

Isospin symmetry in the T = 1, A = 62 triplet

UK Nuclear Physics Early Career Research Workshop 16.-17.1.2025 Panu Ruotsalainen, University of Jyväskylä, Department of Physics

JYU. Since 1863. 17.1.2025 1

Contents

- Physics motivation to study isobaric triplets:
 - Isospin symmetry
 - Isospin symmetry breaking and triplet energy differences (TED)
- In-beam γ -ray spectroscopy of the A=62 triplet (⁶²Ge, ⁶²Ga, ⁶²Zn):
 - Experimental tools/techniques and results from the JYFL-ACCLAB experiment
 - Experimental tools/techniques and results from the RIKEN experiment
- Conclusions

Isospin symmetry

• The strong nuclear force is known to be approximately:

1) charge independent:
$$V_{pn} = \frac{V_{pp} + V_{nn}}{2}$$

2) charge symmetric: $V_{pp} = V_{nn}$

- Treat protons and neutrons as two different states of a nucleon.
- The proton and neutron differ in isotopic spin (isospin) quantum number:

$$t_z^n = +\frac{1}{2}$$
 and $t_z^p = -\frac{1}{2}$

Isospin symmetry

- Representation of the nucleons with isospin: $t_z^n = +\frac{1}{2}$ and $t_z^p = -\frac{1}{2}$
- "Rules": $T_z = \sum_i^A t_{z,i}$ and $T \ge T_z$ and $T_z = T, T-1, 0, \dots -T$ $T_z = (N-Z)/2$
- For "two-nucleon" system:
 - n-n -> $T_z = +\frac{1}{2} + \frac{1}{2} = +1, T = 1$
 - p-p -> $T_z = -\frac{1}{2} \frac{1}{2} = -1, T = 1$
 - n-p -> $T_z = +\frac{1}{2} \frac{1}{2} = 0, T = 0 \text{ or } 1$

The *T* = 1 configurations form <u>isospin triplet</u> of states, which should be identical in terms of excitation energy and have identical wave functions.

Note: deuteron (the n-p system) has only one bound state $J^{\pi} = 1^+$ corresponding to the T = 0 configuration as there are no bound states in ²He and 2n.

- Expect to find isobaric analog *T*=1 excited states in each member of the triplet.
- ⁴²Sc contains also *T*=0 states, which are not present in the other members.
- Experimental identification of the excited states in the $T_z = -1$ and $T_z = 0$ members of the triplet is commonly challenging.

protons), the *T*=1 analog states in isobaric triplets should be degenerate.

Isospin symmetry

Example: *A*=42 triplet

⁴²Cr ⁴³Cr ⁴⁴Cr⁴⁵Cr ⁴⁶Cr ⁴⁷Cr ⁴⁸Cr ⁴²√ ⁴³√ ⁴⁴√ ⁴⁵√ ⁴⁶√ ⁴⁷√ ⁴⁰Ti ⁴¹Tl ⁴²Ti ⁴³Ti ⁴⁴Ti ⁴⁵Ti ⁴⁶Ti ⁴⁶Ti

The Coulomb force between protons breaks the degeneracy in excitation energies → Coulomb energy differences → CED

- Investigate triplet energy differences → TED
- **TED**(J) = E^{*}(J, T_z = -1) + E^{*}(J, T_z = +1) 2 · E^{*}(J, T_z = 0)
- **TED** tests the charge independency $(V_{pp} + V_{nn})/2 = V_{pn}$ of the nuclear interaction

- **TED**(J) = E^{*}(J, T_z=-1) + E^{*}(J, T_z = +1) 2 · E^{*}(J, T_z = 0)
- Available experimental data:

- **TED**(J) = E^{*}(J, T_z=-1) + E^{*}(J, T_z = +1) 2 · E^{*}(J, T_z = 0)
- Available experimental data:

- **TED**(J) = E^{*}(J, T_z=-1) + E^{*}(J, T_z = +1) 2 · E^{*}(J, T_z = 0)
- Available experimental data:

- **TED**(J) = E^{*}(J, T_z =-1) + E^{*}(J, T_z = +1) 2 · E^{*}(J, T_z = 0)
- Available experimental data:

- **TED**(J) = E^{*}(J, T_z =-1) + E^{*}(J, T_z = +1) 2 · E^{*}(J, T_z = 0)
- Available experimental data:

- **TED**(J) = E^{*}(J, T_z =-1) + E^{*}(J, T_z = +1) 2 · E^{*}(J, T_z = 0)
- Available experimental data:

- **TED**(J) = E^{*}(J, T_z =-1) + E^{*}(J, T_z = +1) 2 · E^{*}(J, T_z = 0)
- Available experimental data:

TED(J) = E^{*}(J, T_z =-1) + E^{*}(J, T_z = +1) Isospin symmetry breaking in the T = 1, A = 70 triplet Available experimental data: G. L. Zimba¹, P. Ruotsalainen,¹ G. De Gregorio,^{2,3} G. de Angelis,⁴ J. Sarén,¹ J. Uusitalo,¹ K. Auranen,¹ A. D. Briscoe,^{1,†} Z. Ge,¹ T. Grahn,¹ P. T. Greenlees,¹ A. Illana,^{1,‡} D. G. Jenkins,⁵ H. Joukainen,¹ R. Julin,¹ H. Jutila,¹ A. Kankainen,¹ J. Louko,¹ M. Luoma,¹ J. Ojala,¹ J. Pakarinen,¹ A. Raggio,¹ P. Rahkila,¹ J. Romero,^{1,6} M. Stryjczyk,¹ A. Tolosa-Delgado,^{1,§} R. Wadsworth,⁵ and A. Zadvornava^{1,||} ¹Accelerator Laboratory, Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland ²Dipartmento di Matematica e Fisca, Università degli Studi della Campania "Luigi Vanvitelli," I-81100 Caserta, Italy ³Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, IT-80126 Napoli, Italy ⁴Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy 0 ⁵School of Physics, Engineering and Technology, University of York, Heslington, York Y010 5DD, United Kingdom ⁶Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom A=54 A=58 K A=62 A=66 TED [keV] A=70

6

10

8

12

-200

-300

0

2

Λ

RD R

PHYSICAL REVIEW C 110, 024314 (2024)

- **TED**(J) = E^{*}(J, T_z =-1) + E^{*}(J, T_z = +1) 2 · E^{*}(J, T_z = 0)
- Available experimental data:

• **TED** appears to be always negative with consistent magnitude, why?

- Spatial separation of pair of nucleons increase with their coupled angular momentum.
- Thus, when two protons coupled to J = 0 re-couple their angular momenta, the Coulomb energy decreases reducing the excitation energy of the nuclear state.
- This effect is the most pronounced in the proton-rich member of the triplet.

- If the Coulomb effects can be theoretically estimated, isospin-breaking effects due to the nuclear interaction can be revealed.
- TED comparison to shell-model predictions → additional isospin non-conserving interaction (V_B) required to match the experimental TED data:

S. M. Lenzi et al. Phys. Rev. C 98, 054322 (2018):

Conclusion: strength of the schematic isotensor INC interaction is "universal" for all studied shells, but its fundamental origin is not understood.

A=62 isobaric triplet

- TED data were not available for the A=62 isobaric triplet.
- This was because:
 - no excited states were known in the $T_z = -1$ nucleus ⁶²Ge
 - ambiguity for the (lowest) T=1 states in ⁶²Ga

Structures of ⁶²Ge and ⁶²Ga were studied in two independent experiments employing:

- 1) ⁴⁰Ca + ²⁴Mg fusion-evaporation reaction at JYFL-ACCLAB and
- 2) inelastic scattering and neutron knockout at RIKEN

Experimental method for *N~Z* nuclei: Recoil-beta tagging

JYUTube charged particle detector

- JYUTube charged-particle veto detector is located at the target position of JUROGAM 3.
- 120 plastic scintillator elements read out by SiPMs.

Detect (and veto) evaporated charged particles:

- → <u>70%</u> proton detection efficiency
- → <u>97%</u> veto efficiency for 3p channel.
- → identification between pn (⁶²Ga) vs. 2n (⁶²Ge) evaporation channels.

Focal plane setup

- Consists of
 - 1) position sensitive MWPC
 - 2) BB20 DSSD, silicon-strip detector
 - 3) "box" detector
 - 4) TUIKE scintillator detector
 - 5) 3 BEGe detectors + 1 Clover Ge detector

Micron BB20 DSSSD Area: 128x48 mm² Strip pitch: 0.67 mm Thicknesses: 150, 300, 700 um

TUIKE - scintillator

- For detecting high-energy β particles.
- EJ-248 scintillator bars in two layers.
 - 14 vertical and 8 horizontal
- Light read out by SiPMs.

٠

Experimental method for *N*~*Z* nuclei: Step 2): mass separation with MARA

Reaction: ${}^{40}Ca + {}^{24}Mg$

Separator tuned to pass *A*=62 residues to focal plane. Use physical slits to "cut" neighboring masses.

Experimental method for *N*~*Z* nuclei: Step 3): recoil-decay correlation

 $t_{1/2}$ = 73.5 ms, $Q_{EC} \sim 10 \text{ MeV}$ $t_{1/2}$ = 116.1 ms, $Q_{EC} \sim 10 \text{ MeV}$ $t_{1/2}$ = 9.2 h, $Q_{EC} \sim 2 \text{ MeV}$

1) Decay in the same pixel with the recoil implant within $3 \ge t_{1/2}$

- 2) Register high-energy β in the scintillator.
- \rightarrow Identify the nucleus of interest.

JYU. Since 1863. 17.1.2025 26

Experimental method for $N \sim Z$ nuclei: recoil-beta tagging of ⁶²Ge

 Use JYUTube to discriminate between ⁶²Ga (*pn*) and ⁶²Ge (2*n*) gamma-ray transitions.

- Apply background subtraction -> subtract 1p spectrum from the 0p spectrum.
- Get candidates for $2^+ \rightarrow 0^+$, $4^+ \rightarrow 2^+$ and $6^+ \rightarrow 4^+$ transitions in 62 Ge.

Experimental method for $N \sim Z$ nuclei: recoil- β - β tagging of ⁶²Ge

 recoil-β-β correlations pick up the same gammas as observed in the charged-particle vetoed recoil-β tagged spectrum.

RIKEN experiment (beam production)

- Fragmentation (or fission) of intense primary beam
- Particle identification by $B\rho \Delta E ToF$:
 - ⁶²Ge intensity ~ 290 pps, ⁶²Ga ~ 1800 pps
- Secondary reaction target at F8 surrounded by DALI2 γ-ray array.
- Particle identification after target by ZeroDegree spectrometer.

RIKEN experiment (DALI2)

DALI2:

- 226 NaI(Tl) detectors
- Intrinsic resolution 7 % at 1 MeV
- In-beam resolution ~10 % at 150 AMeV
- Efficiency ~20 % at 1 MeV (before addback)

inelastic scattering: ⁶²Ge -----> |¹²C| -----> ⁶²Ge

neutron (proton) knockout: ⁶³Ge -----> |¹²C| -----> ⁶²Ge

RIKEN experiment (results)

See the same gamma rays as in the JYFL experiment for the $2^+ \rightarrow 0^+$ and $4^+ \rightarrow 2^+$ transitions in 62 Ge!

RIKEN experiment (results)

600 -	955 ${}^{12}C({}^{62}Zn, {}^{62}Zn+\gamma)$ (a)		$^{12}C(^{63}Ga,^{62}Zn+\gamma)$ (c)
Phys. Lett. B 847 (2023) 138249			
	Contents lists available at ScienceDirect PHYSICS LETTERS B		
\$~\$. 	Physics	s Letters B	
ELSEVIER journal homepage: www.elsevier.com/locate/physletb			
Isospin symm K. Wimmer ^{a,b,c,d,} P. Doornenbal ^c , C. Delafosse ^{e,n} , T H. Joukainen ^e , F B. Longfellow ^m , J. Ojala ^e , J. Paka R. Taniuchi ^{b,c} , H G. Zimba ^e , R. Ya	etry in the $T = 1, A = 62$ tripl ,*, P. Ruotsalainen ^e , S.M. Lenzi ^{f,g} , A T. Koiwai ^{b,c} , T. Arici ^a , K. Auranen ^e , Eronen ^e , Z. Ge ^{e,a} , T. Grahn ^e , P.T. G Julin ^e , A. Jungclaus ^d , H. Jutila ^e , A J. Louko ^e , R. Lozeva ⁿ , M. Luoma ^e , E trinen ^e , X. Pereira-Lopez ^j , P. Rahkila . Tann ^{e,o} , S. Uthayakumaar ^j , J. Uusi jzey ^{j,p}	et A. Poves ^h , T. Hüyük ⁱ , F. Bro M.A. Bentley ^j , M.L. Cortés Greenlees ^e , A. Illana ^e , N. Im A. Kankainen ^e , N. Kitamura B. Mauss ^c , D.R. Napoli ^k , M. a ^e , F. Recchia ^{f,g} , M. Sandzel talo ^e , V. Vaquero ^d , R. Wads	owne ^c , ^g , pai ¹ , ¹ , Niikura ^b , lius ^e , J. Sarén ^e , sworth ^j ,
500 750	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccc} 00 & 1500 & 2000 \\ E_{\gamma} \ (\text{keV}) \end{array}$
e the same gan	ma rays as in the IYFL experi	ment for the $2^+ \rightarrow 0^+$ and	d 4 ⁺ -> 2 ⁺ transitions in 62 G

Conclusions: new TED data at A=62

- **TED**(J) = E^{*}(J, T_z=-1) + E^{*}(J, T_z = +1) 2 · E^{*}(J, T_z = 0)
- Available experimental data:

Conclusions: new TED data at A=62

- **TED**(J) = E^{*}(J, T_z=-1) + E^{*}(J, T_z = +1) 2 · E^{*}(J, T_z = 0)
- Available experimental data:

Summary

- A=62 triplet (⁶²Ge, ⁶²Ga and ⁶²Zn) investigated in two sperate experiments at JYFL-ACCLAB and RIKEN.
- Obtained results are in agreement for ⁶²Ge -> first confident assignment of the 2⁺ and 4⁺ excited states in ⁶²Ge.
- RIKEN experiment confirms also the 2⁺ state energy in ⁶²Ga.
- These data allowed theoretical investigations of the TED systematics for the *A*=62 isobaric triplet for the first time to study the isospin symmetry breaking effects.
- Additional isospin symmetry breaking effect appears to be weaker for A=62 than for the other studied triplets.

