Numerical conformal bootstrap for the 3d Ising CFT

arXiv:2411.15300 with Chang, Dommes, Erramilli, Homrich, Liu, Mitchell, Poland, Simmons-Duffin

Petr Kravchuk April 28 2025, UKLFT

King's College London

- Introduction: 3d Ising CFT & numerical bootstrap
- Setting up T,σ,ϵ in 3d Ising
- Results

3d Ising CFT describes phase transitions associated with breaking of \mathbb{Z}_2 symmetry, e.g. in the 3d Ising model

$$H[\sigma] = J \sum_{\langle ij \rangle} (1 - \sigma_i \sigma_j) + h \sum_i \sigma_i, \quad Z = \sum_{\sigma_i = \pm 1} e^{-H[\sigma]/T}$$

Second-order phase transition at $T = T_c$ and h = 0. Conformal invariance believed to emerge at large distances.

Why 3d Ising CFT?

- A very common universality class (from H_2O to QCD?).
- The simplest interacting quantum field theory in d > 2?
- Conformal bootstrap is very effective.
- Good testing ground for new methods.

Conformal bootstrap works directly in the scaling limit.

3d Ising a unitary CFT with the symmetries:

- 1. connected conformal group $\widetilde{\mathrm{SO}}(2,3)$
- 2. space parity
- 3. \mathbb{Z}_2 global symmetry

Local operators are labelled by scaling dimension Δ and $[j^{\pm},\pm]$. Only two relevant scalars:

1.
$$\sigma \in [0^+, -], \quad \Delta_{\sigma} = \frac{1}{2} + \frac{\eta}{2} \approx 0.52$$

2. $\epsilon \in [0^+, +], \quad \Delta_{\epsilon} = 3 - \frac{1}{\nu} \approx 1.41$

3d Ising model/CFT has been studied using many methods: Monte-Carlo, High-T expansions, ERG, ϵ -expansion, skeleton expansions, fuzzy sphere...

The most precise values of $\Delta_{\sigma}, \Delta_{\epsilon}$ from non-bootstrap methods come from Monte-Carlo [Hasenbusch'21]

 $\Delta_{\sigma} = 0.518142(20), \quad \Delta_{\epsilon} = 1.41265(13)$

Recent fuzzy-sphere regularization seems to offer some advantages [Zhu, Han, Huffman, Hofman, He'22]

Conformal bootstrap constrains properties of CFTs based on crossing symmetry of four-point functions. [Rattazzi, Rychkov, Tonni, Vichi'08]

For $\langle \sigma \sigma \sigma \sigma \rangle$ one finds

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi'12]

3d Ising & conformal bootstrap

Conformal invariance implies
$$\left(z\bar{z} = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, (1-z)(1-\bar{z}) = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}\right)$$

$$\langle \sigma(x_1)\sigma(x_2)\sigma(x_3)\sigma(x_4)\rangle = \frac{g(z,\bar{z})}{x_{12}^{2\Delta\sigma}x_{34}^{2\Delta\sigma}}.$$

Using operator product expansion $\sigma \times \sigma = \sum_{\mathcal{O}} \lambda_{\sigma\sigma\mathcal{O}} \mathcal{O}$,

$$g(z,\bar{z}) = (z\bar{z})^{\Delta_{\sigma}} \sum_{\mathcal{O}} \lambda^2_{\sigma\sigma\mathcal{O}} g_{\Delta_{\mathcal{O}},j_{\mathcal{O}}}(z,\bar{z}).$$

The operators \mathcal{O} have quantum numbers $[j^+, +], j \in 2\mathbb{Z}$.

 $g_{\Delta,j}(z,\bar{z}) = \text{conformal block (computable function)}$

3d Ising & conformal bootstrap

Permutation invariance under $x_1 \leftrightarrow x_3$ implies

$$g(z, \bar{z}) = g(1 - z, 1 - \bar{z}).$$

Together with $j \in 2\mathbb{Z}$ this implies full S_4 permutation symmetry.

$$\sum_{\mathcal{O}} \lambda_{\sigma\sigma\mathcal{O}}^2 g_{\Delta_{\mathcal{O}},j_{\mathcal{O}}}(z,\bar{z}) = \sum_{\mathcal{O}} \lambda_{\sigma\sigma\mathcal{O}}^2 g_{\Delta_{\mathcal{O}},j_{\mathcal{O}}}(1-z,1-\bar{z})$$
$$\sum_{\mathcal{O}} \lambda_{\sigma\sigma\mathcal{O}}^2 F_{\Delta_{\mathcal{O}},j_{\mathcal{O}}}(z,\bar{z}) = 0.$$

At $z = \overline{z} = \frac{1}{2}$ and odd m + n, using $\lambda_{\sigma\sigma 1} = 1$ $\partial^m \overline{\partial}^n F_{0,0} + \sum_{\mathcal{O} \neq 1} \lambda_{\sigma\sigma\mathcal{O}}^2 \partial^m \overline{\partial}^n F_{\Delta_{\mathcal{O}},j_{\mathcal{O}}} = 0.$

Crucially, $\lambda^2_{\sigma\sigma\mathcal{O}} \geq 0$ due to unitarity.

$$\partial^m \bar{\partial}^n F_{0,0} + \sum_{\mathcal{O} \neq 1} \lambda^2_{\sigma\sigma\mathcal{O}} \partial^m \bar{\partial}^n F_{\Delta_{\mathcal{O}}, j_{\mathcal{O}}} = 0.$$

Toy model: for odd n,

$$(0-1)^n + \sum_{\Delta} \lambda_{\Delta}^2 (\Delta - 1)^n = 0.$$

Suppose all $\Delta \geq 3$ in the sum. We prove it is impossible:

1. Take $-4 \times (n = 1 \text{ equation})$ plus n = 3 equation.

2. Obtain

$$P(0) + \sum_{\Delta} \lambda_{\Delta}^2 P(\Delta) = 0,$$

$$P(\Delta) = -4(\Delta - 1) + (\Delta - 1)^3 = (\Delta + 1)(\Delta - 1)(\Delta - 3)$$

3. Contradiction from P(0) = 3 and $P(\Delta) \ge 0$ for $\Delta \ge 3$.

In the real problem

$$\partial^m \bar{\partial}^n F_{0,0} + \sum_{\mathcal{O} \neq 1} \lambda^2_{\sigma\sigma\mathcal{O}} \partial^m \bar{\partial}^n F_{\Delta_{\mathcal{O}}, j_{\mathcal{O}}} = 0.$$

[Rattazzi, Rychkov, Tonni, Vichi'08]

- 1. Take linear combinations with coefficients α_{mn} .
- 2. Cutoff at $m + n \leq \Lambda$. Typical $\Lambda \lesssim 50$.
- 3. Search for coefficients α numerically so as to exclude potential solutions.

3d Ising & conformal bootstrap

Studying four-point functions of σ and ϵ ,

 $\langle \sigma \sigma \sigma \sigma \rangle, \quad \langle \epsilon \epsilon \epsilon \epsilon \rangle, \quad \langle \sigma \epsilon \sigma \epsilon \rangle,$

one finds ($\Lambda = 19$)

[Kos,Poland,Simmons-Duffin'14]

3d Ising & conformal bootstrap

[Simmons-Duffin'15] introduced bootstrap-tuned solver SDPB and [Kos,Poland,Simmons-Duffin,Vichi'16] compute at $\Lambda=43$

State of the art prior to this work.

What's new: add T to σ,ϵ

 $\begin{array}{ll} \langle \sigma\sigma\sigma\sigma\rangle, & \langle\epsilon\epsilon\epsilon\epsilon\rangle, & \langle\sigma\epsilon\sigma\epsilon\rangle \\ & \langle T\sigma\sigma\epsilon\rangle, & \langle T\epsilon\epsilon\epsilon\rangle \\ & \langle TT\sigma\sigma\rangle, & \langle TT\epsilon\epsilon\rangle \\ & & \langle TTTT\rangle \end{array}$

 $\{T,\sigma,\epsilon\}$ advantages:

- 1. Access to almost all symmetry sectors. $_{(\text{except } [0^-, -], \ [1^-, -], \ [1^-, +], \ [1^+, +])}$
- 2. Access to more operators, OPE coefficients.
- 3. Improved precision.

 $\{T,\sigma,\epsilon\}$ challenges:

- 1. Many essentially different conformal blocks $g_{\Delta,j}$ to compute.
- 2. Many more crossing equations to impose.
- 3. A large jump in computational complexity.

We use a fully algorithmic approach based on Zamolodchikov-like recursion relations, schematically

$$g_{\Delta,j}(z,\bar{z}) = g_{\infty,j}(z,\bar{z}) + \sum_{i} \frac{1}{\Delta - \Delta_i} r^{n_i} g_{\Delta_i + n_i, j_i}(z,\bar{z})$$

[Zamolodchikov'87] [PK'17] [Erramilli, Iliesiu, PK'19]

Implemented in blocks_3d software. Can compute completely general 3d conformal blocks. [Erramilli,Iliesiu,PK,Landry,Poland,Simmons-Duffin'20] The full $\{T, \sigma, \epsilon\}$ involves many more crossing equations.

Low-level manual implementation is error-prone and not practical.

We use the hyperion family of Haskell packages. Designed to handle very general systems of crossing equations given only a high-level description.

[Simmons-Duffin, PK, Erramilli, Liu, ...]

hyperion also handles the generation and bookkeeping of the conformal blocks, other intermediate data, and the final results.

	fresh build	using pre-built $\langle TTTT\rangle$ blocks	during OPE scan
Block3d	629	79	0
CompositeBlock	10538	4576	0
PartChunk	7926	7926	53
Part	363	363	1
total time	4.8 hours	1.4 hours	13 seconds

build times using 2048 compute cores

The amount of data that needs to be generated required us to develop a custom scheduling algorithm to distribute tasks to allocated compute cores.

This work used SDPB 3.0.0 [Simmons-Duffin, Landry, Dommes, ...]

- 1. Arbitrary-precision semidefinite program solver
- 2. Highly-optimized for numerical bootstrap applications
- 3. Scales well to > 10 compute nodes using MPI

- DiRAC Memory Intensive service Cosma8 at Durham University
- Expanse cluster at the San Diego Supercomputing Center (SDSC)
- CREATE High Performance Cluster at King's College London.
- Resnick High Performance Computing Center, Caltech
- Yale Grace computing cluster

O(10) MCPUhrs

Results: $\Delta_{\sigma}, \Delta_{\epsilon}$

Method	Δ_{σ}	Δ_{ϵ}
Monte-Carlo	0.518142(20)	1.41265(13)
$\{\sigma, e\}@\Lambda = 43$	0.51814 <mark>89(10)</mark>	1.412625(10)
$\{T, \sigma, \epsilon\}@\Lambda = 51$	0.5181488 <mark>04(13)</mark>	1.41262527(16)

 $[\]Lambda=51$ is preliminary

Gap assumptions: $\Delta_{\text{other scalar}} \geq 3$, $\Delta_{T'} \geq 4$, $\tau_{\text{gap}} \geq 10^{-6}$.

Results: OPE coefficients

3-point functions between σ, ϵ, T enter into the crossing equations and can be bounded (not as rigorous as $\Delta_{\sigma}, \Delta_{\epsilon}$)

	$T\sigma\epsilon$ (this work)	prev. bootstrap	monte carlo	fuzzy sphere
$\lambda_{\sigma\sigma\epsilon}$	1.051853 <mark>73(11)</mark>	1.05185 <mark>37(41)</mark>	1.05 <mark>1(1)</mark>	1.0539(18)
$\lambda_{\epsilon\epsilon\epsilon}$	1.532443 <mark>04(58)</mark>	1.5324 <mark>35(19)</mark>	1.53 <mark>3(5)</mark>	1.5441(23)
c_T/c_B	0.9465386 <mark>75(42)</mark>	0.9465 <mark>34(11)</mark>	0.952(29)	0.9 <mark>55(21)</mark>
$\lambda_{TT\epsilon}$	0.953315 <mark>13(42)</mark>	0.95 <mark>8(7)</mark>		0.9162(73)
n_B	0.9334445 <mark>59(75)</mark>	0.93 <mark>3(4)</mark>		
n_F	0.013094116(33)	0.014(4)		

$$\langle TT \rangle = c_T \times (\text{standard})$$
$$\langle TTT \rangle = n_B \langle TTT \rangle_B + n_F \langle TTT \rangle_F$$
$$c_T / c_B = n_B + n_F$$

Affine transformation of the $\Lambda = 34, 43$ islands

25

Summary:

- We have been able to study $\{T,\sigma,\epsilon\}$ system at very high $\Lambda.$
- High-precision determinations of $\Delta_{\sigma}, \Delta_{\epsilon}$ and $\{T, \sigma, \epsilon\}$ three-point functions.
- Analysis of extremal spectra in progress
- Possible thanks to substantially improved numerical algorithms for SDPs, conformal blocks, and software infrastructure.
- Requires O(10 MCPUhrs)

Future:

- Natural extensions to ${\cal O}(N)$ models and other CFTs in 3d
- Bootstrap of 4d CFTs

Zoom-out plot

Zoom-in plot

