

THE ROYAL SOCIETY

Queen Mary University of London

GRAVITATIONAL WAVES FROM WORLDLINE QUANTUM FIELD THEORY

Gustav Mogull

THE GRAVITATIONAL TWO-BODY PROBLEM

The next generation of gravitational wave detectors — LISA, Einstein Telescope, Cosmic Explorer — will have **100x signal-to-noise ratio**! We require **high-precision gravitational wave templates**:

Einstein's equations cannot be solved exactly. Two ways to approximate:

- > Numerical relativity: good for the merger (strong fields, short duration)
- Perturbation theory: good for the inspiral (weak fields, many cycles)

Our approach: use Quantum Field Theory (QFT) to perturbatively solve the classical 2-body problem

FROM BLACK HOLE SCATTERING TO GRAVITATIONAL WAVEFORMS

Scattering observables are input data for Effective-One-Body (EOB) gravitational waveform models, e.g. SEOBNR-PM Buonanno, GM, Patil, Pompili Phys. Rev. Lett. 133 (2024)

- Good reasons to focus on black hole scattering:
- ► Natural post-Minkowskian (PM) expansion in G, allows for arbitrary fast velocities
- Gauge-invariant scattering observables: impulse, spin kick, scattering angle, fluxes, ...
- Mature QFT-based scattering technology

WORLDLINE EFFECTIVE FIELD THEORY (EFT)

During the **inspiral phase**, the bound two-body problem enjoys a **separation of scales**:

Motivates a **point-particle**, **worldline-based description** of astrophysical compact objects:

$$S = -m \int d\tau \left(\frac{1}{2e} g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} + \frac{e}{2} + (Gm)^4 \left(\frac{c_{E^2}}{e^3} E_{\mu\nu} E^{\mu\nu} + \frac{c_{B^2}}{e^3} B_{\mu\nu} B^{\mu\nu} \right) + \cdots \right)$$

Point-particle action

Can also consider Einstein-Hilbert extensions, beyond GR, particular interest in spin!

Goldberger, Rothstein, Steinhoff, Porto, Levi, Foffa, Sturani, ...

Finite-size corrections, tidal effects

$$E_{\mu\nu} = R_{\mu\alpha\nu\beta}\pi^{\alpha}\pi^{\beta}$$

 $B_{\mu\nu} = R^*_{\mu\alpha\nu\beta}\pi^\alpha\pi^\beta$

SPINNING PHASE SPACE

Spinning degrees of freedom captured by the position x^{μ} , momentum p_{μ} , spin tensor S^{ab}

$$\{x^{\mu}, p_{\nu}\} = \delta^{\mu}_{\nu}, \{S^{ab}, S^{cd}\} = \eta^{bd} S^{ac} + \eta^{ac} S^{bd} - \eta^{bc} S^{ad} - \eta^{ad}$$

We only seek to describe **rotations** $S^i = \frac{1}{2} e^{ijk} S^{ij}$, not **boosts** S^{0i} . So we need a **spin**supplementary condition (SSC):

Objective: pick a total Hamiltonian H_T that preserves the covariant SSC $Z^{\mu} = 0$

$$\dot{Z}^{\mu} = \{Z^{\mu}, H_T\} \approx 0$$

Ambrosi, Kunar, Van Holten '15

$$S^{bc}, \qquad \pi_{\mu} := p_{\mu} + \frac{1}{2} \omega_{\mu,ab} S^{ab}, \\ S^{\mu\nu} := e_{a}^{\mu} e_{b}^{\nu} S^{ab},$$

$^{\mu u}\hat{\pi}_{ u}$ Decompose in the inertial frame π^{μ}

Weak equality pprox means vanishing when $H=Z^{\mu}=0$

N=2 SUSY (SPIN-1 PARTICLE)

One possible realisation using an $\mathcal{N} = 2$ SUSY algebra:

$$\{\psi^{a}, \bar{\psi}^{b}\} = -i\eta^{ab}$$

$$\{Q, \bar{Q}\} = -2iH, \quad \{J, Q\} = -iQ, \quad \{J, \bar{Q}\} = iQ,$$

$$H = \frac{1}{2}(g^{\mu\nu}\pi_{\mu}\pi_{\nu} - m^{2} - R_{abcd}\bar{\psi}^{a}\psi^{b}\bar{\psi}^{c}\psi^{d}),$$

$$J = \eta_{ab}\bar{\psi}^{a}\psi^{b}, \quad Q = \psi^{a}e^{\mu}_{a}\pi_{\mu}, \quad \bar{Q} = \bar{\psi}^{a}e^{\mu}_{a}\pi_{\mu}$$

These are a set of first-class constraints, and the SSC is automatically enforced:

$$S^{ab} = -2i\bar{\psi}^{[a}\psi^{b]} \qquad S^{\mu\nu}\pi_{\nu} = -i(\bar{\psi}^{\mu}Q + \psi^{\mu}\bar{Q}) \approx 0$$

Corresponding Lagrangian description, up to quadratic spins:

$$S_{\rm BH/NS} = -m \int d\tau \Big[\frac{1}{2} g_{\mu\nu} \dot{x}^{\mu} \, \dot{x}^{\nu} + i \bar{\psi} D_{\tau} \psi \Big]$$

But... no realisation beyond $\mathcal{N} = 2!$

Jakobsen, GM, Plefka, Steinhoff Phys. Rev. Lett. 128 (2022)

 $+\frac{1}{2}R_{abcd}\bar{\psi}^{a}\psi^{b}\bar{\psi}^{c}\psi^{d}+C_{E}R_{a\mu b\nu}\dot{x}^{\mu}\dot{x}^{\nu}\bar{\psi}^{a}\psi^{b}\,\bar{\psi}\cdot\psi\Big]$ spin degrees of freedom neutron star term

HAMILTONIAN DESCRIPTION OF SPINNING BODIES

The SSC is a second-class constraint (Dirac), so we can solve for a Lagrange multiplier ζ_{μ} :

$$H_T = eH[e^a_{\mu}(x), p_{\mu}, S^{\mu}] + \zeta_{\mu} Z^{\mu}$$

We are free to make an ansatz for H, in terms of only the spin vector S^{μ} :

$$H_{RS^n} = \begin{cases} \frac{C_{ES^n}}{m^{n-2}} (\nabla_S)^{n-2} E_{SS}, & n \text{ even}, \\ \frac{C_{BS^n}}{m^{n-2}} (\nabla_S)^{n-2} B_{SS}, & n \text{ odd}. \end{cases}$$

$$H_T = \frac{e}{2} \left(g^{\mu\nu} \pi_\mu \pi_\nu - m^2 - 2B_{SZ} - \frac{2(C_{ES^2} - 1)}{|\pi|^2} (E_{SS} B_{ZS} - Z \cdot S E_{S\nu} B_S^{\nu}) - \sum_{n>1} (\tilde{H}_{RS^n} + \tilde{H}_{R^2S^n}) \right)$$

Linear-curvature correction

 $H_{R^m S^n} = (1 + |\pi|^{-1} \nabla_Z) H_{R^m S^n}$

$$S_{\mu} = \frac{1}{2} \varepsilon_{\mu\nu\rho\kappa} \hat{\pi}^{\nu} S^{\rho\kappa} \qquad Z^{\mu} = S^{\mu\nu} \hat{\pi}_{\nu}$$

 $H_{R^2} = (Gm)^4 m^2 \left(C_{E^2} E_{\mu\nu} E^{\mu\nu} + C_{B^2} B_{\mu\nu} B^{\mu\nu} \right),$ $H_{R^2S^2} = (Gm)^4 m^2 \left(C_{E^2S^2} E_{\hat{S}\mu} E_{\hat{S}\mu} E_{\hat{S}}^{\ \mu} + C_{B^2S^2} B_{\hat{S}\mu} B_{\hat{S}}^{\ \mu} \right),$ $H_{R^2S^4} = (Gm)^4 m^2 (C_{E^2S^4} E_{\hat{S}\hat{S}} E_{\hat{S}\hat{S}} + C_{B^2S^4} B_{\hat{S}\hat{S}} B_{\hat{S}\hat{S}}),$ Z-corrections are then determined order-by-order in spins, giving the total Hamiltonian:

Quadratic-curvature correction

BOSONIC OSCILLATORS

We seek a **worldline action**, i.e. a **Lagrangian description**. So introduce new variables:

$$\{\alpha^a, \bar{\alpha}^b\} = -i\,\eta^{ab}$$

Desired Lagrangian is given by a Legendre transform, solve for the canonical momentum:

$$\tilde{S} = -\int \mathrm{d}\tau \left[p_{\mu} \dot{x}^{\mu} - i\bar{\alpha}^{a} \dot{\alpha}^{b} \eta_{ab} - H_{T} \right]$$

Resulting worldline action, up to linear curvature:

$$S := -\int d\tau \left[\frac{m}{2} g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} - i\bar{\alpha}_{a} \frac{D\alpha^{a}}{d\tau} - B_{SZ} - m \sum_{n>1} \frac{1}{n!} \left\{ \begin{array}{l} C_{ES^{n}} (1+|\dot{x}|^{-1}\nabla_{Z}) (\nabla_{S})^{n-2} E_{SS} , & n \text{ even}, \\ -iC_{BS^{n}} (1+|\dot{x}|^{-1}\nabla_{Z}) (\nabla_{S})^{n-2} B_{SS} , & n \text{ odd}, \end{array} \right\} \right],$$

We have now performed spinning black hole calculations using WQFT up to S^4 !

$$S^{\mu\nu} = -2i\,\bar{\alpha}^{[\mu}\alpha^{\nu]}$$

$$\dot{x}^{\mu} = \{x^{\mu}, H_T\} = m^{-1}\pi^{\mu} + \cdots$$
 correctio

.(a	•	ر	2	2	4
•	•	•	•	•	•	•

m: ons

WORLDLINE QUANTUM FIELD THEORY (WQFT)

$$S = -\frac{2}{\kappa^2} \int d^4x \sqrt{-g} R - \sum_{i=1}^2 \int d\tau_i \left[\frac{m_i}{2} g_{\mu\nu} \dot{x}_i^{\mu} \dot{x}_i^{\nu} - i \bar{\sigma} \right]$$

Promote gravitons, deflections to propagating d.o.f's:

$$\underbrace{\substack{\mu\nu \quad \rho\sigma \\ \bullet \quad \bullet \\ k}}_{k} e^{\sigma} = i \frac{\eta_{\mu(\rho}\eta_{\sigma)\nu} - \frac{1}{D-2}\eta_{\mu\nu}\eta_{\rho\sigma}}{(k^0 + i0^+)^2 - \mathbf{k}^2} \qquad \cdots \qquad \mathcal{Z}_{I}^{\mu}(\omega) = \mathbf{z}_{I}^{\mu}(\omega) = \mathbf{z}$$

Causality demands use of retarded propagators (from Schwinger-Keldysh in-in formalism) Gravitons live in the bulk, carry momentum; deflections live on the worldline, carry energy.

GM, Plefka, Steinhoff JHEP 02 (2021) Jakobsen, GM, Plefka, Sauer JHEP 10 (2022)

 $x_{i}^{\mu}(\tau_{i}) = b_{i}^{\mu} + v_{i}^{\mu}\tau_{i} + z_{i}^{\mu}(\tau_{i}),$ $\alpha_{i}^{\mu}(\tau_{i}) = \alpha_{-\infty,i}^{\mu} + \alpha_{i}^{\prime \mu}(\tau_{i}),$ $g_{\mu\nu}(x) = \eta_{\mu\nu} + \kappa h_{\mu\nu}(x) \,.$

Tree-level one-point functions = Solutions to classical equations of motion

SCATTERING OBSERVABLES

For momentum impulse draw tree diagrams with 1 outgoing line:

All graphs are trees. Integrate on internal energies/momenta:

Loop integrals arise from lack of momentum conservation:

Loop integrals from tree-level diagrams

$$\frac{\omega + (q - \ell) \cdot v_1)\delta(\ell \cdot v_2)\delta((q - \ell) \cdot v_2)}{(\omega + i0)^2 \ell^2 (\ell - q)^2} e^{iq \cdot b}$$

$$\frac{\delta(\ell \cdot v_2)}{(\ell \cdot v_1 + i0)^2 \ell^2 (\ell - q)^2}$$

OSF scale-free loop integration

IN-IN FORMALISM

Also known as Schwinger-Keldysh, or Closed-Time Path (CTP):

$$\langle \mathcal{O}(t,\mathbf{x}) \rangle_{\text{in-in}} := {}_{\text{in}} \langle 0 | U(-\infty,t) \mathcal{O}(t,\mathbf{x}) U(t,-\infty) | 0 \rangle_{\text{in}}$$

➤ Simple example of a scalar field — path integral involves 2 copies of the theory:

$$Z[J_1, J_2] = \int \mathcal{D}[\phi_1, \phi_2] \exp\left\{\frac{i}{\hbar} \left[(S[\phi_1] - S[\phi_2]) + \int d^4x (J_1(x)\phi_1(x) - J_2(x)\phi_2(x)) \right] \right\}$$

 $\langle \phi_A(x) \, \phi_B(y) \rangle = \begin{pmatrix} \langle 0 | \mathcal{T} \phi(x) \phi(y) | 0 \rangle & \langle 0 | \langle 0 | \phi(x) \phi(y) | 0 \rangle & \langle 0 | \rangle \end{pmatrix}$

Jakobsen, GM, Plefka, Sauer JHEP 10 (2022)

$$t = +\infty, \mathbf{x}) = \phi_2(t = +\infty, \mathbf{x})$$
$$t = -\infty, \mathbf{x}) = \phi_2(t = -\infty, \mathbf{x}) = 0$$

$$\begin{pmatrix} 0|\phi(y)\phi(x)|0\rangle\\|\mathcal{T}^*\phi(x)\phi(y)|0\rangle \end{pmatrix} = \begin{pmatrix} D_F(x,y) \ D_-(x,y)\\D_+(x,y) \ D_D(x,y) \end{pmatrix}$$

> Diagrams conspire to ensure forward-in-time flow of causality:

- propagators.
- > We use this in WQFT, with retarded bulk and worldline propagators

> Huge simplification in the Keldysh basis, with advanced & retarded propagators:

Absorbs the cuts present in e.g. KMOC formalism

$$\frac{1}{k^2 + \operatorname{sgn}(k^0)i0} = \frac{1}{k^2 + i0} + 2i\pi\theta(-k^0)\delta(k^2)$$

Upshot: calculate tree-level 1-point functions using in-out Feynman rules + retarded

SPINNING SCATTERING OBSERVABLES

In order to test our spinning Lagrangian, we compute scattering observables up to S^4 :

 $\mathcal{Z}_{I}^{\mu}(\omega) = \{ z^{\mu}(\omega), \alpha'^{\mu}(\omega), \bar{\alpha}'^{\mu}(\omega) \}$

Observables appear as the components of \mathcal{Z}^{μ}_{I} with a cut external line:

$$\begin{split} \Delta p_i^{\mu} &= -m_i \omega^2 \left\langle z_i^{\mu} (-\omega) \right\rangle \Big|_{\omega \to 0} , \\ \Delta \alpha_i^{\mu} &= \mathrm{i} \, \omega \left\langle \alpha_i'^{\mu} (-\omega) \right\rangle \Big|_{\omega \to 0} . \end{split} \qquad \Delta S_i^{\mu\nu} \end{split}$$

We reproduce all relevant results from the literature up to S^4 !

Haddad, Jakobsen, **GM**, Plefka '24

 $= -2\mathrm{i}m_i(\bar{\alpha}^{[\mu}_{-\infty,i}\Delta\alpha^{\nu]}_i + \Delta\bar{\alpha}^{[\mu}_i\alpha^{\nu]}_{-\infty,i} + \Delta\bar{\alpha}^{[\mu}_i\Delta\alpha^{\nu]}_i)$

SPINNING LAGRANGIAN ANSATZ

To verify our Hamiltonian-based analysis, start from a Lagrangian Ansatz:

$$S = -m \int d\tau \left(\frac{1}{2} g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} - i\eta_{ab} \bar{\alpha}^{a} \frac{\mathrm{D}\alpha^{b}}{\mathrm{d}\tau} - \mathcal{L}_{\mathrm{nm}} \right) \qquad \qquad \mathcal{L}_{\mathrm{nm}}^{(a)} = \sum_{n=1}^{\infty} (\nabla_{\mathfrak{a}})^{2n-2} \left(\frac{C_{ES^{2n}}}{(2n)!} \mathcal{E}_{\mathfrak{a}\mathfrak{a}} - \frac{\mathrm{i}C_{BS^{2n+1}}}{(2n+1)!} \nabla_{\mathfrak{a}} \mathcal{B}_{\mathfrak{a}\mathfrak{a}} \right), \\ \mathcal{L}_{\mathrm{nm}}^{(Z)} = \frac{C_{2}^{(Z)}}{2} B_{\mathfrak{a}\mathfrak{z}} - \frac{\nabla_{\mathfrak{z}}}{|\dot{x}|} \sum_{n=2}^{\infty} (\nabla_{\mathfrak{a}})^{2n-4} \left(\frac{C_{2n}^{(Z)}}{(2n)!} \nabla_{\mathfrak{a}} \mathcal{B}_{\mathfrak{a}\mathfrak{a}} + \frac{\mathrm{i}C_{2n-1}^{(Z)}}{(2n-1)!} \mathcal{E}_{\mathfrak{a}\mathfrak{a}} \right),$$

We seek to fix the coefficients $C_n^{(Z)}$. Demand no change in the SSC vector:

$$\Delta Z_i^{\mu} = \Delta p_{i,\nu} S_{-\infty,i}^{\mu\nu} + p_{i,\nu} \Delta S_i^{\mu\nu} + \Delta p_{i,\nu} \Delta S_i^{\mu\nu} = 0$$

Constrains coefficient values to those agreeing with the Hamiltonian:

$$C_n^{(Z)} = n \times \begin{cases} C_{ES^{n-1}}, & n \text{ odd}, \\ C_{BS^{n-1}}, & n \text{ even}, \end{cases}$$

Linear Curvature

$$C_{R^2,1}^{(Z)} = 0, \quad C_{R^2,2}^{(Z)} = C_{ES^2} (C_{ES^2} - 1),$$

 $C_{R^2,3}^{(Z)} = -C_{R^2,4}^{(Z)} = C_{ES^2} - 1.$

Quadratic Curvature

SCATTERING SPINNING BLACK HOLES: STATE-OF-THE-ART

Higher orders in spin are suppressed by physical PM counting: $a_i^{\mu} = Gm_i \chi_i^{\mu}$, $ \chi_i < 1$							
	S 0 (Spin-0)	S 1 (Spin-1/2)	S 2 (Spin-1)	S 3 (Spin-3/2)	S 4 (Spin-2)	S5 (Spin-5	
1PM (tree level)	G	G2	G3	G4	G5	G6	
2PM (1 loop)	G2	G ³	G4	G5	Guevara, Ochirov, Vines '18 Chen, Chung,Huang, Kim '21 Haddad, Jakobsen, GM , Plefka '24	Bern, Kosmopoul Roiban, Teng '22 Haddad, Helset '23; Chen, Wang '24; Bo Cangemi, Johanssor	
3PM (2 loops)	Bern, Cheung, Parra-Martinez, Ruf, Herrmann, Roiban, Shen, Solon, Zeng, Kälin, Liu, Porto, Di Vecchia, Heissenberg, Russo, Veneziano, Travaglini, Brandhuber, Damgaard, Planté, Vanhove, Bjerrum-Bohr	Jakobsen, GM '22 Akpinar, Cordero, Kraus, Ruf, Zeng '24	Jakobsen, GM '22 Akpinar, Cordero, Kraus, Ruf, Zeng '24	Akpinar, Cordero, Kraus, Smirnov, Zeng '25	Akpinar, Cordero, Kraus, Smirnov, Zeng '25	G ⁸	
4PM (3 loops)	Dlapa, Kälin, Liu, Neef, Porto, Damgaard, Hansen, Planté, Vanhove, Bern, Parra-Martinez, Roiban, Ruf, Shen Solon, Zeng	Jakobsen, GM, Plefka, Sauer, Xu '23	G ⁶	G7	G ⁸	<i>Tail eff</i> log v 's	
5PM (4 loops)	Driesse, Jakobsen, Klemm, GM, Nega, Plefka, Sauer, Usovitsch '24	G6	G7	G ⁸	G 9	G ¹⁰	

5PM MOMENTUM IMPULSE

- > Quickly generate from Feynman rules using recursive FORM algorithm.
- > All propagators are **retarded**, causality flow towards the **outgoing line in-in formalism**

	1	r		S
•	•	•	•	•

1SF LOOP INTEGRATION

Red graviton propagators are active: **can go on-shell**, so the **i0 matters**.

$$\sum_{k} = \frac{1}{(k^0 + i0^+)^2 - \mathbf{k}^2} \cdots \sum_{k}$$

Integrals depend trivially on |q|, non-trivially on $\gamma = v_1 \cdot v_2$

$$\begin{aligned} \mathcal{I}_{\{n\}}^{\{\sigma\}} &= \int_{\ell_1 \cdots \ell_L} \frac{\delta^{(\bar{n}_1 - 1)}(\ell_1 \cdot v_1) \prod_{i=2}^L \delta^{(\bar{n}_i - 1)}(\ell_i \cdot v_2)}{\prod_{i=1}^L D_i^{n_i}(\sigma_i) \prod_{I < J} D_{IJ}^{n_{IJ}}} \end{aligned}$$
$$D_1 &= \ell_1 \cdot v_2 + \sigma_1 i 0^+, \quad D_{i>1} = \ell_i \cdot v_1 + \sigma_i i 0^+, \\D_{ij} &= (\ell_i - \ell_j)^2, \quad D_{qi} = (\ell_i + q)^2, \quad D_{0i} = \ell_i^2 \end{aligned}$$

At 1SF all loop orders we need only 1 planar integral basis to handle all contributions:

 $\cdot v_2)$

- Loop integrals with retarded propagators:
- 1. Integration-by-Parts (IBPs) unaffected
- 2. Differential Equations (DEs) unaffected
- Symmetries are affected

4. Boundary conditions ($v \rightarrow 0$) are **affected**

5PM-1SF CONSERVATIVE

The conservative impulse has a universal form:

$$\Delta p_{1,\text{cons}}^{\mu} = |p| \sin \theta_{\text{cons}} \frac{b^{\mu}}{|b|} + (\cos \theta_{\text{cons}} - 1)p^{\mu} \qquad p^{\mu} = (0, \mathbf{p}) = \frac{E_2 p_1^{\mu} - E_1 p_2^{\mu}}{M}$$

h-terms v-terms

Result depends only on the scattering angle:

$$\theta_{\text{cons}} = \frac{E}{M} \sum_{n \ge 1} \left(\frac{GM}{|b|} \right)^n \left(\theta_{\text{cons}}^{(n,0)}(\gamma) + \nu \theta_{\text{cons}}^{(n,1)}(\gamma) + \cdots \right) \qquad \nu = \frac{m_1 m_2}{M^2}$$

 $\theta_{cons}^{(5,1)}$ consists of Multiple PolyLogarithms (MPLs) up to weight-3, alphabet $a_i \in \{0, \pm 1, \pm i\}$

$$\theta_{\text{cons}}^{(5,1)} = \sum_{k=1}^{31} c_k(\gamma) f_k(\gamma) \qquad \qquad G(a_1, \dots, a_n; y) = \int_0^y \frac{\mathrm{d}t}{t - a_1} G(a_2, \dots, a_n; t)$$

Driesse, Jakobsen, GM, Plefka, Sauer, Usovitsch Phys. Rev. Lett 133 (2024)

No other special functions in the conservative 5PM-1SF result!

NOW AVAILABLE: COMPLETE 5PM-1SF

We now have the full 5PM-1SF impulse, including radiation-reaction!

$$\Delta p_{1\text{SF}}^{(5)\mu} = \frac{1}{b^5} \left(\hat{b}^{\mu} c_b(\gamma) + \check{v}_2^{\mu} c_v(\gamma) \right)$$
$$\Delta p_{1\text{SF}}^{(5)\mu} = \frac{1}{b^5} \left(\hat{b}^{\mu} \bar{c}_b(\gamma) + \check{v}_2^{\mu} \bar{c}_v(\gamma) \right)$$

Encodes scattering angle, MPLs only Even (pure real) integrals

$$\theta^{(5,1)} = \frac{4}{5v^8} - \frac{137}{5v^6} + \frac{3008}{45v^5} + \frac{\frac{41\pi^2}{4} - \frac{3427}{6}}{v^4} + \frac{\frac{84\pi^2}{5} - \frac{41\pi^2}{5}}{v^3} + \left(-\frac{7552\log(2v)}{1575} + \frac{246527\pi^2}{1440} - \frac{1111790903}{756000}\right) + \left(-\frac{1762784\log(2v)}{11025} - \frac{184881\pi^2}{2240} + \frac{564248017}{4939200}\right) + \left(-\frac{1762784\log(2v)}{11025} - \frac{184881\pi^2}{2240} + \frac{564248017}{4939200}\right) + \left(-\frac{1762784\log(2v)}{11025} - \frac{184881\pi^2}{2240} + \frac{11117909}{4939200}\right) + \left(-\frac{11117909}{11025}\right) + \frac{11117909}{11025}\right) + \frac{11117909}{11025}\right) + \frac{11117909}{11025} + \frac{11117909}{11025}\right) + \frac{11117909}{11025}$$

Driesse, Jakobsen, Klemm, **GM**, Nega, Plefka, Sauer, Usovitsch '24 Accepted to Nature

Encodes radiated momentum, contains K3 & CY3 kernels Odd (pure imaginary) integrals

COMPARING THE SCATTERING ANGLE WITH NUMERICAL RELATIVITY (NR)

Increasing PM orders show **NR convergence**

NR data: Damour, Rettegno, Pratten, Thomas, Schmidt '23

Calls for EOB resummation!

Driesse, Jakobsen, Klemm, **GM**, Nega, Plefka, Sauer, Usovitsch '24 Accepted to Nature (CY3) $\left[\left(z \frac{\mathrm{d}}{\mathrm{d}z} \right)^4 - z \left(z \frac{\mathrm{d}}{\mathrm{d}z} + \frac{1}{2} \right)^4 \right] \varpi(z) = 0$ CY3 (n = 3)K3 (n = 2)Torus (n = 1)**Picard-Fuchs Equation** $\alpha_1 = \frac{\varpi_0^2}{x(\varpi_0 \varpi_1' - \varpi_0' \varpi_1)}$ $E_{\rm rad}^{(5)} = \frac{M^6 \nu^2 \pi}{5\Gamma b^5 v^3} \Big[122 + \frac{3583}{56} v^2 + \frac{297\pi^2}{4} v^3 - \frac{71471}{504} v^4 \Big(\frac{9216}{7} - \frac{24993\pi^2}{224} \Big) v^5 \Big]$ $+\left(\frac{2904562807}{6899200} + \frac{99\pi^2}{2} - \frac{10593}{70}\log\frac{v}{2}\right)v^6 + \left(\frac{7296}{7} - \frac{2927\pi^2}{28}\right)v^7$ $\left(\frac{4924457539}{29429400} + \frac{8301\pi^2}{112} - \frac{491013}{3920}\log\frac{v}{2}\right)v^8 + \left(\frac{99524416}{40425} - \frac{46290891\pi^2}{157696}\right)v^9 + \cdots\right]$

CALABI-YAU THREE-FOLD (CY3) The odd-in-v sector contains a period of Calabi-Yau Three-fold: We have **full analytic control**, can PN expand:

CONCLUSIONS & OUTLOOK

Future directions

- 1. Physical effects in worldline EFT description: beyond GR, dynamical tides, higher spins, ...
- 3. Improved EOB resummation: inspiration from radial action, self-force expansion...
- 4. Enhanced GWs: more NR calibration, more PM data, fluxes, mode decomposition, ...

2. Higher-PM scattering observables: 5PM-2SF, 4PM-S², radial action, waveform, fluxes, ...

