Nanosecond-Scale Proton Emission from Strongly Oblate-Deformed ¹⁴⁹Lu

UK NP ECR workshop Kalle Auranen

Edinburgh, 17.1.2025

- Brief introduction to Nuclear Spectroscopy group activities and JYFL-ACCLAB
 - MARA and RITU setups, and their focal-plane spectrometers
- Motivation to study ¹⁴⁹Lu
- Experiment
- Results and interpretation
- Aftermath
- (Bonus: Trace analyses)

- Brief introduction to Nuclear Spectroscopy group activities and JYFL-ACCLAB
 - MARA and RITU setups, and their focal-plane spectrometers
- Motivation to study ¹⁴⁹Lu
- Experiment
- Results and interpretation
- Aftermath
- (Bonus: Trace analyses)

- Brief introduction to Nuclear Spectroscopy group activities and JYFL-ACCLAB
 - MARA and RITU setups, and their focal-plane spectrometers
- Motivation to study ¹⁴⁹Lu
- Experiment
- Results and interpretation
- Aftermath
- (Bonus: Trace analyses)

JY

J J

J

Two complementary recoil separators (to collect fusion-evaporation residues)

- Recoil Ion Transport Unit (RITU)*
 - Gas filled
 - No mass information
 - + Collects all charge states

- Mass Analyzing Recoil Apparatus (MARA)*
 - Vacuum mode
 - + A/q information
 - A few (~ 2 4) charge states collected at once

Two complementary recoil separators (to collect fusion-evaporation residues)

Recoil Ion Transport Unit (RITU)

Ŵ

Mass Analyzing Recoil Apparatus (MARA)

Ŵ

Ŵ

Focal-plane spectrometers (~ identical for RITU and MARA)

Ŵ

Focal-plane spectrometers

- Brief introduction to Nuclear Spectroscopy group activities and JYFL-ACCLAB
 - MARA and RITU setups, and their focal-plane spectrometers
- Motivation to study ¹⁴⁹Lu
- Experiment
- Results and interpretation
- Aftermath
- (Bonus: Trace analyses)

Proton emission (= "proton decay")

- A rare type of radioactivity where a proton is emitted from a nucleus
 - Similar to α decay
 - First evidence in 1970's: 19⁻ isomeric state in ⁵³Co
 [J. Cerny et al. Phys. Lett., B33 (1970), p. 284]
 [K. P. Jackson et al. Phys. Lett., B33 (1970), p. 281]
 - First ground-state proton emitter: ¹⁵¹Lu
 [S. Hofmann et al. Z. Phys., A305 (1982), p. 111]
 - Approximately 30 ground-state proton emissions are observed

[B. Blank, M.J.G. Borge, Prog. in Part. and Nucl. Phys. 60 (2008) 403-483] (+2)

[P.J. Woods, C.N. Davids, Annu. Rev. Nucl. Part. Sci. 47 541 (1997)]

Figure 5 Contour plot of the quadrupole deformation parameter b2 taken from (89), showing the general trend of the deformations. Filled circles are the known proton emitters, and the predicted proton drip-line also taken from (90) is shown as a solid line, modified where experimental evidence is available.

 Very few oblate deformed proton emitters are known

¹⁵¹Lu

[P.J. Woods, C.N. Davids, Annu. Rev. Nucl. Part. Sci. 47 541 (1997)]

Figure 5 Contour plot of the quadrupole deformation parameter b2 taken from (89), showing the general trend of the deformations. Filled circles are the known proton emitters, and the predicted proton drip-line also taken from (90) is shown as a solid line, modified where experimental evidence is available.

Figure 5 Contour plot of the quadrupole deformation parameter b2 taken from (89), showing the general trend of the deformations. Filled circles are the known proton emitters, and the predicted proton drip-line also taken from (90) is shown as a solid line, modified where experimental evidence is available.

[P.J. Woods, C.N. Davids, Annu. Rev. Nucl. Part. Sci. 47 541 (1997)]

 Very few oblate deformed proton emitters are known

Why study Lutetium?

¹⁵¹Lu

Ŵ

 $-\beta_2 = -0.11 (11/2^{-} g.s.)$

[Procter et al. PLB 725 79 (2013)]

85

80

75

70

65

60

55

5

PROTON NUMBER

 $-\beta_2 = -0.12 (3/2^+ m)$

[Taylor et al. PRC 91 044322 (2015)]

¹⁴⁹Lu.

Model

RHB 29

RMF 32

FRDM 30, 31

 $-\beta_2 = -0.12 (3/2^+ m)$

(2015)]

Why study Lutetium?

 $S_p(MeV)$

-1.77

-1.52

-1.946

NEUTRON NUMBER

[P.J. Woods, C.N. Davids, Annu. Rev. Nucl. Part. Sci. 47 541 (1997)]

[Taylor et al. PRC 91 044322

Figure 5 Contour plot of the quadrupole deformation parameter b2 taken from (89), showing the general trend of the deformations. Filled circles are the known proton emitters, and the predicted proton drip-line also taken from (90) is shown as a solid line, modified where experimental evidence is available.

- Brief introduction to Nuclear Spectroscopy group activities and JYFL-ACCLAB
 MARA and RITU setups, and their focal-plane spectrometers
- Motivation to study ¹⁴⁹Lu
- Experiment
- Results and interpretation
- Aftermath
- (Bonus: Trace analyses)

- MARA
 - A/q identification
- DSSD (159 µm thick)
 - Traces with 10 ns sample rate
- JYTube + (JUROGAM3 γ-ray spectrometer)

- Brief introduction to Nuclear Spectroscopy group activities and JYFL-ACCLAB
 - MARA and RITU setups, and their focal-plane spectrometers
- Motivation to study ¹⁴⁹Lu
- Experiment
- Results and interpretation
- Aftermath
- (Bonus: Trace analyses)

- 14 candidates for fast proton emission
- Experimental fingerprint:

JYFL

Results

- Element assignment per JYTube data
 - "Barrel" of scintillation detectors
- Candidates correlate with 0 or 1 evaporated charged particles
 pxn evaporation channel (Lutetium)

E_p = 1910(20) keV
 Highest measured for a g.s. proton emitter

- E_p = 1910(20) keV
 - Highest measured for a g.s.
 proton emitter
- T_{1/2} = 450(⁺¹⁷⁰-100) ns
 - Shortest *directly* measured for a g.s. proton emitter
- Geiger-Nuttall law [Chen EPJA 55, 214 (2019)]
 - 956 ns (I $_p$ = 5 ; within 1 σ)

 $-\pi(h_{11/2})$

**K. H. Schmidt, EPJA 8, 141 (2000).

Non-adiabatic quasiparticle model (L.S. Ferreira, E. Maglione)

Non-adiabatic quasiparticle model (L.S. Ferreira, E. Maglione)

Deformed Relativistic Hartree-Bogoliubov theory in Continuum (DRHBc, 2023):

One-proton emission from ^{148–151}Lu in the DRHBc+WKB approach Yang Xiao^{a,b}, Si-Zhe Xu^b, Ru-You Zheng^b, Xiang-Xiang Sun^{c,d}, Li-Sheng Geng^{b,e,f,g,*}, Shi-Sheng Zhang^{b,*}

Check for updates

Deformed Relativistic Hartree-Bogoliubov theory in Continuum (DRHBc, 2023):

One-proton emission from ^{148–151}Lu in the DRHBc+WKB approach Yang Xiao^{a,b}, Si-Zhe Xu^b, Ru-You Zheng^b, Xiang-Xiang Sun^{c,d}, Li-Sheng Geng^{b,e,f,g,*}, Shi-Sheng Zhang^{b,*}

Check for updates

Deformed Relativistic Hartree-Bogoliubov theory in Continuum (DRHBc, 2023):

β₂ ~ -0.18

Check for updates

One-proton emission from ^{148–151}Lu in the DRHBc+WKB approach Yang Xiao^{a,b}, Si-Zhe Xu^b, Ru-You Zheng^b, Xiang-Xiang Sun^{c,d}, Li-Sheng Geng^{b,e,f,g,*}, Shi-Sheng Zhang^{b,*}

Triaxial Relativistic Hartree-Bogoliubov theory in Continuum (TRHBc, 2024):

• $\beta \sim 0.17, \gamma = 31^{\circ}$

 Phys. Lett. B 856 (2024) 138922

 Contents lists available at ScienceDirect

 Physics Letters B

 journal homepage: www.elsevier.com/locate/physletb

 Letter

 Triaxial shape of the one-proton emitter ¹⁴⁹Lu

 Qi Lu ^(a), Kai-Yuan Zhang ^(b), (b), Shi-Sheng Zhang ^(a), (b),

 * School of Physics, Hedrag University, Hedrige 102206, China

- New proton emitting isotope ¹⁴⁹Lu
- High decay energy of 1910(20) keV
- Shortest directly measured $T_{\frac{1}{2}} = 450(^{+170}_{-100})$ ns
- Most oblate deformed proton emitter with $\beta_2 \sim -0.18$ (?)
 - In-beam RDT γ -ray spectroscopy might be possible, though very difficult, to probe the possible triaxiality ($\sigma \sim 50$ nb)

- New proton emitting isotope ¹⁴⁹Lu
- High decay energy of 1910(20) keV
- Shortest directly measured $T_{1/2} = 450(^{+170}_{-100})$ ns
- Most oblate deformed proton emitter with $\beta_2 \sim -0.18$ (?)
 - In-beam RDT γ -ray spectroscopy might be possible, though very difficult, to probe the possible triaxiality ($\sigma \sim 50$ nb)

Triaxial ellipsoid:

Nuc. Spec. Group at Ladunmaja (Spring 2023)

Trace analyses – how to extract the energy of a pile-up event ("Ideal case")

First 5 µs after the event were recorded = "trace"

No offset, no noise - Just read the amplitude

Ŵ

Trace analyses – how to extract the energy of a pile-up event ("Ideal case")

time (clock tick = 10 ns)

No offset, no noise - Just read the amplitude

Ŵ

DC Offset, noise

- Integrate to cancel noise
- Substract the baseline

First 5 µs after the event were recorded = "trace"

Trace analyses – how to extract the energy of a pile-up event ("Ideal case")

No offset, no noise - Just read the amplitude

Ŵ

DC Offset, noise

- Integrate to cancel noise
- Substract the baseline

DC Offset, noise and pile up

- Integrate baseline before the pile-up event
- Calculate (using T) the baseline under the pile-up event
- Substract the baseline

Trace analyses – how to extract the energy of a pile-up event (Real case)

Good exponential part

Oscillation and spurious step due to impedance mismatch somewhere along the signal processing electronics -> Software dead time of 300 ns

Trace analyses – how to extract the energy of a pile-up event (Real case)

Good exponential part

Oscillation and spurious step due to impedance mismatch somewhere along the signal processing electronics -> Software dead time of 300 ns

Trace analyses – how to extract the energy of a pile-up event Real case, Approach #2 ("Reference trace")

 Create a "reference trace" from large number of traces recorded for regular recoil-implantation events of a given strip

Trace analyses – how to extract the energy of a pile-up event Real case, Approach #2 ("Reference trace")

Substract the two:

Pile-up decay event in trace

No pile-up decay event