Key Experimental Probes of Energy Generation in X-ray Bursts – Spectroscopy of ⁴⁹Mn

Connor O'Shea University of Surrey ECR Workshop 2025

Type-I X-ray Burst Nucleosynthesis

Type-I X-ray Burst Nucleosynthesis

DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES

R. H. Cyburt^{1,2}, A. M. Amthor³, A. Heger^{2,4,5,6}, E. Johnson⁷, L. Keek^{1,2,7,9}, Z. Meisel^{2,8}, H. Schatz^{1,2,7}, and K. Smith^{2,10}

Indirect Measurements

$$\begin{split} N_A \left\langle \sigma \nu \right\rangle \; = \; \frac{1.54 \times 10^{11}}{(\mu T_9)^{3/2}} \sum_i \exp \left[\frac{-11.605 E_{\mathrm{res},i}}{T_9} \right] \cdot (\omega \gamma)_i \\ \end{split}$$
These are the required ingredients to compute the reaction rate
$$E_{\mathrm{res}} \; = \; E_{\mathrm{ex}} - S_p \\ \omega \gamma \; \simeq \; \omega \Gamma_p \; = \; \frac{2\hbar^2}{\mu R^2} \cdot \frac{2J_{\mathrm{res}} + 1}{(2j_p + 1)(2j_X + 1)} \cdot P_\ell \cdot C^2 S \cdot \theta_p^2 \end{split}$$

Structural Information of ⁴⁹Mn

```
<sup>24</sup>Mg(<sup>28</sup>Si,pn) – C.D. O'Leary et al.,
PRL 79 (1997), 4349
```

No low- ℓ **transfers known** in the astrophysically relevant region above $S_p = 2088(8)$ keV

Structural Information of ⁴⁹Mn

⁴⁶Ti(*α*,*n*) – F. Brandolini *et al.*, PRC **73** (2006), 024313

An evaluation of the mirror nucleus, ⁴⁹Cr, shows **two low-** ℓ **transfers** are known in the region: an $\ell = 0$ and an $\ell = 1$

Structural Information of ⁴⁹Mn

Fusion-evaporation Reactions

Combinations of stable beam and target may be used to produce *p*-rich nuclei via fusion-evaporation reactions

Techniques in *γ*-ray spectroscopy allow for the precise measurements of resonance energies

Challenging as **high-spin states** are **preferentially populated** and the *n*-evaporation channel is usually weak

The ¹¹B(⁴⁰Ca,2*n*) Reaction @ ANL

A 75-MeV, ~13-pnA ⁴⁰Ca beam was used to bombard a ~200- μ g/cm² ¹¹B target, populating states in ⁴⁹Mn via ¹¹B(⁴⁰Ca,2n) and ⁴⁹Cr via ¹¹B(⁴⁰Ca,pn)

Aim: separate and select upon ⁴⁹Mn nuclei, and look to the coincident *y* rays

The ¹¹B(⁴⁰Ca,2*n*) Reaction @ ANL

Fragment Mass Analyser

GRETINA

Recoil Selection of ¹¹B(⁴⁰Ca,2*n*)

Ionisation Chamber allows for separation of Z = 25 (Mn) nuclei

Recoil Selection of ¹¹B(⁴⁰Ca,2*n*)

Proportional Counter allows for separation of A = 49 nuclei

Comparison of low- $(N_{\gamma} = 1)$ and high- $(N_{\gamma} \ge 4)$ multiplicity singles

Comparison of **low-** ($N_{\gamma} = 2$) and **high-** ($N_{\gamma} \ge 5$) **multiplicity** γ - γ (gate on $7/2^{-} \rightarrow 5/2^{-}$)

Partial Level Schemes of ⁴⁹Mn and ⁴⁹Cr

⁴⁹Mn

⁴⁹Cr

Resonances in the ⁴⁸Cr + p system

$E_{\rm ex}$ (keV)	$\begin{vmatrix} E_{\rm res} \\ (\rm keV) \end{vmatrix}$	J^{π}	ℓ	C^2S	$\begin{vmatrix} \Gamma_p \\ (eV) \end{vmatrix}$	$\begin{vmatrix} \Gamma_{\gamma} \\ (eV) \end{vmatrix}$	$\left \begin{array}{c} \omega \gamma \\ (\text{eV}) \end{array} \right $
2400.3(29) 2484.4(19) 2570.9(26) 2595.9(21) (2964.4(28))	$ \begin{array}{c c} 312.3(85) \\ 396.4(82) \\ 482.9(84) \\ 507.9(83) \\ (876.4(85)) \end{array} $	$\begin{vmatrix} 5/2^+ \\ 7/2^- \\ 1/2^+ \\ 3/2^- \\ (7/2^+) \end{vmatrix}$	$ \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \\ 4 \end{bmatrix} $	$0.01 \\ 0.01 \\ 0.03 \\ 0.01 \\ 0.01$	$\begin{array}{l} 7.90 \times 10^{-11} \\ 3.71 \times 10^{-10} \\ 3.89 \times 10^{-5} \\ 1.24 \times 10^{-5} \\ 3.35 \times 10^{-6} \end{array}$	$ \begin{array}{c} 6.91 \times 10^{-4} \\ 5.70 \times 10^{-2} \\ 5.70 \times 10^{-4} \\ 1.01 \times 10^{-2} \\ 8.77 \times 10^{-4} \end{array} $	$ \begin{vmatrix} 2.37 \times 10^{-10} \\ 1.48 \times 10^{-9} \\ 3.64 \times 10^{-5} \\ 2.48 \times 10^{-5} \\ 1.34 \times 10^{-5} \end{vmatrix} $

Spectroscopic factors adopted from comparison with ⁵¹Mn ⁵⁰Cr(³He,*d*) – J.E. Kim *et al.*, PRC **23** (1981), 742

$$N_A \langle \sigma \nu \rangle = \frac{1.54 \times 10^{11}}{(\mu T_9)^{3/2}} \sum_i \exp\left[\frac{-11.605 E_{\text{res},i}}{T_9}\right] \cdot (\omega \gamma)_i$$

The Stellar Reaction Rate of ${}^{48}Cr(p, \gamma)$

Stellar rate reduced by ~3 orders of magnitude

The Stellar Reaction Rate of ${}^{48}Cr(p, \gamma)$

C. O'Shea, G. Lotay, D.T. Doherty et al., PLB 854 (2024), 138740

With thanks to

Gavin Lotay, Dan Doherty, Darek Seweryniak, Hendrik Schatz and other collaborators

Thank you for your attention