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INTRODUCTION

In the presence of external electromagnetic fileds,

Many quantum processes exist which are forbidden in vacuum such
as: photon-photon scattering, pair prodcution, etc.

In particular, transitions between bosons of different spins becomes
possible.

One of such process is the well-studied axion-photon mixing in a
magnetic field (Raffelt and Stodolsky (1988), Sikivie (1983)).

Similarly, photon-graviton mixing is possible in an external field
(Gertsenshtein (1962), Raffelt and Stodolsky (1988)).
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Einstein-Maxwell theory contains a tree level vertex in the coppling h—‌T—‌ :

h—‌ : graviton field ; T—‌ = F—¸F ‌¸ − 1

4
F¸˛F

¸˛”—‌

Taking F—‌ = F—‌ext + f —‌ (external field + the photon field) the photon-graviton
conversion in a constant EM field

»

2
h—‌
“
F—¸ext f

‌
¸ + f —¸ F

‌¸
ext

”
− »

4
h——F

¸˛
ext f¸˛

Due to smallness of the coupling » =
√
16ıGN this process has attracted less

attention than the axion-photon coupling.
Nevertheless, its relevance for astrophysics has been studied:

Photon-graviton conversion near a plusar was studied → very small
transition rate (Raffelt and Stodolsky (1988)).

It has been suggested that the same conversion due to a primordial
magnetic field could be responsible for the observed anisotropy of the
cosmic microwave background (Magueijo (1994), Chen (1995)).
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Renewed interest by the models with large extra dimensions,
additional massive Klauza-Klein gravitons which might enhance this
conversion (Arkani-Hamed et al (1998-9)).

Possible laboratory experiments are discussed in: Long et al (1994),
Deffayet et al (2000)).

In momentum space, this vertex becomes

Γ(tree)(k; ";F ) = ›—‌ "¸ Π
—‌;¸
(tree)(k;F ) ; Π

—‌;¸
(tree)(k;F ) = − i»

2
C—‌;¸ (1)

with

C—‌;¸ = F—¸k‌ + F ‌¸k— − (F · k)—‹‌¸ − (F · k)‌‹—¸ + (F · k)¸‹—‌ (2)

4)

p p0

k0 = k + k0

k

k0

=========
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k

=========
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k k = �k0
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+
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+
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In the presence of magnetic field graviton can couple to photon, in a similar way
as axion with two crutial differences:

Gravitons are massless

While axions couple only to one polarization, gravitons couple to both
polarizations with equal strength.
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EXPERIMENTAL ESTIMATES

Long et al (1994) considered the photon-graviton conversion in a homogeneous
electric field of a flat condensor (of volume V and in x direction) and obtained:

dffE

dΩ
|„∼0 =

»2E2

16(2ı)2
!2V 2 (3)

and in a static magnetic field of a selenoid (with radius R and length L and in z
direction):

dffB

dΩ
|„= ı

2
=
»2R2B2

16!2
sin2

“!L
2

”
J21 (R!) ; J1 → Spherical Bessel function (4)

For the latter case

dffB

dΩ
≈ 1:3× 10−15cm2 (5)

for V = 106cm3, B = 106G = 10T , ! = 12:4eV .
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SELECTION RULES

Physical polarizations
Photon: "¸⊥ ; "

¸
∥

Graviton: ›⊕—‌ = "⊥—"⊥‌ − "∥—"∥‌ , ›⊗—‌ = "⊥—"∥‌ + "∥—"⊥‌

CP invariance:

C: E → −E ; B → −B

P: E → −E ; B → +B

CP invariance: E → +E ; B → −B

Therefore

Photon polarizations: "⊥ is CP-odd , "∥ is CP-even
Graviton polarizations: ›⊕ is CP-even , ›⊗ is CP-odd

For a purely magnetic field ›⊕ couples only to "⊥ and ›⊗ only to "∥

For a purely electric field ›⊕ couples only to "∥ and ›⊗ only to "⊥
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ONE-LOOP

, whereΓ
1-loop
HE [Ā] =

= + + + · · ·

FIG. 1: Diagrammatic representation of the one-loop Heisenberg-Euler effective action. The dou-

ble line denotes the dressed fermion propagator accounting for arbitrarily many couplings to the

external field Ā, represented by the wiggly lines ending at crosses.

with Γl-loop
HE ∼ (α

π
)l−1, where α = e2

4π
" 1

137
is the fine-structure constant; we use the Heaviside-

Lorentz System with c = ! = 1. At each loop order l, Γl-loop
HE =

∫
x
Ll-loop

HE accounts for an

infinite number of couplings to the external field, and thus is fully nonperturbative in the

parameter eĀ. For completeness, we sketch the expansion to two-loop order in the following.

We begin by noting that the fermionic integral in Eq. (7) can be written as a functional

determinant,

iSψ[Ā + q] = ln det
(
−i /D[Ā + q] + m

)
. (21)

If evaluated at q = 0, this quantity amounts to the one-loop Heisenberg-Euler effective action

in the external field Ā, i.e., Γ1-loop
HE [Ā] = Sψ[Ā]; for a graphical representation, cf. Fig. 1.

Since Sψ is a one-loop expression, the two-loop order of the Schwinger functional is already

obtained by performing the photonic fluctuation integral ∼ Dq to Gaußian order. For this,

we expand Sψ about the external field Ā,

Sψ[Ā + q] = Sψ[Ā] +

∫ (
S

(1)
ψ [Ā]

)µ
qµ +

1

2

∫∫
qµ

(
S

(2)
ψ [Ā]

)µν
qν + O(q3), (22)

where we employed the shorthand notation

(
S

(n)
ψ

)σ1...σn
[Ā] :=

δnSψ[A]

δAσ1 . . . δAσn

∣∣∣∣
A=Ā

. (23)

The first-order term corresponds to a one-loop photon current induced by the field Ā, and

the Hessian is related to the one-loop photon polarization tensor Πµν [Ā] :=
(
S

(2)
ψ

)µν
[Ā]

evaluated in the external field Ā; for completeness note that this definition of the photon

polarization tensor differs from that of [57] by an overall minus sign. To Gaußian order, we

ignore the terms of O(q3) in the exponent, resulting in

eiW [Ā] " eiSψ [Ā]

∫
Dq ei

∫ (
S

(1)
ψ [Ā]

)µ

qµ− i
2

∫∫
qµ

(
D−1−Π[Ā]

)µν

qν . (24)

10

The photon-graviton conversion at one loop was done using worldline method

Bastianelli and Schubert (2005)
For arbitrary constant fields and for charged particles with spin 0; 1=2.
⇒ They obtained a compact two parameter integral representation

Bastianelli, Nucamendi and Schubert (2007)
⇒ studied the structure and magnetiude for various polarization
components.
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MIXED EM-GRAVITY AMPLITUDES IN THE WL

The effective action can be represented by ( ‰ parametrizes an additional
coupling to the scalar curvature R.)

Γ[g; A] = −
∞Z
0

dT

T

Z
PBC

Dx e−S[x ;g;A]

S[x ; g ;A] =

TZ
0

dfi
“1
4
ẋ—ẋ‌ + ieA—(x)ẋ

— + ‰R(x) +m2
”

(6)

External fields are specialized to plane waves:

V Ascal[k; "] = (−ie)"—
TZ

0

dfiẋ— e ik·x(fi) ; x—(fi) = x—0 + q—(fi)

x—0 ≡ 1

T

TZ
0

dfix—(fi) ;

Z
Dx(fi) =

Z
dDx0

Z
Dq(fi)

Z
dDx0 → (2ı)D‹D(· · · ) ;

Z
Dq(fi) → Gaussian → Wick contractions
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⟨q—(fii )q‌(fij)⟩ = −‹—‌GB(fii ; fij) ; GBij = |fii − fij | −
(fii − fij)

2

T

ĠBij = sign(fii − fij)− 2
fii − fij
T

; G̈Bij = 2‹(fii − fij)−
2

T

The inclusion of a constant EM field F—‌ we use Fock-Schwinger gauge
centered at x0: A—(x) = 1

2F‌—q
‌ . Therefore an additional term in the

worldline Lagrangian:

∆L =
1

2
ieq—F—‌ q̇

‌

Only quadratically in q— it can be taken into account → correlator:

⟨q—i q
‌
j ⟩ = −G—‌Bij

GBij =
T

2Z2

“ Z
sinZ e

−iZĠBij + iZĠBij − 1
”
= GTBji ; Z—‌ = eTF—‌

ĠBij =
i

Z

“ Z
sinZ e

−iZĠBij − 1
”
= −ĠTBji ; G̈Bij = 2‹i j −

2

T

Z
sinZ e

−iZĠBij

The path integral determinant becomesZ
Dq(fi) exp

h
−

TZ
0

dfi(
1

4
ẋ2 +

1

2
ie x · F · ẋ)

i
= (4ıT )−

D
2 det−

1
2

h sinZ
Z

i
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In flat space, the Gaussian path integration provides well-defined
parameter integral representations.
In the presence of gravity, more precise worldline regularizations are
needed, and it’s useful to exponentiate the path integral measure
using ghost fields.

The covariant measure is of the form:

Dx = Dx
Y

0≤fi<T

p
detg—‌(x(fi)) ; Dx =

Y
fi

dDx(fi) : standard measure

It can be represented more conveniently by introducing commuting a— and
anticommuting b—; c— ghosts

Dx = Dx
Y

0≤fi<T

p
detg—‌(x(fi)) = Dx

Z
PBC

DaDbDc e−Sgh[x;a;b;c]

Sgh[x; a; b; c] =

TZ
0

dfi
1

4
g—‌(x) (a

—a‌ + b—c‌) ; g—‌(x) = ”—‌ + »›—‌e
ik·x(fi)

Vertex operator for the graviton coupled to the scalar loop (‰̄ = ‰ − 1=4)

V hscal = (−»
4
)›—‌

tZ
0

dfi
“
ẋ—ẋ‌ + a—a‌ + b—c‌ + 4‰̄(k2‹—‌ − k—k‌)

”
e ik·x (7)
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Wick contraction rules for the ghosts:

⟨a—(fi1)a‌(fi2)⟩ = 2‹(fi1 − fi2)‹
—‌ ; ⟨b—(fi1)c‌(fi2)⟩ = −4‹(fi1 − fi2)‹

—‌

In perturbative expansion around flat space various worldline
Feynman diagrams are linearly and logaritmically UV divergnet
Ghost correlators eliminate these divergences
Finite ambiguities are left to be dealt with by regularization and
renormelaization conditions
These renormalization conditions produce a finite counterterm of the
form which must be added to the action:

∆CT =

TZ
0

dfi2VCT

Three regularization schemes (Bastianelli et al 1998,2000):

VMR = −1

8
R +

1

8
g—‌Γ˛—¸Γ

¸
‌˛ ; VDR = −1

8
R

VTS = −1

8
R − 1

24
g—‌g¸˛g–ȷΓ

–
—¸Γ

ȷ
‌˛ (8)

Linear order in graviton, dominant part is − 1
8
R then all schemes are equivalent!
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In the case of the spin 1=2 particle the coupling to R is fixed by the Dirac
equation and corresponds to ‰̄ = 0 (Bastianelli and Zirotti 2002)

Photon-graviton amplitude in a constant field/scalar loop:

⟨h(k1)A(k2)⟩ =

∞Z
0

dT

T
e−m

2T

Z
PBC

DxDaDbDc V hscal[k1; ›
h]V Ascal[k2; "

A]

× exp
h
−

TZ
0

dfi
“1
4
(ẋ2 + a2 + b · c) + 1

2
iex—F—‌ ẋ

‌
”i

(9)

After splitting x(fi) = x0 + q(fi), the path integral
R
Dq(fi) is Gaussian and thus

can be reduced to Wick contraction:

⟨h(k1)A(k2)⟩ = (2ı)D‹(k1 + k2)

∞Z
0

dT

T
e−m

2T (4ıT )−
D
2 det−

1
2

h sinZ
Z

i
×
D
V hscal[k1; ›

h]V Ascal[k2; "
A]
E
= (2ı)D‹(k1 + k2)›

h
—‌"

A
¸ Π

—‌;¸
scal (k)

where
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k1 ≡ k and we define

Π
—‌;¸
scal (k) =

e»

4(4ı)
D
2

∞Z
0

dT

T
e−m

2TT−D
2 det−

1
2

h sinZ
Z

i

×
TZ

0

dfi1

TZ
0

dfi2e
−k·ḠB12·k I—‌;¸scal (10)

I—‌;¸scal = −
“
G̈—‌B11 − 2‹11‹

—‌
”“
k · ¯̇GB12

”¸
−
h
G̈—¸B12

“
¯̇GB12 · k

”‌
+ (—↔ ‌)

i
+
“
¯̇GB12 · k

”—“ ¯̇GB12 · k
”‌“

k · ¯̇GB12

”¸
− 4‰̄(‹—‌k2 − k—k‌)

“
k · ¯̇GB12

”¸
Some remarks:

Same type of two parameter integral that appear in one-loop photon
vacuum polarization in a constant field (Adler 1971; Ritus 1975; etc)
Low-field limit ⇒ nonzero amplitude for odd number of interactions
Singular at T = 0 ⇒ UV divergences ⇒ in D = 4 some terms
logarithmic divergence
Those divergent terms involve the field only linearly, and thus easy to
compute by expanding to the linear order in F .
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In DR, the result of this divergnet term is written as

Π
—‌;¸
scal;div(k) =

ie2»

3(4ı)2
1

D − 4
C—‌;¸ (11)

where C—‌;¸ is the tree-level vertex:

C—‌;¸ = F—¸k‌ + F ‌¸k— − (F · k)—‹‌¸ − (F · k)‌‹—¸ + (F · k)¸‹—‌ (12)

which as expected is the momentum version of the tree-level interaction.

Renormalization: by subtracting the amplitude at zero field and zero
momentum limit ⇒ Done under the T -integral leading to Π̄:

Π̄
—‌;¸
scal (k) =

e»

64ı2

∞Z
0

dT

T 3
e−m

2T

ȷ
det−

1
2

h sinZ
Z

i

×
TZ

0

dfi1

TZ
0

dfi2e
−k·ḠB12·k I—‌;¸scal +

2

3
ieT 2C—‌;¸

ff
(13)

Similar expression can be obtained for the spinor loop case!
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In order to compare the one-loop and the tree-level contributions, we normalize
the former by the latter:

Π̂
hA
scal;spin(!̂; B̂; Ê) ≡ Re

„
Π̄
hA
scal;spin(!̂; B̂; Ê)

− i
2
»ChA

«
; !̂ =

!

m
; B̂ =

B

Bcr
; Ê =

E

Ecr

(h = ⊕;⊗) ; (A =⊥; ∥) ; ChA = ›h—‌C
—‌;¸"A¸ (14)

Special cases:
Strightforward numerical evaluation for !̂ < !̂cr = 2 (after rotaiting to
Euclidean time: T = i s)
Small B, arbitrary ! (→ integrals over Airy functions)
Large B limit:

Π̂
hA
scal(!̂; B̂) ∼ − ¸

12ı
ln B̂ ; Π̂

hA
spin(!̂; B̂) ∼ − ¸

3ı
ln B̂

! = 0, arbitrary B limit:

Π̂
⊕⊥
scal;spin(!̂ = 0; B̂) = −2ı¸

m4

“ 1

B̂

@

@B̂
+

@2

@B̂2

”
LEH
scal;spin(B̂)

Π̂
⊗∥
scal;spin(!̂ = 0; B̂) = −4ı¸

m4

1

B̂

@

@B̂
LEH
scal;spin(B̂)

where LEH
scal;spin are the renormalized Euler-Heisenberg lagrangian.
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DICHROISM STARTS AT ONE-LOOP
For realistic parameters, one-loop corrections are small compared to
tree-level amplitudes.
There is a qualitative difference between tree-level and one-loop
effects.
Tree-level photon-graviton conversion does not lead to dichroism
(rotation of the polarization vector of an EM wave), unlike the
photon-axion case. This is because both polarization components
have equal conversion rates at the tree level.
At the one-loop level, absorption coefficients become
polarization-dependent: ‚∥ ̸= ‚⊥

Light Propagation in a B field.

! observable:

dichroism (polarization-dependent absorption) induces rotation

B

||

rotation: |∆θ| ! 1
4 ∆κL sin 2θ, κ: absorption coefficient

Holger Gies External Fields as a Probe for Fundamental Physics

This is the leading contribution to magnetic dichroism in the standard model
including Einstein-Maxwell theory! (M. Ahles et al 2009)
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1PR CONTRIBUTIONS IN QED

In vacuum QED, there is, of course, no one-photon amplitude because of Furry’s
theorem.
In the presence of external fields, one-photon tadpole diagrams in general will
be non-zero and can be importnant:

kµ

In both scalar and spinor QED, the one-loop one-photon amplitude in a constant
field vanishes, since

A constant field emits only photons with zero energy-momentum, thus
there is a factor of ‹(k).
Because of gauge invaraince, this diagram in a momentum expansion
starts with term linear in momentum.
‹(k)k— = 0

If the tadpole vanishes, all diagrams containing it must vanish too!!!
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HANDCUFF DIAGRAM AND THE TWO-LOOP EHL

+ + + . . .

FIG. 3: One-particle reducible diagrams constituting the last term in Eq. (26). For the definition

of the double line, cf. Fig. 1.

Γ
2-loop
HE [Ā] = +

FIG. 4: Diagrams constituting the two-loop Heisenberg-Euler effective action. Obviously, we have

Γ2-loop
HE = Γ2-loop

HE

∣∣
1PI

+Γ2-loop
HE

∣∣
1PR

. Note that the first diagram amounts to the leftmost one in Fig. 2,

where it is drawn in a slightly different way; for the definition of the double line, cf. Fig. 1.

corresponding to the Dyson series of the full one-loop resummed photon propagator. In the

last term of Eq. (26), this resummed propagator interconnects two one-loop photon currents

∼
(
S

(1)
ψ [Ā]

)
. All the diagrams arising when adopting the expansion (29) in the last term in

Eq. (26) are one-particle reducible; see Fig. 3.

In turn, the two-loop Heisenberg-Euler effective action consists of a 1PI and a 1PR

diagram and is given by

Γ2-loop
HE [Ā] =

1

2
Tr(DΠ[Ā])

︸ ︷︷ ︸
=:Γ2-loop

HE

∣∣
1PI

+
1

2

∫∫ (
S

(1)
ψ [Ā]

)
µ
Dµν

(
S

(1)
ψ [Ā]

)
ν

︸ ︷︷ ︸
=:Γ2-loop

HE

∣∣
1PR

. (30)

The existence as a matter of principle of the 1PR term in Eq. (30) has been known for a

long time. It has, however, been argued that this term vanishes for constant external fields

[4, 54]. Let us reproduce this argument for reasons of completeness: a crucial building block

of the 1PR term is
(
S

(1)
ψ [Ā]

)
ν
, which corresponds to the one-loop photon current which will

be called jµ
1-loop[Ā] below. For a constant external field, jµ

1-loop[Ā] does not depend on any

spacetime point x either. On the other hand, jµ
1-loop[Ā] is a Lorentz 4-vector. The vector

index of the current can only be generated from the building blocks F̄ , ∂ and x. However,

for constant fields ∂µF νκ = 0 and for an x independent current, all conceivable combinations

with one vector index vanish and so does the current (an explicit verification of this fact in

momentum space is given below).

While this part of the argument holds true in the full analysis, it does not necessarily

imply that the 1PR diagram in Fig. 4 vanishes. In fact, the two currents in the 1PR diagram

are convoluted with a photon propagator, describing a long-range force with an IR singularity

∼ 1/p2 in the propagator. Hence, it is a quantitative question as to whether the currents

approaching zero are outbalanced by the IR singularity of the photon propagator. In the

12

Dittrich and Reuter 1984:
They argue that the handcuff diagram is zero because of Lorentz
invariance.
Fradkin, Gitman and Shvartsman 2011:
They argue that in the constant and homogeneous external field
combined with a plane wave, all diagrams containing tadpole, are
equal to zero.

Tadpole contribution to the EHL:
Gies and Karbstein, JHEP 2017, looked at the problem again: such diagrams
can give finite values beacuse of the infrared divergence of the connecting
photon propagator.Z

dDk ‹D(k)
k—k‌

k2
=
”—‌

D
⇒ L(2−loop)1PR

EH =
1

2

@L(1)
EH

@F—‌
@L(1)

EH

@F—‌
(15)
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L(1)
EH = − 1

8ı2

∞Z
0

dT

T 3
e−m

2T
n (eaT )(ebT )

tan(eaT )tanh(ebT)
− 2

3
(eT )2F − 1

o
(16)

a =
“p

F2 + G2 −F
” 1

2
; b =

“p
F2 + G2 + F

” 1
2

F =
1

4
F—‌F

—‌ =
1

2
(B2 − E2) ; G =

1

4
F—‌ F̃

—‌ = −E · B (17)

where L(1)
EH is the one-loop EH Lagrangian given by

, whereΓ
1-loop
HE [Ā] =

= + + + · · ·

FIG. 1: Diagrammatic representation of the one-loop Heisenberg-Euler effective action. The dou-

ble line denotes the dressed fermion propagator accounting for arbitrarily many couplings to the

external field Ā, represented by the wiggly lines ending at crosses.

with Γl-loop
HE ∼ (α

π
)l−1, where α = e2

4π
" 1

137
is the fine-structure constant; we use the Heaviside-

Lorentz System with c = ! = 1. At each loop order l, Γl-loop
HE =

∫
x
Ll-loop

HE accounts for an

infinite number of couplings to the external field, and thus is fully nonperturbative in the

parameter eĀ. For completeness, we sketch the expansion to two-loop order in the following.

We begin by noting that the fermionic integral in Eq. (7) can be written as a functional

determinant,

iSψ[Ā + q] = ln det
(
−i /D[Ā + q] + m

)
. (21)

If evaluated at q = 0, this quantity amounts to the one-loop Heisenberg-Euler effective action

in the external field Ā, i.e., Γ1-loop
HE [Ā] = Sψ[Ā]; for a graphical representation, cf. Fig. 1.

Since Sψ is a one-loop expression, the two-loop order of the Schwinger functional is already

obtained by performing the photonic fluctuation integral ∼ Dq to Gaußian order. For this,

we expand Sψ about the external field Ā,

Sψ[Ā + q] = Sψ[Ā] +

∫ (
S

(1)
ψ [Ā]

)µ
qµ +

1

2

∫∫
qµ

(
S

(2)
ψ [Ā]

)µν
qν + O(q3), (22)

where we employed the shorthand notation

(
S

(n)
ψ

)σ1...σn
[Ā] :=

δnSψ[A]

δAσ1 . . . δAσn

∣∣∣∣
A=Ā

. (23)

The first-order term corresponds to a one-loop photon current induced by the field Ā, and

the Hessian is related to the one-loop photon polarization tensor Πµν [Ā] :=
(
S

(2)
ψ

)µν
[Ā]

evaluated in the external field Ā; for completeness note that this definition of the photon

polarization tensor differs from that of [57] by an overall minus sign. To Gaußian order, we

ignore the terms of O(q3) in the exponent, resulting in

eiW [Ā] " eiSψ [Ā]

∫
Dq ei

∫ (
S

(1)
ψ [Ā]

)µ

qµ− i
2

∫∫
qµ

(
D−1−Π[Ā]

)µν

qν . (24)
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This fact, adds on the standard diagram for the two-loop EHL (studied by Ritus
about 50 years ago!):

L2-loop
HE = +

FIG. 1: Feynman diagrams constituting L2-loop
HE = L2-loop

1PI + L2-loop
1PR . The double solid line denotes

the fermion propagator dressed to all orders in the external electromagnetic field.

Ref. [1], who showed that it is fully determined by L1-loop
HE and reads

L2-loop
1PR =

4

d

∂L1-loop
HE

∂F µν

∂L1-loop
HE

∂Fµν
. (2)

This expression is obtained upon contraction of two one-loop photon currents j1-loop
µ with

the photon propagator,

Dµν(k) =
1

k2 − iε

(
gµν − (1 − ξ)

kµkν

k2 − iε

)
, (3)

where ξ = 1 in Feynman gauge, and integrating over the momentum transfer k; ε → 0+.

More specifically, the formal expression corresponding to the handcuff Feynman diagram

depicted in Fig. 1 reads

L2-loop
1PR =

1

V (d)

∫
ddk

(2π)d
j1-loop
µ (k)Dµν(k)j1-loop

ν (−k) . (4)

In momentum space, the 1PI photon current in constant electromagnetic fields is given

by [1]

jµ(k) = 2i
∂L1PI

∂F αµ
(2π)dδ(d)(k) kα . (5)

Here, the overall delta function in d space-time dimensions reflects the fact that a constant

field cannot supply momentum to virtual charged particle fluctuations, while the linear de-

pendence of kα is a direct consequence of the Ward identity ensuring kµjµ(k) = 0. Let us

emphasize, that the current (5) encompasses all possible 1PI contributions of virtual particle

fluctuations arising in QED in constant external fields, which exhibit a single coupling to the

photon field. For QED at zero field, this current vanishes because of Furry’s theorem, for-

bidding non-zero contributions from fermion loops with an odd number of photon couplings.

Upon limitation to the one-loop contribution of Eq. (5), which amounts to substituting

L1PI → L1-loop
HE , and making use of the fact that

∫
ddk

(2π)d

kαkβ

k2 − iε

[
(2π)dδ(d)(k)

]2
=

gαβ

d

∫
ddk

(2π)d

[
(2π)dδ(d)(k)

]2
=

gαβ

d
V (d) , (6)

4

Karbstein in 2020
studied the strong magnetic field limit of the all-loop EHL ⇒ beyond one-loop
this limit is fully determined by 1PR contributions.
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ONE-LOOP TADPOLE CONTRIBUTION TO THE
PROPAGATOR

Eq. (2) follows straightforwardly from Eq. (4).

Prior to the recent analysis performed in Ref. [1], this contribution was believed to vanish

in constant fields [7, 9], based on the argument that (2π)dδ(d)(k) kα = 0 in Eq. (5), thereby

missing the subtlety that, upon convolution with the infrared divergent photon propagator,

the current (5) might induce finite 1PR tadpole contributions in Feynman diagrams. Finally,

note that L2-loop
HE may alternatively be viewed as a one-loop calculation performed with the

charged particle propagator in the constant field already accounting for quantum corrections

at one-loop level. The latter is depicted in Fig. 2. Identifying the in- and outgoing charged

+

FIG. 2: One-loop corrections to the charged particle propagator in an external electromagnetic

field.

particle lines in Fig. 2 to form loops, the diagrams shown in Fig. 1 are recovered.

B. Charged particle propagators in constant electromagnetic fields

Meanwhile, Refs. [5, 6] have explicitly determined the one-loop tadpole corrections for

the propagators of both charged scalar and spinor particles in constant fields within the

worldline formalism. The respective Feynman diagram is depicted in Fig. 2 (right). Their

finding is that in momentum space this 1PR contribution to the charged particle propagator

can be expressed similarly to Eq. (2) as

G1-loop(k|F )
∣∣
1PR

=
∂G0-loop(k|F )

∂F µν

∂L1-loop
HE

∂Fµν
, (7)

where G0-loop(k|F ) denotes the charged scalar/spinor propagator dressed to all orders in the

constant external field F [4, 15], depicted as double solid line in Figs. 1 and 2.

III. FROM 1PI TO 1PR TADPOLE DIAGRAMS IN CONSTANT FIELDS

Here, we argue that the structural similarity of Eqs. (2) and (7) is not a coincidence,

but rather a direct consequence of the fact that no momentum can be transferred from the

induced photon current (5) in constant fields. We find that this implies that all 1PR tadpole

contributions to a given quantity follow by differentiations of lower loop diagrams for the

5

For the electron propagator, a tadpole correction exists already at the
the one-loop level.
In scalar QED (Edwards and Schubert, 2017)
In spinor QED (N.A, Bastianelli, Corradini, Edwards and Schubert,
2017)
Constant crossed fields, constant magnetic fields, and plane waves
(N. A, Edwards and Ilderton, 2019).
Generalized the above Gies-Karbstein equation

S(1)PR(p) =
@S(p)

@F—‌

@L(1)
EH

@F—‌
(18)

where S(p) is the dressed propagator:
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BACK TO PHOTON-GRAVITON CONVERSION IN A
CONSTANT FIELD

Photon-graviton diagram also has a previously overlooked tadpole contribution

Using the momentum integralZ
dDk ‹D(k)

k—k‌

k2
=
”—‌

D
(19)

on the connecting propagator, we get
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Scalar loop

Γtadpolescal (k¸; "˛; ›—‌ ;F»–) = −i ¸»
8ı

“
" · F · › · k + " · › · F · k

”
×

∞Z
0

dz

z
e−

m2

eB z
coth(z)− (1=z)

sinh(z)
(20)

Spinor loop

Γtadpolespin (k¸; "˛; ›—‌ ;F»–) = i
¸»

4ı

“
" · F · › · k + " · › · F · k

”
×

∞Z
0

dz

z
e−

m2

eB z
coth(z)− tanh(z)− (1=z)

tanh(z)
(21)
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RENORMALIZATION

For D = 4 these contributions contain UV divergences, stemming from the terms
linear in the field. Expanding out the tadpole in powers of the external field we
see that the leading term, which is linear in the field is removed by photon wave
function renormalization

Γtadpole
scal (k¸; "˛; ›—‌ ;F»–) = −i ¸»

8ı

“
" · F · › · k + " · › · F · k

”
×

∞Z
0

dz

z
e−

m2

eB
z
“coth(z)− (1=z)

sinh(z)
− 1

3

”
(22)

Γtadpole
spin (k¸; "˛; ›—‌ ;F»–) = i

¸»

4ı

“
" · F · › · k + " · › · F · k

”
×

∞Z
0

dz

z
e−

m2

eB
z
“coth(z)− tanh(z)− (1=z)

tanh(z)
+

2

3

”
(23)
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However, note that, unlike the renormalization which we performed on
the irrducible contribution, this one is nothing new; the contribution of the
tadpole linear in the field corresponds to

which makes it clear that this subtraction is just a special case (the
zero-momentum limit) of the QED photon wave function renormalization.
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EXTRA DIAGAM

Like the tadpole contribution, it has an UV divergence from the field-independent
part of the vacuum polarization tensor (fermion loop in vacuum)

Γ̄ext
spin = vF˛

“
Π̄
˛¸(k; F )− Π̄

˛¸(k; 0)
”
"¸ ; vF = −i»{›; F} · k

k2
(24)

Π̄
˛¸
spin(k; F ) =

e2

8ı2

∞Z
0

dT

T
e−m

2T

1Z
0

du
n
det

1
2

h Z
tanZ

i
I˛¸spin e

−Tk·GB12·k +
2

3
(‹˛¸k2 − k˛k¸)

o
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WARD IDENTITY

Let us discuss how the Ward identities work for the photon-graviton amplitude in
a constant field, returning to off-shell unrenormalized amplitudes. It is easy to
show that Ward identity holds for each of the three contributios:

Γ
(irr);(tadpole);(extr)
spin [−k; ›; k; ‹";F ] = 0 ; ‹"— = k—(from gauge invariance) (25)

Now the gravitational Ward identity:

Γ
(irr)
spin[k0; ‹›; k; ";F ] = Γspin[k0 + k; "̃;F ] + Γspin[k0; "̃F ; k; ";F ]

‹›—‌ = k—0 “0 + k‌0 “
—
0 (from diffeomorphism invariance)

"̃— ≡ »(fi · “0)— ; "̃—F ≡ −»(F · “0)— (26)

RHS represents one- and two-photon amplitudes, the former vanishes after
k0 = −k.
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Now, using (N.A, Balli, Corradini, Dávila, Schubert (2019))

‹v—F = −"̃—F − i»
k0 · F · “0

k20
k—0 (27)

We can combine the irreducible and the extra contributions and get the following
on-shell Ward identity

Γ
(irr)
spin[−k; ‹›; k; ";F ] + Γ

(ext)
spin [−k; ‹›; k; ";F ] = 0 (28)

while the tadpole contribution on-shell becomes invariant by itself

Γ
(tadpole)
spin [−k; ‹›; k; ";F ] = 0 (29)

Naser Ahmadiniaz Institute of Theoretical Physics

Tadpole contribution to magnetic photon-graviton conversion



29

COMPARISON WITH THE MAIN DIAGRAM

These amplitudes are of the same structure that we obtained from the main
diagram.

However, they do not contribute to dichroism discussed for the main diagram
since the polarizations are still bound up in the tree-level vertex
(" · F · › · k + " · › · F · k).

This means that the primary source of dichroism continues to be the process
described in the main diagram, and the additional reducible contributions do not
introduce any competing effects.

Thus the analysis by Ahlers et al remains unaffected!
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SUMMARY

We have presented the first example of a Gies-Karbstein addentum in
Einstein-Maxwell theory (see arXiv: 2122.01980 [hep-th] ).

To appear soon!!

In the ultra strong-field limit, the tadpoles have been shown even to
dominate the (multi-loop) effective action in QED (Karbstein 2019). It
would be interesting to extend this analysis to the Einstein-Maxwell
case.
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QUESTIONS?

Thank you for your attention!

Naser Ahmadiniaz Institute of Theoretical Physics

Tadpole contribution to magnetic photon-graviton conversion


