

THE ROYAL SOCIETY

Classical Worldlines from Scattering Amplitudes

Mao Zeng, Higgs Centre for Theoretical Physics, University of Edinburgh

First Quantization in Strong Fields Conference, Edinburgh University, 27 Feb 2025

Talk based on arXiv:2412.10864, Zeno Capatti, MZ

Outline

- Background
- QFT approaches to classical dynamics in GR
 - 1st quantized worldlines (WL)
 - 2nd quantized scattering amplitudes
- Equivalence: re-deriving WL picture from Amplitudes
 - Emergence of the arrow of time
 - Bonus: manifest cancellation of $\hbar \rightarrow 0$ singularities

Background

Beginning of new era: GW detection, 2015-

- General relativity in strong-field regime
- Dense nuclear matter in neutron stars
- BSM compact objects, dark matter
- Black hole population & formation mechanisms

LIGO-VIRGO-KAGRA O3B Catalog (late 2021)

• 90 events in above plot; expect more than 200 at the end of O4 run this year!

Future gravitational wave detectors

- Ground based: Ongoing LIGO A+ upgrade, Einstein Telescope, Cosmic Explorer...
- ~100 times increase in strain sensitivity depending on frequency

Source: https://cosmicexplorer.org/sensitivity.html

Future gravitational wave detectors

• Space-based: LISA (2035+, approved in 2024), TianQin (2035+).

Precision requirements for theory predictions

[Pürrer, Haster, '19]

Need orders of magnitude improvement

QFT approches to binary dynamics

- Perturbative GR is complicated; QFT insights have helped in multiple ways.
- Early success: non-relativistic general relativity (NRGR) [Goldberger, Rothstein '04]. Computes *post-Newtonian* potential between off-shell worldline sources.
- Recent breakthroughs: relativistic QFT for *post-Minkowskian* expansion.
 Some results far beyond classical GR. E.g., 2nd post-Minkowskian order (2PM), [Westpfahl, '85]
 - (On-shell) scattering amplitudes. BHs mapped to massive particles.
 E.g., 3PM, '19. 4PM (conservative) '21. 5PM in toy models (EM, SUGRA), '24. All-order in spin at 1PM and 2PM (up to some Wilson coefficients). O(S1⁴ S2⁰) at 3PM
 - Worldline methods for scattering observables (PMEFT, WQFT). Talk by Gustav E.g., 4PM '21, '22. 5PM 1SF '24. Quartic-in-spin at 2PM. Quadratic-in-spin at 3PM Moguli
- Existing comparison between amplitude & WL approaches [Damgaard, Hansen, Planté, Vanhove, '23] does not establish diagrammatic equivalence before loop integration.

Point-particle effective field theory

1st quantized worldline approach (Deser / Polyakov action):

$$S = S_{\text{Einstein-Hilbert}} - \frac{m}{2} \int_{-\infty}^{\infty} d\tau \left(g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} + 1 \right)$$

arXiv:2412.10864, Zeno Capatti, MZ

• 2nd quantized amplitude approach:

$$S = S_{\text{Einstein-Hilbert}} + \int d^4x \sqrt{-g} \left[-\frac{1}{2} \sum_i \left(\nabla^\mu \phi_i \nabla_\mu \phi_i + m^2 \phi_i^2 \right) \right]$$

Classical observables from S-matrix

[Kosower, Maybee, O'Connel, '18]

Wavepacket states with semi-classical localization in both position and momentum. "Goldilock condition": compton length $l_c \ll$ wavepacket spread $l_w \ll$ impact parameter

Then compute expectation values of $\langle \text{out} | \mathcal{O} | \text{out} \rangle = \langle \text{in} | \mathcal{S}^{\dagger} \mathcal{O} \mathcal{S} | \text{in} \rangle$.

Practically: order-by-order evaluation of amplitudes, then integrate against plane wave profile.

Divergences in classical limit $q \rightarrow 0$

• Classical momentum p fixed. Momentum exchange q scales as $O(\hbar/R)$.

- Compared with LO, NLO has one extra graviton-scalar vertex ~ $|p|^2$, and one matter propagator $\sim 1/[(p+q_1)^2 m^2] \approx 1/(2p \cdot q_1) \sim 1/(|p||q_1|)$
- Overall enhancement $\sim |p|/|q| \sim 1/\hbar$. Divergent correction!

Classical observables from S-matrix

[Kosower, Maybee, O'Connel, '18]

Compute change of observable (e.g. momentum of massive particle) during scattering

Simplified example: consider Δp^{μ} from scattering off a massive **background source**: (Our paper looks at two dynamic massive bodies)

Classical observables from S-matrix

[Kosower, Maybee, O'Connel, '18]

Compute change of observable (e.g. momentum of massive particle) during scattering

 $\Delta O = \langle \text{out} | \mathcal{O} | \text{out} \rangle - \langle \text{in} | \mathcal{O} | \text{in} \rangle = \langle \text{in} | (1 - iT^{\dagger}) \mathcal{O} (1 + iT^{\dagger}) | \text{in} \rangle - \langle \text{in} | \mathcal{O} | \text{in} \rangle$

Using unitarity relation $iT^{\dagger} = -iT + T^{\dagger}T$,

left of cut: amplitude right of cut: conjugate amplitude

 $\cdot q_1^{\mu}$

linear-in-amplitude part

quadratic-in-amplitude part

Summing diagrams cancels divergence

- Leading order case already worked out in [Kosower, Maybee, O'Connel, '18]
- How to systematically generalize to higher orders?
- Our strategy: *quantum worldline representation* of the dressing of the massive matter propagator by interaction vertices with suitable time orderings. [Capatti, MZ, arXiv:2412.10864]
 - Inspired by parallel efforts for manifest cancellation of IR singularities for collider observables: loop-tree duality, local unitarity, cross-free family representation...

Worldline form of matter propagators

Cancellation of superclassical $q \rightarrow 0$ divergence

Quantum worldlines

- Defined as *dressed propagators with symmetrized attachments* on either side of cut.
- Building blocks for converting classical observables from amplitudes into WL form.

Subleading small-q expansion: classical order

Subleading small-q expansion: cut + uncut

Emergence of causality: I. matter propagators

 $p + q_1$

Previous slide:

Compact all-multiplicity quantum WL expansion

Symmetrized over vertices v_i with incoming momentum p_i and WL parameter τ_i.
 Result: sum over forests, each inducing a partial ordering of vertices resembling a causality flow.

Compact all-multiplicity quantum WL expansion

• Result:

Reverse ordering for edges on the right of the cut; drop ordering if the edge crosses the cut

$$\sum_{\mathcal{F}_k \in \text{forests } e = (v,v') \in \mathcal{F}_k} \left(e^{-2i\tau_e(q_v \cdot q_{v'})} - 1 \right) \Theta(\Delta \tau_e) + \text{quantum corrections}$$

Sewing 2 WLs: NNLO conservative impulse

Manifestly finite. *Identical* to scalar theory WL integrand before any integration.

Emergence of causality: II. massless propagators

- Amplitude (KMOC) formalism contains only Feynman and cut propagators (and their complex conjugates).
- How to get retarded propagators in WL formalism? Use identity

 $G_F(q) + i\delta^+(q) = G_R(-q)$

• Double ladders work to all orders! E.g., product of 2 retarded propagators in WL integrand (horizontal dashed lines below) become 4 terms in KMOC integrand:

Explicit checks

- Manifest finiteness & causality of classical limit after rewriting into WL form:
 - Scalar QED at 2 loops
 - Scalar theory at 2 loops
 - Scalar therory, 3-loop & 4-loop ladder (iteration) diagrams
 - Scalar theory, non-iteration double ladders to all orders
- Identical loop integrand with WL literature (PMEFT, WQFT)
 - Scalar QED at 2 loops (conservative part)
 - Scalar theory at 2 loops (full)
- **Gravity next;** though finiteness of classical limit, i.e. cancellation of iteration divergences, should have no essential difference with toy models

Conclusion

- Scattering amplitudes (KMOC) and worldlines have both become new powerful tools for post-Minkowskian expansion of gravitational binary dynamics.
- Formulated systematic method to establish their equivalence using Schwinger parametrization to rewrite scattering amplitude *integrands* into WL form.
- Bonus: manifest finiteness of KMOC formalism for extracting classical observables, previously only well-understood at 1 loop.
- Demonstrates emergence of classical causality starting from only the S matrix.
- Various follow-up directions, e.g. connections with generalized Wilson lines [White, Laenen, Stavenga, Bonocore, Kulesza, Pirsch ...]