JYFL R59 Experiment: Search for new isotopes ²²⁰U and ²²⁴Pu and exploring the mass surface near *N* = 126

David O'Donnell University of the West of Scotland

Motivation: gap in the chart of nuclides

Research propsal driven by teaching

Motivation: robustness of N = 126shell closure

Motivation: robustness of N = 126shell closure

Reduced width measures the probability of alpha decay

- Fusion-evaporation reactions only way in which to produce these nuclei
 - Very limited number of beam/target combinations available
- Cross sections are expected to be very low regardless of which reaction is chosen

Experiment planning: reaction 0 $T_{1/2} = 2 \ \mu s$ 224 Pu $T_{1/2} = 20 \text{ ns}$ 220 $E_{\alpha} = 10750 \text{ keV}$ $T_{1/2} = 26 \text{ ms}$ 216Th $E_{\alpha} = 7922 \text{ keV}$ 0^{+} 04 $T_{1/2} = 13 \text{ s}$ 212 $E_{\alpha} = 6899 \text{ keV}$

- Fusion-evaporation reactions only way in which to produce these nuclei
 - Very limited number of beam/target combinations available
- Cross sections are expected to be very low regardless of which reaction is chosen
 - As a result, we need targets which can handle high beam currents

Experiment planning: rate calculations

- Reaction rate per unit time:
 - $R = N_A(m_t/m_{mol})\sigma\Phi$
 - N_A- Avogadro's number
 - m_t mass/thickness of target material (grams/cm²)
 - m_{mol} molar mass of target element (grams)
 - σ cross-section (barns or cm²)
 - Φ beam current (pps)

Unable to obtain an osmium target

Chose to run with ${}^{32}S + {}^{196}Pt \rightarrow {}^{228}Pu^*$

Unable to obtain an osmium target

Chose to run with ${}^{32}S + {}^{196}Pt \rightarrow {}^{228}Pu^*$

Melting point for platinum is 1768 deg C

Experiment planning: facility

- Facility should be able to provide beam at the intensity required
- Offer apparatus which is capable of permitting the detection of the products of interest
- Have personnel with significant experience of performing similar experiments
- Bonus: you may already have a history with facility and personnel as collaborators

Experiment planning: facility

JYFL at the University of Jyväskylä fit all of these conditions for me

Use of RITU and "new" focal plane detection system was ideal for this study

Experiment planning: simulations

The PACs of many laboratories request that simulations be performed prior to running the experiment

This allows for a measure of feasibility to be determined which may help in their decision making

Also helps you to think carefully about possible outcomes

Experiment planning: apparatus

Experimental results

Experimental results

Experimental results

Experimental results: unexpected

Conclusions/reflections

- Challenging experiment!
 - Low cross sections with very narrow distributions
- Learned a lot of lessons
- Unlikely that we will discover ²²⁴Pu or ²²⁰U but will continue our analysis
- Unexpected results in the multi-nucleon transfer channels

Acknowledgements

¹D. O'Donnell, ¹B.S. Nara Singh, ⁴P. Papadakis, ²A. McCarter, ²B. Alayed, ²J. Ojala, ⁵J. Khuyagbaatar, ⁶P. Jones, ³P. Greenlees, ³M. Leino, ³R. Julin, ³J. Uusitalo , ³T. Grahn, ³J. Pakarinen, ³P. Rahkila, ³P. Ruotsalainen, ³J. Sarén, ³K. Auranen, ³A. Briscoe, ³A.Sison, ³M. Luoma, ³H. Joukainen, ³H. Jutila, ³J. Louko, ³A. Plaza, ³J. Romero, ³G. Zimba, ³V. Bogdanoff, ³E. Uusikylä, ³H. Kokkonen, ³J. Ahokas.

- 1. University of the West of Scotland, United Kingdom
- 2. University of Liverpool, United Kingdom
- 3. University of Jyväskylä, Finland
- 4. STFC Daresbury Laboratory, United Kingdom
- 5. GSI, Darmstadt, Germany
- 6. iThemba Labs, Johannesburg, South Africa