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Inputs to Pandora
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x, time Three 2D representations with common 
x coordinate, derived from drift time

CCQE: νμ + Ar → p + μ-
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★

Consolidated reconstruction

• We use a multi-algorithm approach to create two algorithm chains:

• Consolidated reconstruction uses these chains to guide reconstruction for all use cases:

• Cosmic rays , Multiple drift volumes , Arbitrary wire angles , 2 or 3 wire planes 

Also includes delta ray 
reconstruction

Target reconstruction of 
particles emerging from 

an identified vertex ★

Neutrino (or 
TestBeam)

Cosmic-Ray 
Muons

Target reconstruction of straight-line 
particles in detector (e.g. cosmic-ray muons)
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Consolidated reconstruction

Pandora 
Neutrino

Pandora 
Cosmic

Input hits

Clear CRs

CR-Removed Hits

Candidate Neutrino 
Particle(s)

Remaining CRs

Consolidated 
event output

Pandora 
Cosmic

Tag Clear 
CRs

3D “Slicing” 
Algorithm

Neutrino 
Particle ID
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Consolidated reconstruction - Algorithm chains

• Two Pandora algorithm chains created for LArTPC use, with many algs in common:
• PandoraCosmic: strongly track-oriented; showers assumed to be delta rays, added as daughters of primary 

muons; muon vertices at track high-y coordinate.

• PandoraNu: finds neutrino interaction vertex and protects all particles emerging from vertex position. Careful 
treatment to address track/shower tensions.

Initially use a two-pass approach:
Input to PandoraNu excludes hits 
from unambiguous cosmic rays.
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PandoraCosmic → PandoraNu

Unambiguous 
cosmic-ray muons

Other particles, input 
to PandoraNu



8

Cosmic-Ray Muon Reconstruction - 2D

• For each plane, produce list of 2D clusters that represent continuous, unambiguous lines of 
hits:
• PandoraCosmic: strongly track-oriented; showers assumed to be delta rays, added as daughters of primary 

muons; muon vertices at track high-y coordinate.

• Clusters refined by series of cluster-merging and cluster-splitting algs that use topological info.

Example: Crossing 
cosmic-ray muons
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Topological Association - 2D

• Cluster-merging algorithms identify associations between multiple 2D clusters and look to grow 
the clusters to improve completeness, without compromising purity.
• The challenge for the algorithms is to make cluster-merging decisions in the context of the entire event, rather 

than just considering individual pairs of clusters in isolation. 

• Typically need to provide a definition of association (for a given pair of clusters), then navigate forwards and 
backwards to identify chains of associated clusters that can be safely merged.

w [cm]

x [cm]

u [cm]

x [cm]

Cluster 
merging

miss target

on/near target

miss target
Sampling points

in detector gap

inner cluster

outer cluster

Check associations 
both ways

LongitudinalAssociation CrossGapsAssociation
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Track Pattern Recognition - 3D

• Our original input was 3x2D images of charged particles in the detector.

• Should now have reconstructed three separate 2D clusters for each particle:
• Compare 2D clusters from u, v, w planes to find the clusters representing same particle.

• Exploit common drift-time coordinate and our understanding of wire plane geometry.

• At given x, compare predictions {u,v→w; v,w→u; w,u→v} with cluster positions, calculating 𝜒2

x, common drift-time coordinate

If clusters are from 
same particle, expect 

w hits to match 
predictions u,v→w

Candidate 2D 
Clusters

Close agreement: predictions 
sit right upon real hits here

Sample Cluster 
consistency across 

common x-overlap region

u,v→w

Store all results in a “tensor”, recording x-overlap span, no. of sampling points, no. of “matched” sampling 
points and 𝜒2. Documents all 2D cluster-matching ambiguities.

w

v
u

v
u
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Track Pattern Recognition - 3D

Tensor stores overlap details for trios of 2D clusters. Tools make 2D reco changes to resolve any 
ambiguities. If a tool makes a change (e.g. splits a cluster), all tools run again.

No. of 
associated 2D 
Clusters u:v: w

Find unambiguous elements in 
the tensor, demanding that the 
common x-overlap is 90% of the 
x-span for all three clusters.

Resolve obvious ambiguities: clusters 
are matched in multiple configurations, 
but one tensor element is much 
“better” than others.

ClearTracksTool LongTracksTool
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Track Pattern Recognition - 3D

Two clusters in w 
and v, matched to 
common u cluster.

Split u cluster.

Two clusters in v view, 
matched to common 

clusters in u and w 
views. Merge v clusters.

OvershootTracksTool UndershootTracksTool

• Use all connected clusters to assess whether this is a true 3D kink topology.

• Modify 2D clusters as appropriate (i.e. merge or split) and update cluster-matching tensor.

• Initial ClearTracks tool then able to identify unambiguous groupings of clusters and form particles.
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Stitching and T0 Identification

• In a LArTPC image, one coordinate derived from drift times of ionisation electrons:
• But, only know electron arrival times, not actual drift times: need to know start time, T0

• For beam particles, can use time of beam spill to set T0, but unknown for cosmic rays

• Place all hits assuming T0 = TBeam, but can identify T0 for any cosmic rays crossing volumes

Stitch together any cosmic rays
crossing between volumes, identifying T0

Electron drift 
direction

Electron drift 
direction

A
PA

C
PA

A
PA

T0 = TBeam

Corrected T0
ΔT

ΔT

3D view
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Delta-Ray Reconstruction - 2D, 3D

Child delta ray 
(shower) particles

• Assume any 2D clusters not in a track particle are from delta-ray showers:
• Simple proximity-based re-clustering of hits, then topological association algs.

• Delta-ray clusters matched between views, creating delta-ray shower particles.

• Parent muon particles identified, and delta-ray particles added as children.

Parent muon 
(track) particle
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3D Hit/Cluster Reconstruction

• For each 2D Hit, sample clusters in other views at same x, to provide uin, vin and win values

• Provided uin, vin and win values don’t necessarily correspond to a specific point in 3D space

• Analytic expression to find 3D space point that is most consistent with given uin, vin and win

• 𝜒2 = (uout - uin)2 / 𝜎u
2 + (vout - vin)2 / 𝜎v

2 + (wout - win)2 / 𝜎w
2

• Write in terms of unknown y and z, differentiate wrt y, z and solve

• Can iterate, using fit to current 3D hits (extra terms in𝜒2) to produce smooth trajectory

Final 3D 
output

First pass 
3D hits
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Cosmic Ray Tagging and Slicing

• Clear cosmic rays:
• Particles appear to be “outside” of detector if T0 = TBeam

• Particles stitched between volumes using a T0 ≠ TBeam

• Particles pass through the detector: “through going”

Identify clear cosmic rays (red) and hits to 
reexamine under test beam hypothesis (blue)

• Slice/divide blue hits from separate 
interactions

• Reconstruct each slice as test beam 
particle

• Then choose between cosmic ray or 
test beam outcome for each slice
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Neutrino Reconstruction

• Must be able to deal with presence of any cosmic-ray muon remnants.
• Run fast version of reconstruction, up to 3D hit creation

• “Slice” 3D hits into separate interactions, processing each slice in isolation.

• Each slice ⇒ candidate neutrino particle.

• Neutrino pass reuses track-oriented clustering and topological 
association.
• Topological association algs must handle rather more complex topologies.

• Specific effort to reconstruct neutrino interaction vertex.

• More sophisticated efforts to reconstruct showers.

w [cm]

x [cm]

Neutrino event, 
amongst cosmic-

ray remnants
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Vertex Reconstruction – BDT version

• Search for neutrino interaction vertex:
• Use pairs of 2D clusters to produce list of possible 

3D vertex candidates.

• Examine candidates, calculate a score for each and 
select the best.

w [cm]

x [cm]

2D projection of 3D 
vertex candidate

• Downstream usage:
• Split 2D clusters at 

projected vertex position. 

• Use vertex to protect 
primary particles when 
growing showers.

High ET sum:
⇒ suppress candidate

Scores for labelled 
candidates, with 
breakdown into 

component parts: 
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Vertex Reconstruction – BDT version

• Interaction vertex is an important feature point in our LArTPC images:
• Continued development, ever-more sophisticated approaches to finding 3D vertex position

• Boosted Decision Trees (BDTs) or Support Vector Machines (SVMs) to select best candidate

E.g BDT/SVM 
“features”
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Vertexing reconstruction – U-Net version

In training hits are assigned
a class according to distance

from true vertex

Network trained to learn
those distances from input

images

Network infers hit distances
and resultant heat map

isolates candidate vertex
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Shower Reconstruction - 2D

• Track reconstruction exactly as in PandoraCosmic, but now also attempt to reconstruct 
primary electromagnetic showers, from electrons and photons:
• Characterise 2D clusters as track-like or shower-like and use topological properties to identify clusters 

that might represent shower spines.

• Add shower-like branch clusters to shower-like spine clusters. Recursively identify branches on the top-
level spine candidate, then branches on branches, etc.



22

Shower Reconstruction - 3D

• Reuse ideas from track reco to match 2D 
shower clusters between views:
• Build a tensor to store cluster overlap and 

relationship information.

• Overlap information collected by fitting shower 
envelope to each 2D cluster.

• Shower edges from two clusters used to predict 
envelope for third cluster.
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Particle Refinement - 2D, 3D

• Series of algs deal with remnants to improve particle completeness (esp. sparse showers):
• Pick up small, unassociated clusters bounded by the 2D envelopes of shower-like particles.

• Use sliding linear fits to 3D shower clusters to define cones for merging small downstream shower particles 
or picking up additional unassociated clusters.

• If anything left at end, dissolve clusters and assign hits to nearest shower particles in range.

3D Shower 
Cluster

Fragments to 
collect

Cone 1 Cone 2 Cone 3 Cone 4
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Particle Hierarchy Reconstruction - 3D

Parent Track

Daughter Tracks and Showers

T=π+

S S

S

S

T

T

T

T S

Simulated 𝜈𝜇 Pandora 
Reconstruction at MicroBooNE

Simulated 𝜋+ Pandora 
Reconstruction at ProtoDUNE-SP

EPJC (2018) 78:82

• Use 3D clusters to organize particles into a hierarchy, working outwards from interaction vtx
• Use the hierarchy to access particles in analyzers
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Consolidated output

E.g. Reconstruction output: test beam particle (electron)
and: N reconstructed cosmic-ray muon hierarchies

E.g. Test beam particle: charged pion

Child tracks and showers

Parent track
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Reconstruction Output

• Must translate output from Pandora Event Data Model to LArSoft Event Data Model. The 
key output is the PFParticle (PF ⇒ Particle Flow):
• Each PFParticle corresponds to a distinct track or shower and is associated to 2D clusters.

• 2D clusters group hits from each readout plane, and are associated to the input 2D hits.

• PFParticles also associated to 3D spacepoints and a 3D vertex.

• PFParticles placed in a hierarchy, with identified parent-daughter relationships.

• PFParticles flagged as track-like or shower-like (both outcomes are persisted).

Just the most important 
outputs shown herePFParticle

3D Vertex 3D Track/Shower2D Clusters 3D SpacePoints

2D Hits

Parent PFParticle Child PFParticle
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Overall summary

• The use of Liquid Argon technology is one of the cornerstones of the current and future 
neutrino programmes.

• High-performance reconstruction techniques are required in order to fully exploit the 
imaging capabilities offered by LArTPCs:
• Pandora multi-algorithm approach uses large numbers of decoupled algorithms to gradually build up a 

picture of events.

• Output is a carefully-arranged hierarchy of reconstructed particles, each corresponding to a distinct 
track or shower.
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