28 April 2025 UKLFT, Edinburgh

A massive NPR scheme for heavy quark observables

Phys.Rev.D 110 (2024)

Rajnandini Mukherjee

Luigi Del Debbio, Felix Erben, Jonathan Flynn, J Tobias Tsang

ł

ohysical observable	continuum limit	lattice QCD
$\langle \mathcal{O} \rangle_{\rm cont}^{\overline{\rm MS}}(\mu)$	$\lim_{a \to 0}$	$\langle \mathcal{O} \rangle_{\text{lat}}^{\text{bare}}(am)$

 $\begin{array}{ll} \text{physical observable} & \text{continuum limit} & \text{lattice QCD} \\ \langle \mathcal{O} \rangle_{\text{cont}}^{\overline{\text{MS}}}(\mu) & = & R_{\mathcal{O}}^{\overline{\text{MS}} \leftarrow S}(\mu) & \lim_{a \to 0} & Z_{\mathcal{O}}^{S}(am, a\mu) & \langle \mathcal{O} \rangle_{\text{lat}}^{\text{bare}}(am) \\ & \text{matching} & \text{renormalisation} \end{array}$

non-perturbative renormalisation

Rome-Southampton method [Martinelli et al NPB 445 (1995)]

regularisation-independent (RI) momentum-subtraction (MOM) scheme

$$Z_{\mathcal{O}}(\mu) \langle p | \mathcal{O}_{\text{lat}}^{\text{bare}} | p \rangle_{p^2 = \mu^2} \equiv \langle p | \mathcal{O}_{\text{tree}} | p \rangle$$

non-perturbative renormalisation

Rome-Southampton method [Martinelli et al NPB 445 (1995)]

regularisation-independent (RI) momentum-subtraction (MOM) scheme

$$Z_{\mathcal{O}}(\mu) \langle p | \mathcal{O}_{\text{lat}}^{\text{bare}} | p \rangle_{p^2 = \mu^2} \equiv \langle p | \mathcal{O}_{\text{tree}} | p \rangle$$

- Variations: RI/MOM', RI/SMOM, RI/IMOM...[Sturm et al PRD 80 (2009), Garron et al PRD 108 (2023)]
- Other NPR schemes: [Lüscher et al NPB 384 (1992), Sint NPB 421 (1994), Tomii et al PRD 94 (2016)] ...

Charm and bottom physics

- Charm and bottom physics
- Discretisation effects!

$$\begin{split} \langle \mathcal{O} \rangle_{\text{lat}}^{S}(am, a\mu) &= Z_{\mathcal{O}}^{S}(a\mu) \left\langle \mathcal{O} \right\rangle_{\text{lat}}^{\text{bare}}(am) \\ &= \langle \mathcal{O} \rangle_{\text{cont}}^{S}(m, \mu) \Big[1 + \hat{\delta} \left(am, a\mu \right) \Big] \end{split}$$

- Charm and bottom physics
- Discretisation effects!

$$\begin{split} \langle \mathcal{O} \rangle_{\text{lat}}^{S}(am, a\mu) &= Z_{\mathcal{O}}^{S}(a\mu) \left\langle \mathcal{O} \right\rangle_{\text{lat}}^{\text{bare}}(am) \\ &= \langle \mathcal{O} \rangle_{\text{cont}}^{S}(m, \mu) \Big[1 + \hat{\delta} \left(am, a\mu \right) \Big] \end{split}$$

- Charm and bottom physics
- Discretisation effects!

$$\begin{split} \langle \mathcal{O} \rangle_{\text{lat}}^{S}(am, a\mu) &= Z_{\mathcal{O}}^{S}(a\mu) \left\langle \mathcal{O} \right\rangle_{\text{lat}}^{\text{bare}}(am) \\ &= \langle \mathcal{O} \rangle_{\text{cont}}^{S}(m, \mu) \Big[1 + \hat{\delta} \left(am, a\mu \right) \Big] \end{split}$$

• RI/MOM or SMOM are massless schemes: $Z^S_{O}(a\mu)$ defined for $am \ll 1$

STRATEGY: define a scheme *S* where $Z^S_{\mathcal{O}}$ absorbs $\hat{\delta}$ in $\lim a \to 0$

RI/mSNOM [Boyle et al PRD 95 (2017)]

- Extension of RI/SMOM for fermion bilinears
 - \checkmark Ward identities satisfied
 - \checkmark Z-factors in continuum limit similar to $\overline{\rm MS}$
 - ✓ Valid beyond the regime $am \ll 1$

RI/mSNOM [Boyle et al PRD 95 (2017)]

- Extension of RI/SMOM for fermion bilinears
 ✓ Ward identities satisfied
 - \checkmark Z-factors in continuum limit similar to $\overline{\rm MS}$
 - ✓ Valid beyond the regime $am \ll 1$

NPR conditions imposed at some finite value of the renormalised mass

RI/SMOM:
$$\lim_{m_R \to 0} \frac{Z_V}{Z_q} \frac{1}{q^2} \operatorname{Tr} \left[\left(q \cdot \Lambda_V \right) \, \mathbf{q} \right]_{q^2 = \mu^2} = 12, \qquad Z_V = Z_V(a\mu)$$

RI/mSMOM:
$$\lim_{m_R \to \overline{m}_R} \frac{Z_V}{Z_q} \frac{1}{q^2} \operatorname{Tr} \left[\left(q \cdot \Lambda_V \right) \, \mathbf{q} \right]_{q^2 = \mu^2} = 12, \qquad Z_V = Z_V(a\mu, a\overline{m})$$

• Can tune \overline{m}_R to a value where $Z_{\mathcal{O}}\langle \mathcal{O} \rangle$ has milder *a*-dependence

Numerical implementation renormalised charm quark mass

$$m_{c,R}(\mu,\overline{m}_R) = \lim_{a \to 0} Z_m(a\mu, a\overline{m}) m_c^{\text{bare}}$$

- Using 6 RBC/UKQCD domain wall fermion ensembles
 - 3 lattice spacings: coarse (C), medium (M), fine (F): 0.11 0.08 fm
 - Möbius (M) and Shamir (S) kernels

[PRD84(2011), PRD93(2016), PRD110(2024)]

name	L/a	T/a	$a^{-1}[\text{GeV}]$	$m_{\pi}[\text{MeV}]$	am_l	am_s
C1M	24	64	1.7295(38)	276	0.005	0.0362
C1S	24	64	1.7848(50)	340	0.005	0.04
M1M	32	64	2.3586(70)	286	0.004	0.02661
M1S	32	64	2.3833(86)	304	0.004	0.03
F1M	48	96	2.708(10)	232	0.002144	0.02144
F1S	48	96	2.785(11)	267	0.002144	0.02144

$$m_{c,R}(\mu,\overline{m}_R) = \lim_{a \to 0} Z_m(a\mu, a\overline{m}) m_c$$

Reference scales

$$m_{c,R}(\mu,\overline{m}_R) = \lim_{a \to 0} Z_m(a\mu, a\overline{m}) m_c$$

Continuum extrapolation renormalised charm quark mass

Step 1. Choose (M, μ, \overline{M})

 $m_R(\mu, \overline{m}_R) = \lim_{a \to 0} Z_m(a\mu, a\overline{m}) m$

Continuum extrapolation renormalised charm quark mass

Step 1. Choose (M, μ, \overline{M})

 $m_R(\mu, \overline{m}_R) = \lim_{a \to 0} Z_m(a\mu, a\overline{m}) m$

Step 2. Extrapolate to physical charm scale

$$m_{c,R}(\mu,\overline{m}_R) = \lim_{M \to M_{\eta_c}^{\text{PDG}}} m_R(\mu,\overline{m})$$

Absorption of cutoff effects SMOM (massless) vs mSMOM (massive)

A flatter approach to the continuum using the massive scheme

Absorption of cutoff effects tuning mSMOM reference mass using \overline{M}

 \overline{M} can be varied to find the flattest continuum approach

Matching to \overline{MS}

renormalised charm quark mass

Step 3: Perturbative matching to \overline{MS} using (μ, \overline{m}_R)

$$m_{c,R}^{\overline{\text{MS}}}(\mu) = R_m^{\overline{\text{MS}} \leftarrow \text{mSMOM}} \left(\frac{\overline{m}_R^2}{\mu^2}\right) m_{c,R}^{\text{mSMOM}}(\mu, \overline{m}_R)$$

• Conversion factors computed to 1-loop in Landau gauge: $(u = \overline{m}_R^2/\mu^2)$

$$R_{m}^{\overline{\text{MS}} \leftarrow \text{mSMOM}}(u) = 1 + \frac{\alpha}{4\pi} C_{F} \left[-4 + \frac{3}{2} C_{0}(u) + 3\ln(1+u) - 3u\ln\left(\frac{u}{1+u}\right) \right]$$

Matching to \overline{MS}

renormalised charm quark mass

Step 3: Perturbative matching to \overline{MS} using (μ, \overline{m}_R)

$$m_{c,R}^{\overline{\text{MS}}}(\mu) = R_m^{\overline{\text{MS}} \leftarrow \text{mSMOM}} \left(\frac{\overline{m}_R^2}{\mu^2}\right) m_{c,R}^{\text{mSMOM}}(\mu, \overline{m}_R)$$

• Conversion factors computed to 1-loop in Landau gauge: $(u = \overline{m}_R^2/\mu^2)$

$$R_m^{\overline{\text{MS}} \leftarrow \text{mSMOM}}(u) = 1 + \frac{\alpha}{4\pi} C_F \left[-4 + \frac{3}{2} C_0(u) + 3\ln(1+u) - 3u\ln\left(\frac{u}{1+u}\right) \right]$$

Final results renormalised charm quark mass

 \checkmark Full error budget with statistical + systematic + PT matching error

 $m_{c,R}^{\overline{\text{MS}}}(2 \text{ GeV}) = 1.115(7)(12)(4) \text{ GeV}$ $m_{c,R}^{\overline{\text{MS}}}(3 \text{ GeV}) = 1.008(6)(11)(4) \text{ GeV}$ $m_{c,R}^{\overline{\text{MS}}}(m_{c,R}^{\overline{\text{MS}}}) = 1.292(5)(10)(4) \text{ GeV}$

Main takeaways and outlook

A massive NPR scheme: RI/mSMOM, test case: charm quark mass

Milder continuum extrapolation using the massive scheme

- Study other bilinear operators
- Expand RI/mSMOM scheme for four-quark vertices

#

Backup: variations with reference mass M_i

Backup: pion mass dependence

name	L/a	T/a	$a^{-1}[\text{GeV}]$	$M_{\pi}[\text{MeV}]$	am_l	am_s
C1M	24	64	1.7295(38)	276	0.005	0.0362
C1S	24	64	1.7848(50)	340	0.005	0.04
M0M	64	128	2.3586(70)	139	0.000678	0.02661
M1M	32	64	2.3586(70)	286	0.004	0.02661
M1S	32	64	2.3833(86)	304	0.004	0.03
F1M	48	96	2.708(10)	232	0.002144	0.02144
F1S	48	96	2.785(11)	267	0.002144	0.02144

- Comparison of *aM_{η_h}* values on
 M1M ensemble to those on
 M0M ensemble (physical point)
 good agreement!
- Pion mass dependence (from sea effects) expected to be low/negligible

Backup: mSMOM renormalisation conditions

$$Z_{q}: \lim_{m_{R} \to \overline{m}_{R}} \frac{1}{12p^{2}} \operatorname{Tr} \left[-iS_{R}(p)^{-1} \not{p} \right] \Big|_{p^{2} = \mu^{2}} = 1,$$

$$Z_{m}: \lim_{m_{R} \to \overline{m}_{R}} \frac{1}{12m_{R}} \left\{ \operatorname{Tr} \left[S_{R}(p)^{-1} \right] \Big|_{p^{2} = \mu^{2}} + \frac{1}{2} \operatorname{Tr} \left[\left(iq \cdot \Lambda_{A,R} \right) \gamma_{5} \right] \Big|_{sym} \right\} = 1,$$

$$Z_{V}: \lim_{m_{R} \to \overline{m}_{R}} \frac{1}{12q^{2}} \operatorname{Tr} \left[\left(q \cdot \Lambda_{V,R} \right) \not{q} \right] \Big|_{sym} = 1,$$

$$Z_{A}: \lim_{m_{R} \to \overline{m}_{R}} \frac{1}{12q^{2}} \operatorname{Tr} \left[\left(q \cdot \Lambda_{A,R} + 2m_{R}\Lambda_{P,R} \right) \gamma_{5} \not{q} \right] \Big|_{sym} = 1,$$

$$Z_{P}: \lim_{m_{R} \to \overline{m}_{R}} \frac{1}{12} \operatorname{Tr} \left[\Lambda_{P,R} \gamma_{5} \right] \Big|_{sym} = 1,$$

$$Z_{S}: \lim_{m_{R} \to \overline{m}_{R}} \left\{ \frac{1}{12} \operatorname{Tr} \left[\Lambda_{S,R} \right] + \frac{1}{6q^{2}} \operatorname{Tr} \left[2m_{R}\Lambda_{P,R} \gamma_{5} \not{q} \right] \right\}_{sym} = 1.$$

Backup: other ingredients

• Set $Z_A = Z_A^{\text{PCAC}}$, using plateau of $Z_A^{\text{eff}}(t) = \frac{1}{2} \left[\frac{C(t + \frac{1}{2}) + C(t - \frac{1}{2})}{2L(t)} + \frac{2C(t + \frac{1}{2})}{L(t) + L(t + 1)} \right]$

Backup: continuum extrapolation: *am*_{res}

Fit ansatz:

$$m(a) = m(0) \left[1 + \alpha a^2 + \beta a m_{\text{res}}(M) \right]$$

