
Numerical conformal bootstrap

for the 3d Ising CFT

arXiv:2411.15300 with Chang, Dommes, Erramilli, Homrich, Liu, Mitchell, Poland, Simmons-Duffin

Petr Kravchuk
April 28 2025, UKLFT

King’s College London

1



Outline

• Introduction: 3d Ising CFT & numerical bootstrap

• Setting up T, σ, ϵ in 3d Ising

• Results
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3d Ising CFT

3d Ising CFT describes phase transitions associated with breaking

of Z2 symmetry, e.g. in the 3d Ising model

H[σ] = J
∑
⟨ij⟩

(1− σiσj) + h
∑
i

σi, Z =
∑

σi=±1

e−H[σ]/T

Second-order phase transition at T = Tc and h = 0.

Conformal invariance believed to emerge at large

distances.
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3d Ising CFT

Why 3d Ising CFT?

• A very common universality class (from H2O to QCD?).

• The simplest interacting quantum field theory in d > 2?

• Conformal bootstrap is very effective.

• Good testing ground for new methods.
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3d Ising CFT

Conformal bootstrap works directly in the scaling limit.

3d Ising a unitary CFT with the symmetries:

1. connected conformal group S̃O(2, 3)

2. space parity

3. Z2 global symmetry

Local operators are labelled by scaling dimension ∆ and [j±,±].

Only two relevant scalars:

1. σ ∈ [0+,−], ∆σ = 1
2 + η

2 ≈ 0.52

2. ϵ ∈ [0+,+], ∆ϵ = 3− 1
ν ≈ 1.41

5



3d Ising CFT

3d Ising model/CFT has been studied using many methods:

Monte-Carlo, High-T expansions, ERG, ϵ-expansion, skeleton

expansions, fuzzy sphere...

The most precise values of ∆σ,∆ϵ from non-bootstrap methods

come from Monte-Carlo [Hasenbusch’21]

∆σ = 0.518142(20), ∆ϵ = 1.41265(13)

Recent fuzzy-sphere regularization seems to offer some advantages

[Zhu, Han, Huffman, Hofman, He’22]
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3d Ising CFT & conformal bootstrap

Conformal bootstrap constrains properties of CFTs based on

crossing symmetry of four-point functions. [Rattazzi, Rychkov,

Tonni, Vichi’08]

For ⟨σσσσ⟩ one finds

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi’12]
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3d Ising & conformal bootstrap

Conformal invariance implies
(
zz̄=

x212x
2
34

x213x
2
24

, (1−z)(1−z̄)=
x214x

2
23

x213x
2
24

)
⟨σ(x1)σ(x2)σ(x3)σ(x4)⟩ =

g(z, z̄)

x2∆σ
12 x2∆σ

34

.

Using operator product expansion σ × σ =
∑

O λσσOO,

g(z, z̄) = (zz̄)∆σ
∑
O

λ2
σσOg∆O,jO(z, z̄).

The operators O have quantum numbers [j+,+], j ∈ 2Z.

g∆,j(z, z̄) = conformal block (computable function)
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3d Ising & conformal bootstrap

Permutation invariance under x1 ↔ x3 implies

g(z, z̄) = g(1− z, 1− z̄).

Together with j ∈ 2Z this implies full S4 permutation symmetry.∑
O

λ2
σσOg∆O,jO(z, z̄) =

∑
O

λ2
σσOg∆O,jO(1− z, 1− z̄)

∑
O

λ2
σσOF∆O,jO(z, z̄) = 0.

At z = z̄ = 1
2 and odd m+ n, using λσσ1 = 1

∂m∂̄nF0,0 +
∑
O≠1

λ2
σσO∂

m∂̄nF∆O,jO = 0.

Crucially, λ2
σσO ≥ 0 due to unitarity.
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3d Ising & conformal bootstrap

∂m∂̄nF0,0 +
∑
O≠1

λ2
σσO∂

m∂̄nF∆O,jO = 0.

Toy model: for odd n,

(0− 1)n +
∑
∆

λ2
∆(∆− 1)n = 0.

Suppose all ∆ ≥ 3 in the sum. We prove it is impossible:

1. Take −4×(n = 1 equation) plus n = 3 equation.

2. Obtain

P (0) +
∑
∆

λ2
∆P (∆) = 0,

P (∆) = −4(∆− 1) + (∆− 1)3 = (∆+ 1)(∆− 1)(∆− 3)

3. Contradiction from P (0) = 3 and P (∆) ≥ 0 for ∆ ≥ 3.
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3d Ising & conformal bootstrap

In the real problem

∂m∂̄nF0,0 +
∑
O≠1

λ2
σσO∂

m∂̄nF∆O,jO = 0.

[Rattazzi, Rychkov, Tonni, Vichi’08]

1. Take linear combinations with coefficients αmn.

2. Cutoff at m+ n ≤ Λ. Typical Λ ≲ 50.

3. Search for coefficients α numerically so as to exclude potential

solutions.
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3d Ising & conformal bootstrap

Studying four-point functions of σ and ϵ,

⟨σσσσ⟩, ⟨ϵϵϵϵ⟩, ⟨σϵσϵ⟩,

one finds (Λ = 19)

[Kos,Poland,Simmons-Duffin’14] 12



3d Ising & conformal bootstrap

[Simmons-Duffin’15] introduced bootstrap-tuned solver SDPB and

[Kos,Poland,Simmons-Duffin,Vichi’16] compute at Λ = 43

State of the art prior to this work.
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Stress-tensor bootstrap

What’s new: add T to σ, ϵ

⟨σσσσ⟩, ⟨ϵϵϵϵ⟩, ⟨σϵσϵ⟩
⟨Tσσϵ⟩, ⟨Tϵϵϵ⟩
⟨TTσσ⟩, ⟨TTϵϵ⟩

⟨TTTϵ⟩
⟨TTTT ⟩

14



Stress-tensor bootstrap

{T, σ, ϵ} advantages:

1. Access to almost all symmetry sectors.
(except [0−,−], [1−,−], [1−,+], [1+,+])

2. Access to more operators, OPE coefficients.

3. Improved precision.

{T, σ, ϵ} challenges:

1. Many essentially different conformal blocks g∆,j to compute.

2. Many more crossing equations to impose.

3. A large jump in computational complexity.
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Computation of conformal blocks

We use a fully algorithmic approach based on Zamolodchikov-like

recursion relations, schematically

g∆,j(z, z̄) = g∞,j(z, z̄) +
∑
i

1

∆−∆i
rnig∆i+ni,ji(z, z̄)

[Zamolodchikov’87] [PK’17] [Erramilli,Iliesiu,PK’19]

Implemented in blocks 3d software.

Can compute completely general 3d conformal blocks.

[Erramilli,Iliesiu,PK,Landry,Poland,Simmons-Duffin’20]
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Managing crossing equations

The full {T, σ, ϵ} involves many more crossing equations.

Low-level manual implementation is error-prone and not practical.

We use the hyperion family of Haskell packages.

Designed to handle very general systems of crossing equations

given only a high-level description.

[Simmons-Duffin, PK, Erramilli, Liu, ...]
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Managing data

hyperion also handles the generation and bookkeeping of the

conformal blocks, other intermediate data, and the final results.

build times using 2048 compute cores

The amount of data that needs to be generated required us to

develop a custom scheduling algorithm to distribute tasks to

allocated compute cores.
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Computational efficiency

This work used SDPB 3.0.0 [Simmons-Duffin, Landry, Dommes, ...]

1. Arbitrary-precision semidefinite program solver

2. Highly-optimized for numerical bootstrap applications

3. Scales well to > 10 compute nodes using MPI
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Computations

• DiRAC Memory Intensive service Cosma8 at Durham

University

• Expanse cluster at the San Diego Supercomputing Center

(SDSC)

• CREATE High Performance Cluster at King’s College London.

• Resnick High Performance Computing Center, Caltech

• Yale Grace computing cluster

O(10) MCPUhrs
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Results: ∆σ,∆ϵ

Method ∆σ ∆ϵ

Monte-Carlo 0.518142(20) 1.41265(13)

{σ, e}@Λ = 43 0.5181489(10) 1.412625(10)

{T, σ, ϵ}@Λ = 51 0.518148804(13) 1.41262527(16)

Λ = 51 is preliminary

σϵ, Λ=43

Tσϵ, Λ=27

Tσϵ, Λ=35

Tσϵ, Λ=43

Tσϵ, Λ=51

0.518148 0.518149 0.51815

1.41261

1.41262

1.41263

1.41264

0.5181488 0.5181489

1.412625

1.412626

Gap assumptions: ∆other scalar ≥ 3, ∆T ′ ≥ 4, τgap ≥ 10−6.
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Results: OPE coefficients

3-point functions between σ, ϵ, T enter into the crossing equations
and can be bounded (not as rigorous as ∆σ,∆ϵ)

Tσϵ (this work) prev. bootstrap monte carlo fuzzy sphere

λσσϵ 1.05185373(11) 1.0518537(41) 1.051(1) 1.0539(18)

λϵϵϵ 1.53244304(58) 1.532435(19) 1.533(5) 1.5441(23)

cT /cB 0.946538675(42) 0.946534(11) 0.952(29) 0.955(21)

λTTϵ 0.95331513(42) 0.958(7) — 0.9162(73)

nB 0.933444559(75) 0.933(4) — —

nF 0.013094116(33) 0.014(4) — —

⟨TT ⟩ = cT × (standard)

⟨TTT ⟩ = nB⟨TTT ⟩B + nF ⟨TTT ⟩F
cT /cB = nB + nF
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Results: spectrum extraction

Affine transformation of the Λ = 34, 43 islands

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0
y

Λ=35 allowed (43 points)

Λ=35 disallowed (57 points)

Λ=43 allowed (41 points)

Λ=43 disallowed (38 points)
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Results: spectrum extraction

[0+,+], τ = ∆− j
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Results: spectrum extraction

[4+,+], τ = ∆− j

25



Results: spectrum extraction

[0−,+], τ = ∆− j
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Summary & future directions

Summary:

• We have been able to study {T, σ, ϵ} system at very high Λ.

• High-precision determinations of ∆σ,∆ϵ and {T, σ, ϵ}
three-point functions.

• Analysis of extremal spectra in progress

• Possible thanks to substantially improved numerical algorithms

for SDPs, conformal blocks, and software infrastructure.

• Requires O(10 MCPUhrs)

Future:

• Natural extensions to O(N) models and other CFTs in 3d

• Bootstrap of 4d CFTs
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Zoom-out plot

σϵ, Λ=43

Tσϵ, Λ=27

Tσϵ, Λ=35

Tσϵ, Λ=43

Tσϵ, Λ=51

0.518148 0.518149 0.51815

1.41261

1.41262

1.41263

1.41264
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Zoom-in plot

0.5181488 0.5181489

1.412625

1.412626
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