Heavy mesons semileptonic decays with the heavy-HISQ method

Olmo Francesconi

UKLFT Annual Meeting, 28th April 2025

• Form factors updates $B \to \pi \ell \nu$ $B_s \to K \ell \nu$

Physical continuum extrapolation strategy

Why B semileptonic decays?

Test SM by determining CKM matrix elements

Form factors accessible non-perturbatively by computing low energy matrix elements via lattice calculation

Heavy quarks on the lattice

Very expensive even in 2025

Simulate multiple heavy quark masses

Extrapolate to the physical q mass

Lattice setup

- 2nd Generation MILC gluon fields $N_f = 2 + 1 + 1$
- Highly Improved Staggered Quark (HISQ) action for all quarks
- Smallest heavy mass tuned to charm
- Fully relativistic calculations
- Covers almost all the kinematic range

Set	pprox <i>a</i> (fm)	m_s/m_l	$N_x^3 \times N_t$	<i>am_h</i> range	$ \overrightarrow{p}_{\max}^{\pi,K} $ [MeV/c ²]	T range
f-5	0.09	5	$32^{3} \times 96$	0.450-0.8	311	15-24
f-phys	0.09	27	$64^{3} \times 96$	0.433-0.8	330	15-24
sf-5	0.06	5	48 ³ × 144	0.274-0.8	622	22-31
sf-phys	0.06	27	96 ³ × 192	0.2585-0.8	648	22-31
uf-5	0.04	5	64 ³ × 192	0.194-0.8	583	29-44

Correlators

Correlators

Fitting strategy

- Extensive correlation analysis /
- Fully correlated multi exponential bayesian fitting procedure [corrfitter, lsqfit]
- Concurrent fit for:
 - Heavy masses
 - Twists
 - 3-pt time separations
 - 3-pt current components
 - $\mathcal{O}(100)$ parameters

Fit results - Form Factors

Fit results - Form Factors

Towards the physical point

Z-expansion
$$z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - q_{\text{max}}^2}}{\sqrt{t_+ - q^2} - \sqrt{t_+ - q_{\text{max}}^2}}$$

BGL-Parametrization
$$f(z) = \frac{1}{\phi(z) P(z)} \sum_{n} a_n f(z, n)$$

Expansion in z (power series, orthonormal polynomial base)

Blashke factors: regularize sub-threshold poles

Outer functions:

- Important to set fitting priors for a_n
- Depends on current susceptibilities
- For $b \rightarrow l(s)$ they are influenced by non perturbative condensate effects

Susceptibilities from the lattice

[2105.07851] Martinelli, Simula, Vittorio, [2405.01390] Harrison

$$\chi_{0^{+}} = \frac{1}{12} (m_b - m_l)^2 \int_0^\infty t^4 C_s(t) dt$$

$$C_X(t) = \dots \int d^3x \, \langle 0 \, | \, T\bar{h}\Gamma_X l(x)(\bar{l})\Gamma_X h(0) \, | \, 0 \rangle$$

Computation of relevant correlators currently undergoing for $\bar{b}l$ and $\bar{b}s$ susceptibilities

Conclusions and Outlook

We have completed the extraction of raw form factors from correlator fits.

We are currently completing the lattice calculation of heavy-light and heavy-strange susceptibilities.

Finalize the extrapolation to the continuum and physical masses, using a modified z-expansion constrained by lattice-computed susceptibilities.