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Motivation

Traditional strong-field setups tend to face similar challenges:

(beyond computational complexity)

High multiplicity/loop processes

B can dominate ‘lower-order’ in strong fields, resummation
required [Nishikov-Ritus, Narozhny, Ritus, Morozov, Di Piazza,

Mironov-Meuren-Fedotov, Torgrimsson,...]

Depletion/backreaction effects

B background field is fixed, backreaction only perturbative

Focusing/spatial inhomogeneity

B physical fields have non-trivial profiles & dynamics in
transverse plane



Many approaches to dealing with these issues...

...few analytic results

A notable exception is worldline approaches, where
all-multiplicity master formulae can be derived

[Edwards-Schubert, Schubert-Shaisultanov, Ahmadiniaz-Lopez-Lopez-Schubert,

Copinger-Edwards-Ilderton-Rajeev,...]

Spoiler Alert: not gonna to tell you anything about worldline
(but will mention potential connections later)!
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Today

Try to convince you that there are certain toy scenarios where
all three of these issues (high-multiplicity, depletion, focusing)

can be addressed at once!

Start with a chat about focused fields
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Focused fields

Plane wave strong fields do not feature spatial inhomogeneity

Recall APW = x⊥ ȧ⊥(x−) dx−

Think about a laser, for example: these things are typically
focused in some sense

⇒ important consequences for allowed kinematics (e.g.,
photon emission spectra)

Want background fields with focusing features



Flying focus

Consider wave eq in Minkowski, lightfront coordinates
ds2 = 2(dx− dx+ − |dz |2)

Flying focus solutions of massless wave equation [Bateman,

Brittingham, Sezginer, Hillion]

Φ(x) =
f (σ)

1 + i k x+
, σ := x− − i k

|z |2

1 + i k x+

for k ≥ 0 and f (σ) arbitrary.



Properties
These are complex solutions to the wave eq – typically,
consider Re(Φ) as the ‘physical’ field

To see what’s going on, take

f (σ) = e−iωσ , flying focus beam

Then at (z , z̄) = (0, 0)

Re(Φ)(x+, x−) =
cos(ω x−)

1 + k2 (x+)2
− k x+ sin(ω x−)

1 + k2 (x+)2

Focal width ∼ 1/
√
ω k
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FF Maxwell fields

Many ways to lift Φ to a Maxwell field [Sezginer, Ramsey-et al.,

Formanek-et al.,...]

Anything with Fab ∝ Φ will have desired properties

Great, but there is bad news:

• no examples where background-coupled eoms can be
solved explicitly

• typical studies are numerical or perturbative in nature
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Claim: we can cook up a FF Maxwell field for which
background-coupled eoms can be solved exactly

(at least, for massless fields)

But first, some notation...
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2-spinor variables

Given any 4-vector vµ, contract w/ Pauli matrices

vαα̇ := vµ σαα̇µ =
1√
2

(
v 0 + v 3 v 1 − i v 2

v 1 + i v 2 v 0 − v 3

)
Manifesting local isomorphism
Spin(4,C) ∼= SL(2,C)× SL(2,C)

Raise and lower spinor indices as:

aα = εαβ aβ , aβ = aα εαβ , etc., for εαβ =

(
0 1
−1 0

)
= εαβ
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Spinor conventions

Use lightfront variables

xαα̇ =

(
x+ z̄
z x−

)

Spinor dyad: oα = (1, 0) = ōα̇, ια = (0, 1) = ῑα̇
Normalized: 〈ι o〉 = 1 = [ῑ ō]

So
ds2 = εαβ εα̇β̇ dx

αα̇ dxββ̇

x+ = xαα̇ oα ōα̇, z = xαα̇ ια ōα̇, etc.



FF gauge field

Let F(σ) :=
∫ σ

ds f (s), and defined C-gauge potential

Aαα̇ =
F(σ)

1 + i k x+
oα

(
ῑα̇ −

i k z̄

1 + i k x+
ōα̇

)
=

F(σ)

1 + i k x+
oα s̃α̇

for

s̃α̇ := ῑα̇ −
i k z̄

1 + i k x+
ōα̇



Can always make a real gauge field:

AR
αα̇ =

F(σ)

1 + i k x+
oα s̃α̇ +

F(σ)

1− i k x+
sα ōα̇

for

sα = ια +
i k z

1− i k x+
oα

Easy to show that FR
ab ∝ Re(Φ), but...

The bad news:

Eoms for charged fields are hopeless (analytically)
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Strange idea

Instead of taking real field, consider the original complex field!

Before seeing why this is interesting...

...why should we care about complex fields?

Time for a quick digression...
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Coherent states & backgrounds

Let

• |in〉, 〈out| be collections of particles

• α, β be incoming/outgoing coherent states of photons

• S [A] the QED S-matrix in a background field A

Fact: [Kibble, Frantz]

〈out; β|S |α; in〉 = 〈out|S [A]|in〉

for

Aµ(x) =

∫
d4`

(2π)3
δ(`2) Θ(`0)

(
εhµ αh(`) e−i`·x + ε̄hµ β̄h(`) ei`·x

)
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When α = β, Aµ is real-valued and we have the standard
background field S-matrix

α 6= β ⇒ backreaction on/depletion of initial coherent state

• backreaction/depletion modeled by complex backgrounds

[Zwanziger, Endlich-Penco, Ilderton-Seipt, Ekman-Ilderton, Aoude-Ochirov]



Upshot

Complex gauge fields can still encode real physics when they
are coherent states

OK, back to our complex FF gauge field
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Spinorial field strengths

For any gauge potential Aαα̇, the field strength can be
decomposed as [Penrose]

Fαα̇ββ̇ = ∂αα̇Aββ̇ − ∂ββ̇Aαα̇ = εαβ F̃α̇β̇ + εα̇β̇ F̂αβ

Here F̃α̇β̇ = F̃(α̇β̇), F̂αβ = F̂(αβ)

• F̃α̇β̇ ↔ self-dual part of F

• F̂αβ ↔ anti-self-dual part of F
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Self-dual FF

For the complex FF gauge field Aαα̇, find

F = dA = F̃α̇β̇ dx
αα̇ ∧ dxα

β̇ , F̃α̇β̇ =
Φ

2
s̃α̇ s̃β̇

Upshot: this is a complex, self-dual flying focus Maxwell field!

(has appeared before in other guises [Hillion,...] )
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Who cares?

All FF gauge fields built from Φ complex in first instance (as
Φ is complex)

Background-coupled equations typically intractable PDEs
(contrast with plane waves)

Big difference in this case: self-duality
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Self-duality as depletion

Recall that complex coherent states encode depletion
Taking β = 0 ↔ total depletion of initial coherent state

SD background ↔ total depletion of α+ 6= 0, α− = 0

SD flying focus field

α1(`) =
4π

k
F(`−) exp

(
− `2

⊥
2k `−

)
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Upshot

SD FF solution:

• complex Maxwell field with spatial inhomogenity, and

• can be viewed as model for total beam depletion

OK, but we really want to solve background-coupled eoms and
compute scattering amplitudes...

...twistor theory to the rescue!
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Twistor theory

Broadly speaking: mathematical framework which translates

• physical data on spacetime into

• geometric data on complex projective variety, PT ⊂ CP3

[Penrose, Ward, Atiyah-Hitchin-Singer, Sparling, Woodhouse, LeBrun,...]

What does this have to do with SD FF?
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First key fact:

Theorem (Ward 1977)
∃ a 1:1-corresp between SD gauge fields on M and
holomorphic vector bundles E → PT (+ technical conditions)

In real money: SD Aαα̇(x) encoded in a partial connection

D̄ = ∂̄ + a , a ∈ Ω0,1(PT,EndE ) , ∂̄a + [a, a] = 0

Corollary: SD equations are classically integrable!
[Belavin-Zakharov]
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Upshot

SD FF field has a twistor description in terms of an integrable
differential operator D̄ = ∂̄ + a

OK...still waiting to care...

Aside: others have used integrability of SD sector of
QED/QCD

[Dunne-Schubert, TA-Mason-Sharma, TA-Ilderton-MacLeod, TA-Bogna-Mason-Sharma, Garner-Paquette,

Dixon-Morales, Bittleston-Costello-Zeng,...]
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Second key fact:

Theorem (Ward-Wells 1991)
∃ an isomorphism between:
i.) helicity h linear fields coupled to SD background, and
ii.) H0,1

D̄
(PT,O(2h − 2)⊗ EndE )

In real money: can solve massless, charged eoms with data
on PT holomorphic wrt D̄.
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Upshot

Find suitable analytic data on PT

⇔

Get exact solutions to background-coupled eoms in SD FF!



What do we mean by ‘suitable’ data?

• specified by on-shell momentum pαα̇, p2 = 0

• reduce to SD PW Volkov solns when k → 0

Time for a bit more spinor yoga...
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On-shell kinematics

Easy to see that p2 ∝ det(pαα̇), so p2 = 0 ⇔ pαα̇ = κα κ̃α̇

Helpful notation: εβα κ
α
i κ

β
j := 〈i j〉 , εβ̇α̇ κ̄

α̇
i κ̄

β̇
j := [i j ]

e.g., Mandelstam invariants sij = (pi + pj)
2 = 2 〈i j〉 [i j ]
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Charged scalar

Consider (∂ − i eA)2φ = 0

Find exact solution

φ(x) =
e−i Sp(x)

1 + i k x+
, Sp(x) :=

p · x − i k p− x
2

1 + i k x+
−i e p

p+
F(σ)

for p ≡ pz

Sp(x) solves Hamilton-Jacobi equation (∂Sp + e A)2 = 0



Gluon wavefunctions

Embed Aαα̇ ↪→ Cartan of g

Can solve for background-coupled gluon wavefunctions:

a
(+)
αα̇ (x) = T

oα K̃α̇(x)

〈o κ〉 (1 + i k x+)
e−iSp(x)

for T a generator of g and

K̃α̇ = κ̃α̇ − i e
f (σ)

〈κ ι〉
ῑα̇ −

i k

1 + i k x+

(
〈o|x |κ̃]− i e

z̄ f (σ)

〈κ ι〉

)
ōα̇

Similar story for neg. helicity gluons



Summary so far...

Can solve background-coupled, massless eoms in the SD flying
focus field

These are the only known exact solutions in a FF background!

They have some interesting properties:

• almost WKB-exact

• both κ̃α̇ and κα effectively dressed

• neg. chirality dressing controlled by k parameter of
background



Great, but can we do any new computations?

YES!

Two examples:

1 Non-linear, ultrarelativistic Compton scattering in QED

2 MHV gluon scattering in pure Yang-Mills
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NLC scattering

Massless scalar QED, e− → e− + γ+ in SD FF background

M(p → p′ + `) =

∫
d4x ε̄µ+

(
φ̄p′ Dµφp − φp Dµφ̄p′

)
ei`·x

for

φ̄p′ =
e−iS−p′ (x)

1 + i k x+

Can perform dx+ and d2x⊥ integrals by contour deformations
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Leaves

M =
i e

2π k
δ

(
p′+ − p+ −

(p⊥ − q⊥)2

2`−

)
exp

[
−(p′ + `− p)2

⊥
2 k `−

]
×
(

p p′+ − p′ p+

(p− p′)2

)∫
dx− ei S̃(x−)

where

S̃(x−) := (` + p′ − p)− x
− + e

(
p′

p′+
− p

p+

)
F(x−)



In the case of the FF beam, where

F(σ) =
E0

ω
e−iω σ

final integral can be performed exactly too!

∫
dx− ei S̃(x−)

=
∞∑
n=0

2π

n!
δ((` + p′ − p)− − n ω)

(
e E0

ω2

[
p′

p′+
− p

p+

])n

cf., ‘harmonic spectrum’ in monochromatic PW
[Berestetskii-Lifshitz-Pitaevskii]



For instance, when selectron scatters into kinematic region
forbidden in PWs, find spread of emitted photon frequencies

0.0 0.5 1.0 1.5 2.0 2.5 3.0
θ

0.5

1.0

1.5

2.0

2.5

l0/ω

n = 1

n = 2

n = 3

n = 4

where θ is scalar scattering angle
solid lines are PW spectra



MHV gluon scattering

Second example, g− → g+ + (n − 2) g− in YM

Find even simpler result:

AMHV
n =

〈r s〉4

〈1 2〉 · · · 〈n 1〉

∫
d4x

(1 + i k x+)4

n∏
i=1

e−i Si (x)

= (2π)3 δ

(
n∑

i=1

pi +

)
δ2

(
n∑

i=1

pi ⊥

)
〈r s〉4

〈1 2〉 · · · 〈n 1〉

×
∫

dx−
n∏

i=1

e−i S̃i (x
−)

for S̃i(x
−) := pi −x

− − i ei
pi

pi +
F(x−)



Again, can do final integral for FF beam:∫
dx−

n∏
i=1

exp

[
−i
(
pi − x

− +
ei pi

ω pi +
e−iω x−

)]

=
∞∑
q=0

2π

q!
δ

(
n∑

i=1

pi − − q ω

)(
E0

ω2

n∑
j=1

ej pj

pj +

)q

This formula holds for any n!
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Take home message

Using self-duality, able to:

• describe gauge field w/ spatial inhomogeneity

• solve background-coupled eoms exactly

• obtain analytic formulae for amplitudes

• go to high-multiplicity for some processes

• view as model for total depletion

Of course, plenty of room for improvement!

• focus moving at speed of light

• total depletion

• massless probes only

• ...
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Worldline challenge

Is it possible to recover all-multiplicity results from worldline
master formulae when background is self-dual?



Last but not least...

THANK YOU

Anton, James, Karthik and Patrick!


