Nuclear Astrophysics with Stable Beams: A Biassed Overview

School of Physics and Astronomy - University of Edinburgh, UK Scottish Universities Physics Alliance

Marialuisa Aliotta

Russbach School, 3-8 March 2024

M. Aliotta

Nuclear Astrophysics: A truly interdisciplinary field

stellar H-, He, C, O, Si-burning **Astrophysics** stars, supernovae s-process stellar evolutionary codes He-burning in AGB stars, massive stars nucleosynthesis calculations r-process astronomical observations type II supernovae, ging neutron stars cosmic r Non-metal Transition metal Noble gas Metalloid Ne Be Alkali metal Metal 200 100 Alkaline earth metal Halogen CI A Ar Ma **Plasma Physics** Ga Са Ge Br Kr In Sn Sr Ге degenerate matter Pb τI Bi Ba Rn Ро electron screening Nh E Mc Ts Oa Ra Lv equation of state Lanthanides Actinides 06.5 B0 B6 A1 A5 F0 **Atomic Physics** F5 G0 G5 BEAM-STOP KO radiation-matter interaction NUCLEAR К5 MO energy losses, stopping powers, spectral lines M5 F4 metal poor materials and detectors M4.5 emission

10¹⁰

B1 emission

Nuclear Physics

experimental and theoretical inputs stable and exotic nuclei

BEAM-TRANSPORT SYSTEM

ACCELERATOR

Astrophysical Reaction Studies in the Laboratory: Experimental Challenges

M Aliotta Astrophysical Reaction Studies in the Laboratory

Schematic Layout for Nuclear (Astro-)Physics Experiments

BEAMS

M Aliotta	Quiescent	Scenarios	
		Quiescent stages	of stellar evolution
FEATURES		Т ~ 10 ⁶ - 10 ⁸ К	$\begin{array}{l} \Rightarrow \ \ E_0 \ \ \ 100 \ keV \ << \ \ E_{coul} \ \Rightarrow \ tunnel \ effect \\ \Rightarrow \ \ 10^{-18} \ barn < \sigma < 10^{-9} \ barn \\ \Rightarrow \ \ average \ interaction \ time \ \ \tau \ \ <\sigma v >^{-1} \ \ \ 10^9 \ y \\ unstable \ species \ \underline{DO \ NOT} \ play \ significant \ role \end{array}$
CHALLENG	GES	10 ⁻¹⁸ b < σ < 10 ⁻⁹ b	 ⇒ poor signal-to-noise ratio ⇒ major experimental challenge ⇒ extrapolation procedure required
REQUIREN	/IENTS	ooor signal-to-noise ratio	$\begin{array}{l} \Rightarrow \text{ long measurements} \\ \Rightarrow \text{ ultra pure targets} \\ \Rightarrow \text{ high beam intensities} \\ \Rightarrow \text{ high detection efficiency} \end{array}$

M Aliotta Explosive Sce	narios	
	Explosive s	stages of stellar evolution
FEATURES	T > 10 ⁸ K	$\begin{array}{l} \Rightarrow \ E_0 \sim 1 \ MeV \sim \ E_{coul} \\ \Rightarrow \ 10^{-6} \ barn < \sigma < 10^{-3} \ barn \\ \Rightarrow \ cross \ sections \ "easy" \ to \ measure \end{array}$
CHALLENGES	unstable nuclei	⇒ short half-lives $(10^{-6} - 10^{1} \text{ s})$ ⇒ unknown nuclear properties
REQUIREMENTS		 ⇒ Radioactive Ion Beam facilities ⇒ produce and accelerate ions of interest ⇒ dedicated detection systems

M. Aliotta Radioactive Ion Beam Facilities

M. Aliotta Sophisticated Detector Arrays

Highly Segmented Silicon Detector Arrays

- large solid angle
- advanced electronics & DAQ
- low sensitivity to beam background
- versatile configurations

BELEN Neutron Detector Array

DESCANT neutron detector array

Gamma-Ray Spectrometers and Arrays

Nuclear Astrophysics with Stable Beams Underground

M. Aliotta LUNA: A Brief Introduction

LUNA: Laboratory for Underground Nuclear Astrophysics (established early 1990s)

M. Aliotta The LUNA 400 kV facility

M. Aliotta

LUNA: The First Underground Laboratory for Nuclear Astrophysics

M. Aliotta

Gamma-ray background: underground vs overground comparison

M. Aliotta LUNA: A pioneering experiment

30 years of Nuclear Astrophysics at LUNA (LNGS, INFN)

solar fusion reactions

 3 He(3 He,2p) 4 He 2 H(p, γ) 3 He 3 He(α , γ) 7 Be

- electron screening and stopping power
 ²H(³He,p)⁴He
 ³He(²H,p)⁴He
- CNO, Ne-Na and Mg-Al cycles
 ^{12,13}C(p,γ)^{13,14}N
 ^{14,15}N(p,γ)^{15,16}O
 ¹⁶O(p,γ)¹⁷F
 ^{20,21,22}Ne(p,γ)^{21,22,23}Na
 ²²Ne(α,γ)²⁶Mg
 ²³Na(p,γ)²⁴Mg
 ²⁵Mg(p,γ)²⁶Al
- (explosive) hydrogen burning in novae and AGB stars ${}^{17}O(p,\gamma){}^{18}F$ ${}^{17}O(p,\alpha){}^{14}N$ ${}^{18}O(p,\gamma){}^{19}F$ ${}^{18}O(p,\alpha){}^{15}N$
- Big Bang nucleosynthesis ${}^{2}H(\alpha,\gamma){}^{6}Li$ ${}^{2}H(p,\gamma){}^{3}He$ ${}^{6}Li(p,\gamma){}^{7}Be$
- neutron capture nucleosynthesis
 ¹³C(a,n)¹⁶O

some of the lowest cross sections ever measured (few counts/month)

The ${}^{17}O(p,\gamma){}^{18}F$ Reaction in Classical Novae

annihilation radiation (511 keV gamma rays) from β^+ decay of ¹⁸F (t_{1/2} ~ 110 mins) can provide constraints on novae nucleosynthesis

> can be detected by space-borne telescopes

INTEGRAL

no 511 keV radiation observed to date! uncertain ${}^{17}O(p,\gamma){}^{18}F$ rate?

LUNN

M Aliotta

$^{17}O(p,\gamma)^{18}F$ reaction in novae

The ${}^{17}O(p,\alpha){}^{14}N$ Reaction: Puzzling Origin of Pre-Solar Grains

Pre-solar grains: stellar dust trapped in meteorites

isotopic anomalies can reveal clues on site of formation

puzzling origin of Oxygen-rich grains

improved knowledge on $^{17}\text{O}(p,\alpha)^{14}\text{N}$ reaction needed

Carlo Bruno's PhD project

M. Aliotta

Background Suppression

Edinburgh

M Aliotta $^{17}O(p,\alpha)^{14}N$ Results

PRL 117, 142502 (2016)

PHYSICAL REVIEW LETTERS

week ending 30 SEPTEMBER 2016

Improved Direct Measurement of the 64.5 keV Resonance Strength in the ${}^{17}O(p,\alpha){}^{14}N$ Reaction at LUNA

C. G. Bruno,^{1,*} D. A. Scott,¹ M. Aliotta,^{1,†} A. Formicola,² A. Best,³ A. Boeltzig,⁴ D. Bemmerer,⁵ C. Broggini,⁶ A. Caciolli,⁷ F. Cavanna,⁸ G. F. Ciani,⁴ P. Corvisiero,⁸ T. Davinson,¹ R. Depalo,⁷ A. Di Leva,³ Z. Elekes,⁹ F. Ferraro,⁸ Zs. Fülöp,⁹ G. Gervino,¹⁰ A. Guglielmetti,¹¹ C. Gustavino,¹² Gy. Gyürky,⁹ G. Imbriani,³ M. Junker,² R. Menegazzo,⁶ V. Mossa,¹³ F. R. Pantaleo,¹³ D. Piatti,⁷ P. Prati,⁸ E. Somorjai,⁹ O. Straniero,¹⁴ F. Strieder,¹⁵ T. Szücs,⁵ M. P. Takács,⁵ and D. Trezzi¹¹

M. Aliotta On the origin of Group II grains

nature astronomy

LLIILCO PUBLISHED: 30 JANUARY 2017 | VOLUME: 1 | ARTICLE NUMBER: 0027

Origin of meteoritic stardust unveiled by a revised proton-capture rate of ¹⁷O

M. Lugaro^{1,2*}, A. I. Karakas²⁻⁴, C. G. Bruno⁵, M. Aliotta⁵, L. R. Nittler⁶, D. Bemmerer⁷, A. Best⁸, A. Boeltzig⁹, C. Broggini¹⁰, A. Caciolli¹¹, F. Cavanna¹², G. F. Ciani⁹, P. Corvisiero¹², T. Davinson⁵, R. Depalo¹¹, A. Di Leva⁸, Z. Elekes¹³, F. Ferraro¹², A. Formicola¹⁴, Zs. Fülöp¹³, G. Gervino¹⁵, A. Guglielmetti¹⁶, C. Gustavino¹⁷, Gy. Gyürky¹³, G. Imbriani⁸, M. Junker¹⁴, R. Menegazzo¹⁰, V. Mossa¹⁸, F. R. Pantaleo¹⁸, D. Piatti¹¹, P. Prati¹², D. A. Scott^{5,†}, O. Straniero^{14,19}, F. Strieder²⁰, T. Szücs¹³, M. P. Takács⁷ and D. Trezzi¹⁶

new LUNA rate allows to reproduce correct abundances

confirms intermediate mass AGB as likely site of production

for oxygen-rich pre-solar grains

⁶Li destruction: The ⁶Li(p, γ)⁷Be and ⁶Li(p, α)³He Reactions

target

HPGe

resonance(-like) structure reported but never independently confirmed

M. Aliotta The ${}^{6}Li(p,\gamma){}^{7}Be$ and the ${}^{6}Li(p,\alpha){}^{3}He$ reactions at LUNA

PHYSICAL REVIEW C 102, 052802(R) (2020)

Rapid Communications

Underground experimental study finds no evidence of low-energy resonance in the ${}^{6}\text{Li}(p, \gamma) {}^{7}\text{Be}$ reaction

²²Na Production in Novae: the ²¹Ne(p,γ)²²Na reaction

Ragandeep Sidhu, PDRA

novae models \Rightarrow measurable γ -ray fluxes observable within few kilo-parsecs idea: observe γ -ray signature to test nova models

²²Na: the fingerprint of a nova outburst

Clayton & Hoyle, ApJ L101 (1974) 187

why ²²Na?

- novae (ONe WDs) are main galactic production site for ²²Na
- ²²Na decay has conveniently short half-life
 - \Rightarrow hence spatial and temporal limits to its detection

 Sensitivity study [Iliadis+, ApJ 142 (2002) 105]: 20% variation in reaction rate → factor of 6 change in ²²Na abundance)

main resonances: $E_p = 126$ and 272 keV

Other resonances: $E_p = 271, 290$ and 352 keV (< 5% contribution to stellar rate)

M. Aliotta The ${}^{21}Ne(p,\gamma){}^{22}Na$ reaction at LUNA

Experimental Setup

• windowless Ne-gas target

P = 2 mbar

- HPGe detectors:
 - Relative efficiency 130%
 - Relative efficiency 90%
- Lead + copper shield
- Anti-Radon box
- 260 keV < E_p < 400 keV
- thick-target condition
 - fulfilled for all resonances

calorimeter to measure beam current (see later)

E_p = **126 keV resonance**, using ²¹Ne enriched gas (59.1%)

previous studies:

only two transitions reported (NNDC)

E <mark>(level)</mark> (keV)	$J^{\pi}(level)$	T _{1/2} (level)	E(γ) (keV)	Ι(γ)	Μ(γ)	Final Lev	vels
6834 7	(0+,1+)						
6859.3 <i>6</i>	1,2+	< 12 eV	4907.0 6201.4	100 11 25 11		1951.8 657.00	2+ 0+

E_p = **126 keV resonance**, using ²¹Ne enriched gas (59.1%)

E_p = **126 keV resonance**, using ²¹Ne enriched gas (59.1%)

Branching ratios (\rightarrow new!)

ωγ [meV] = 0.0375 ± 0.0002_{stat} ± 0.0010_{syst}

E_p = **272 keV resonance**, using natural Ne gas

$$ωγ$$
 [meV] = 129.9 ± 0.4_{stat} ± 3.8_{syst}

ca. 50% higher than previously reported

M. Aliotta The ${}^{21}Ne(p,\gamma){}^{22}Na$ reaction: Summary

- resonance strengths of all resonances of interest for novae measured at LUNA with < 7% uncertainty (19% for E_p = 271 keV resonance)
- new primary gamma transitions found in $E_p = 126$, 272, and 291 keV resonances
- the *E*_p = 272 keV resonance (dominant at novae temperatures) is 1.5x larger than previously found

E _p [keV]	ωγ [meV]
126	0.0375 ± 0.0002 _{stat} ± 0.0010 _{syst}
271	$2.7 \pm 0.3_{\text{stat}} \pm 0.4_{\text{syst}}$
272	$129.9 \pm 0.4_{stat} \pm 3.8_{syst}$
291	1.99 ± 0.01 _{stat} ± 0.05 _{syst}
352	$14.9 \pm 0.4_{\text{stat}} \pm 0.5_{\text{syst}}$

reaction rate and impact under evaluation

special thanks for Ragan Sidhu, Eliana Masha, Francesca Cavanna, Sandra Zavatarelli

The ²³Na(p, α)¹⁸F Reaction for Globular Clusters

Globular Clusters:

spheroidal ensembles of stars held together by gravity thousands of stars with varying masses and compositions

+ characteristic light element abundances:

Na-O anti-correlation: origin still unclear

Lucia Barbieri's PhD project

A reduction by a factor of 3-5 in the ${}^{23}Na(p,\alpha){}^{20}Ne$ reaction rate may solve this problem

Main uncertainty comes from contribution of possible low-energy resonance

E _r [keV]	J^{π}	$\omega\gamma$ [eV]
37	0+	< 3.3 × 10 ⁻²⁰
138	? (l _p =0)	< 1.6 × 10 ⁻⁶
(? (lp=1)	< 7.5 × 10 ⁻⁸
	? (lp=2)	< 2.8 × 10 ⁻⁹
	? (lp=3)	< 5.4 × 10 ⁻¹¹
167	(6,7,8)+	? (negligible)
170	1-	(23 \pm 5) $ imes$ 10 ⁻³

M. Aliotta The ²³Na(p,α)²⁰Ne reaction

ELDAR ERC (PI Carlo Bruno)

European Research Council

erc

Established by the European Commission recently installed & commissioned at LUNA (in place of gas target)

new silicon detector array

²³Na target tests currently ongoing at LUNA

LUN

The ¹⁶O(p, γ)¹⁷F Reaction: ¹⁷O/¹⁷O in pre-solar grains

- Group 2 pre-solar grains predicted to originate in AGB stars
- Standard stellar models required additional mixing process to reproduce observed ¹⁷O/¹⁶O ratios
- Hot Bottom Burning may provide solution, depending on the rate of the ¹⁶O(p,γ)¹⁷F reaction

Duncan Robb's PhD project

direct capture reaction

M. Aliotta The ${}^{16}O(p,\gamma){}^{17}F$ reaction

prompt γ -ray measurement (HPGe, 2x CeBr₃)

activation technique (beta decay of ¹⁷F)

Plans for the Future...

NUclear CLustering Effects in Astrophysical Reactions

NUCLEAR

Nucleosynthesis in First Stars and Other Puzzles

European Research Council Established by the European Commission

erc

UK Research and Innovation

Long-Standing Questions in Nuclear Astrophysics

requirement: strong enhancement of (α, γ) reaction rates

M Aliotta **Current Status**

proposed reactions involve strong cluster configurations

new measurements UNDERGROUND needed

¹⁰B + α Reaction Studies at LUNA 400kV

 ${}^{10}B(\alpha,d){}^{12}C$ charged particle detection ${}^{10}B(\alpha,p){}^{13}C$

silicon detector array ²³Na(p,α)²⁰Ne ELDAR ERC – Bruno (UoE)

Jamie Jones, PhD

 $^{10}B(\alpha,n)^{13}N$ activation measurement

Rhys Bonnell, PhD

segmented BGO detector

^{6,7}Li + α Reaction Studies at Bellotti Facility

3.5 MV accelerator

 $^{4}\text{He}^{+}$ (TV: 0.3 – 0.5 MV): 300 μA $^{4}\text{He}^{+}$ (TV: 0.5 – 3.5 MV): 500 μA

^{6,7}Li(α,γ) reactions: prompt γ -ray measurements

M Aliotta

Grant Start Date: 2 December 2024

Just recruited: 1 PhD student (December), 1 PDRA Exp (February), 1 PDRA Theo (TBC)

Nuclear Astrophysics a very vibrant research field

much remains to be done with **stable beams**, both at surface and underground facilities

Edinburgh playing a leading role in this area

exciting new results in the future

M. Aliotta Nuclear Astrophysics with Stable Beams at LUNA

the LUNA Collaboration

