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Outline

● Background

● QFT approaches to classical dynamics in GR
● 1st quantized – worldlines (WL)
● 2nd quantized – scattering amplitudes

● Equivalence: re-deriving WL picture from Amplitudes
● Emergence of the arrow of time
● Bonus: manifest cancellation of   h → 0  singularities



3

Background
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Beginning of new era: GW detection, 2015-

● General relativity in strong-field regime
● Dense nuclear matter in neutron stars
● BSM compact objects, dark matter
● Black hole population & formation mechanisms
● ...
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LIGO-VIRGO-KAGRA O3B Catalog (late 2021)

• 90 events in above plot; expect more than 200 at the end of O4 run this year!
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Future gravitational wave detectors
● Ground based: Ongoing LIGO A+ upgrade, Einstein Telescope, Cosmic Explorer...
● ~100 times increase in strain sensitivity depending on frequency

Source: https://cosmicexplorer.org/sensitivity.html

https://cosmicexplorer.org/sensitivity.html
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Future gravitational wave detectors
● Space-based: LISA (2035+, approved in 2024), TianQin (2035+).

Image credit:
ESA
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Precision requirements for theory predictions

Need orders of 
magnitude 
improvement

[Pürrer, Haster, ’19]
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QFT approches to binary dynamics
● Perturbative GR is complicated; QFT insights have helped in multiple ways.

● Early success: non-relativistic general relativity (NRGR) [Goldberger, Rothstein ’04]. 
Computes post-Newtonian potential between off-shell worldline sources.

● Recent breakthroughs: relativistic QFT for post-Minkowskian expansion.
Some results far beyond classical GR.
● (On-shell) scattering amplitudes. BHs mapped to massive particles.

E.g., 3PM, ’19. 4PM (conservative) ’21. 5PM in toy models (EM, SUGRA), ’24. All-order in spin at 1PM 
and 2PM (up to some Wilson coefficients). O(S14 S20) at 3PM

● Worldline methods for scattering observables (PMEFT, WQFT).
E.g., 4PM ’21, ’22. 5PM 1SF ’24. Quartic-in-spin at 2PM. Quadratic-in-spin at 3PM

● Existing comparison between amplitude & WL approaches [Damgaard, Hansen, Planté, 

Vanhove, ’23] does not establish diagrammatic equivalence before loop integration.

E.g., 2nd post-Minkowskian order (2PM), [Westpfahl, ’85]

Talk by Gustav 
Mogull
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Point-particle effective field theory

• 2nd quantized amplitude approach:

• 1st quantized worldline approach (Deser / Polyakov action):

arXiv:2412.10864,
Zeno Capatti, MZ
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compton length             wavepacket spread            impact parameter

Classical observables from S-matrix
[Kosower, Maybee, O’Connel, ’18]

Wavepacket states with semi-classical localization in both position and momentum. “Goldilock 
condition”:

Then compute expectation values of

Practically: order-by-order evaluation of amplitudes, then integrate against plane wave profile.
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Divergences in classical limit q→0
● Classical momentum p fixed. Momentum exchange q scales as ( /R).𝒪 ℏ

Leading order (LO) Next-to-leading order (NLO)

● Compared with LO, NLO has one extra graviton-scalar vertex  |∼ p|2, and one 
matter propagator 

 Overall enhancement  |∼ p|/|q| 1/ . Divergent correction!∼ ℏ
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Classical observables from S-matrix
[Kosower, Maybee, O’Connel, ’18]

Compute change of observable (e.g. momentum of massive particle) during scattering

Simplified example: consider           from scattering off a massive background source:
(Our paper looks at two dynamic massive bodies)

linear-in-amplitude part quadratic-in-amplitude part

Inspired by e.g. strong field study
[Adamo, Cristofoli, Ilderton, ’22]
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Classical observables from S-matrix
[Kosower, Maybee, O’Connel, ’18]

Compute change of observable (e.g. momentum of massive particle) during scattering

Using unitarity relation                                       

linear-in-amplitude part quadratic-in-amplitude part

left of cut: amplitude
right of cut: conjugate amplitude
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Summing diagrams cancels divergence

● Leading order case already worked out in [Kosower, Maybee, O’Connel, ’18]

● How to systematically generalize to higher orders?

● Our strategy: quantum worldline representation of the dressing of the massive 
matter propagator by interaction vertices with suitable time orderings. [Capatti, 
MZ, arXiv:2412.10864]

 Inspired by parallel efforts for manifest cancellation of IR singularities for collider 
observables: loop-tree duality, local unitarity, cross-free family representation...
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Worldline form of matter propagators

unconstrained

unconstrained
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Cancellation of superclassical q→0 divergence

Sum of two time orderings 
exactly cancels cut contributions 
without ordering.

Coupling to straightline WL with 
velocity 
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Quantum worldlines

“(uncut) quantum worldline” “cut quantum worldline”

● Defined as dressed propagators with symmetrized attachments on either side of cut.

● Building blocks for converting classical observables from amplitudes into WL form.
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Subleading small-q expansion: classical order

untwisted diagram 
as “base measure”

leading small-q limit; 
superclassical, cancels 
with cut

Subleading piece
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Subleading small-q expansion: cut + uncut

Subleading order no longer 
annihilates the Θ function perfectly
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Emergence of causality: I. matter propagators

Retarded worldline propagator

Previous slide:

Only causal orderings 
remain after sum!
All time arrows flow 
towards observable

from e.g. WL theory 
Feynman rules

[Mogull, Plefka, Steinhoff, ’20.
Jakobsen, Mogull, Plefka, Sauer, ’22]
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Compact all-multiplicity quantum WL expansion

● Symmetrized over vertices vi with incoming momentum pi and WL parameter τi.
Result: sum over forests, each inducing a partial ordering of vertices resembling a 
causality flow.
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Compact all-multiplicity quantum WL expansion
● Result: Reverse ordering for edges on the 

right of the cut; drop ordering if the 
edge crosses the cut
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Sewing 2 WLs: NNLO conservative impulse

Manifestly finite. Identical to scalar theory WL integrand before any integration.
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Emergence of causality: II. massless propagators

● Amplitude (KMOC) formalism contains only Feynman and cut propagators (and 
their complex conjugates).

● How to get retarded propagators in WL formalism? Use identity

● Double ladders work to all orders! E.g., product of 2 retarded propagators in WL 
integrand (horizontal dashed lines below) become 4 terms in KMOC integrand:
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Explicit checks
● Manifest finiteness & causality of classical limit after rewriting into WL form:

● Scalar QED at 2 loops
● Scalar theory at 2 loops
● Scalar therory, 3-loop & 4-loop ladder (iteration) diagrams
● Scalar theory, non-iteration double ladders to all orders

● Identical loop integrand with WL literature (PMEFT, WQFT)
● Scalar QED at 2 loops (conservative part)
● Scalar theory at 2 loops (full)

● Gravity next; though finiteness of classical limit, i.e. cancellation of iteration 
divergences, should have no essential difference with toy models
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Conclusion
● Scattering amplitudes (KMOC) and worldlines have both become new powerful 

tools for post-Minkowskian expansion of gravitational binary dynamics.

● Formulated systematic method to establish their equivalence using Schwinger 
parametrization to rewrite scattering amplitude integrands into WL form.

● Bonus: manifest finiteness of KMOC formalism for extracting classical 
observables, previously only well-understood at 1 loop.

● Demonstrates emergence of classical causality starting from only the S matrix.

● Various follow-up directions, e.g. connections with generalized Wilson lines 
[White, Laenen, Stavenga, Bonocore, Kulesza, Pirsch ...]
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