

Hadronic resonances from lattice QCD

Nelson Pitanga Lachini

in collaboration with: P. Boyle, F. Erben, V. Gülpers, M. T. Hansen, F. Joswig, M. Marshall, A. Portelli (within RBC-UKQCD)

*PhysRevD.111.054510 PhysRevLett.*134.111901

np612@cam.ac.uk 28th April 2025

Hadronic Resonances

SM \supset QCD: hadrons, most *resonances*

Hadronic Resonances

SM ⊃ QCD: hadrons, most *resonances*

Phenomenological description:

- cross-section "enhancements"
- process dependent

$$^+e^- \rightarrow \pi\pi \ (\rightarrow \rho \rightarrow \pi$$

(π)

3 loop pQCD Naive quark model Inclusive: PDG 2019 2.5

$\pi p \rightarrow \Delta \pi \pi (\rightarrow \rho \rightarrow \pi \pi)$

Hadronic Resonances

SM \supset QCD: hadrons, most *resonances*

Phenomenological description:

- cross-section "enhancements"
- process dependent

$$e^+e^- \to \pi\pi \ (\to \rho \to \pi$$

eg, Breit-Wigner $\sigma \propto$ $(s - m_{bw}^2)^2 + \Gamma_{bw}^2 m_{bw}^2$

(Beyond) Standard Model

Experiments

(Beyond) Standard Model

CP violation in strange, charm $K \to \pi \pi \quad (\sigma?)$ LHCb [Aaij et al, PRL, 2019] $D \to \pi \pi, K\bar{K} ~ (f_0(1710)?)$ BaBar [Aubert et al, PRL, 2008]

Muon g - 2Muon g-2 [Aguillard et al, PRD, 2024] $e^+e^- \to \rho \to \pi\pi$

Experiments

(Beyond) Standard Model

CP violation in strange, charm LHCb [Aaij et al, PRL, 2019] $K \to \pi\pi$ (σ ?) $D \to \pi \pi, K\bar{K} ~ (f_0(1710)?)$ BaBar [Aubert et al, PRL, 2008]

Muon g - 2Muon g-2 [Aguillard et al, PRD, 2024] $e^+e^- \to \rho \to \pi\pi$

Experiments

nonperturbative phenomena

[Gurbernari et al, PRL, 2019] [Schacht & Soni, PRB, 2022]

\rightarrow control the QCD side \rightarrow this work: $\rho \rightarrow \pi \pi$, $K^* \rightarrow K \pi$

Phase Shift

unitarity & symmetry

 $S_{\ell}(E_{cm}) = e^{2i\delta_{\ell}(E_{cm})}$

scattering amplitude

 $T_{\mathcal{C}} = [S - \mathbf{1}]_{\mathcal{C}}$ $= (\cot \delta_{\mathcal{C}} - i)^{-1}$

Phase Shift

unitarity & symmetry $S_{\ell}(E_{cm}) = e^{2i\delta_{\ell}(E_{cm})}$

Poles

 $T_{\mathscr{C}}(E_{\mathrm{cm}}) \to T_{\mathscr{C}}(\sqrt{s}), \quad \sqrt{s} \text{ complex}$

scattering amplitude

 $T_{\mathscr{C}} = [S - 1]_{\mathscr{C}}$ $= (\cot \delta_{\mathscr{C}} - i)^{-1}$

unitarity & symmetry $S_{\ell}(E_{cm}) = e^{2i\delta_{\ell}(E_{cm})}$ partial waves

Poles

$$T_{\mathscr{C}}(E_{\mathrm{cm}}) \to T_{\mathscr{C}}(\sqrt{s}), \quad \sqrt{s} \text{ completion}$$

resonance pole: typically above E_{thr} , with $\text{Im } \sqrt{s} \neq 0$ (unitarity) and on **sheet-II** (causality)

Confined barrier

R < L

Confined barrier

 $V(x) \begin{cases} = 0, |x| > R \\ > 0, |x| < R \end{cases}$

Phase shift

 $in: \psi(x) \to out: \psi(x - \delta)$

R < L

Confined barrier

 $V(x) \begin{cases} = 0, |x| > R \\ > 0, |x| < R \end{cases}$

 $in: \psi(x) \to out: \psi(x - \delta)$ Phase shift

 $\psi(x) = \psi(x+L)$ Periodicity

 $\delta(k) = n\pi - kL/2, \quad n \in \mathbb{Z}$

 $E \propto k^2 \leftrightarrow \delta(k)$

R < L

Confined barrier

 $V(x) \begin{cases} = 0, |x| > R \\ > 0, |x| < R \end{cases}$

Phase shift $in: \psi(x) \to out: \psi(x - \delta)$

Periodic 3d:

 $\delta(E_{\rm cm}(L)) = n\pi - \phi(E_{\rm cm}(L), L), \quad n \in \mathbb{Z}$

[Lüscher, 1986] [Lüscher, 1991]

 \rightarrow driven by $\mathcal{O}(L^{-b})$, neglects $\mathcal{O}(e^{-mL})$

generalised to multiple channels, spin,... [Rummukainen & Gottlieb, 1995] [Kim & Sachrajda & Sharpe, 2005] [Hansen & Sharpe, 2012] [Leskovec & Prelovsek, 2012] [Fu, 2012] [Briceno, 2014]...

 $\delta > 0$ repulsive

Confined barrier

 $V(x) \begin{cases} = 0, |x| > R \\ > 0, |x| < R \end{cases}$

 $in: \psi(x) \to out: \psi(x - \delta)$ Phase shift

Periodic 3d:

- known function $\delta(E_{\rm cm}(L)) = n\pi - \phi(E_{\rm cm}(L), L), \quad n \in \mathbb{Z}$

[Lüscher, 1986] [Lüscher, 1991]

 \rightarrow driven by $\mathcal{O}(L^{-b})$, neglects $\mathcal{O}(e^{-mL})$

generalised to multiple channels, spin,... [Rummukainen & Gottlieb, 1995] [Kim & Sachrajda & Sharpe, 2005] [Hansen & Sharpe, 2012] [Leskovec & Prelovsek, 2012] [Fu, 2012] [Briceno, 2014]...

R < L

Method

δ^{\uparrow} Lattice spectrum $E_{\rm cm}$ $E_2(L)$ QC $E_1(L)$ $E_0(L)$

Scattering

Resonance

Scattering from lattice QCD

- [Green et al, PRL, 2021] [Bulava et al, PRD, 2024] baryons \bullet
- hidden-charm [Wilson et al, PRL & PRD, 2021] [Prelovsek et al, JHEP, 2021] \bullet
- [Yeo et al, JHEP, 2024] [Gayer et al, JHEP, 2021] [Lang & Wilson, PRL, 2021] [Mohler et al, PRD, 2013] • charm-light
- doubly-charm [Whyte et al, PRD, 2025]
- exotics, hybrids [Woss et al, PRD, 2021] [Woss et al, PRD, 2019]
- [Dudek et al, PRL, 2014] [Wilson et al, PRD, 2015] multiple-channels
- three-body [Hansen et al, PRL, 2021] [Mai et al, PRL, 2021]

[Briceño, Dudek, Young - RevModPhys, 2018] [Mai et al, PhysRep, 2023]

• • •

 $\pi\pi \to \rho \to \pi\pi$ and $K\pi \to K^* \to K\pi$

 $\pi\pi \to \rho \to \pi\pi$ and $K\pi \to K^* \to K\pi$

having $m_{\pi} \approx m_{\pi}^{phys} \approx 139 \text{ MeV}$ important for precision!

Physical m_{π} determination: ρ and K^*

Main decay products ($J = \ell = 1$)

[PDG, 2024]

 $\rho(770) \rightarrow \pi\pi, \pi\gamma, 4\pi, \dots$

PHYSICAL REVIEW LETTERS 134, 111901 (2025)

Light and Strange Vector Resonances from Lattice QCD at Physical Quark Masses

Peter Boyle,^{1,2} Felix Erben^(D),^{3,2} Vera Gülpers^(D),² Maxwell T. Hansen,² Fabian Joswig^(D),² Michael Marshall^(D),² Nelson Pitanga Lachini^(D),^{4,2,*} and Antonin Portelli^(D),^{2,3,5}

PHYSICAL REVIEW D 111, 054510 (2025)

Physical-mass calculation of $\rho(770)$ and $K^*(892)$ resonance parameters via $\pi\pi$ and $K\pi$ scattering amplitudes from lattice QCD

Peter Boyle,^{1,2} Felix Erben^(D),^{3,2} Vera Gülpers^(D),² Maxwell T. Hansen^(D),² Fabian Joswig^(D),² Michael Marshall^(D),² Nelson Pitanga Lachini^(D),^{4,2,*} and Antonin Portelli^(D),^{2,3,5}

Physical m_{π} determination: ρ and K^*

Main decay products ($J = \ell = 1$)

[PDG, 2024]

$K^*(892) \rightarrow K\pi, K\gamma, K\pi\pi, \dots$

 $\rho(770) \rightarrow \pi\pi, \pi\gamma, 4\pi, \dots$

PHYSICAL REVIEW LETTERS 134, 111901 (2025)

Light and Strange Vector Resonances from Lattice QCD at Physical Quark Masses

Peter Boyle,^{1,2} Felix Erben^(D),^{3,2} Vera Gülpers^(D),² Maxwell T. Hansen,² Fabian Joswig^(D),² Michael Marshall^(D),² Nelson Pitanga Lachini^(D),^{4,2,*} and Antonin Portelli^(D),^{2,3,5}

PHYSICAL REVIEW D 111, 054510 (2025)

Physical-mass calculation of $\rho(770)$ and $K^*(892)$ resonance parameters via $\pi\pi$ and $K\pi$ scattering amplitudes from lattice QCD

Peter Boyle,^{1,2} Felix Erben^(D),^{3,2} Vera Gülpers^(D),² Maxwell T. Hansen^(D),² Fabian Joswig^(D),² Michael Marshall^(D),² Nelson Pitanga Lachini^(D),^{4,2,*} and Antonin Portelli^(D),^{2,3,5}

[physics.adelaide.edu.au/theory/staff/ leinweber/VisualQCD/Nobel]

RBC-UKQCD lattice

	-
volume	$48^{3} \times 96$
а	pprox 0.114 fm
L	pprox 5.5 fm
$m_{\pi}L$	≈ 3.8
m_{π}	pprox 139 MeV
m _K	pprox 499 MeV
[Blum et al, PRD, 2016]	

$$N_f = 2 + 1 \begin{cases} m_u = m_c \\ m_s \end{cases}$$

[physics.adelaide.edu.au/theory/staff/ leinweber/VisualQCD/Nobel]

"raw" observables

RBC-UKQCD lattice

volume	$48^3 \times 96$
а	pprox 0.114 fm
L	pprox 5.5 fm
$m_{\pi}L$	≈ 3.8
m_{π}	pprox 139 MeV
m _K	$pprox 499~{ m MeV}$

[Blum et al, PRD, 2016]

Distillation: sources built from covariant Laplacian

 $N_f = 2 + 1 \begin{cases} m_u = m_d \\ m_s \end{cases}$

[Peardon et al, PRD, 2009] [Morningstar et al, PRD, 2011]

[physics.adelaide.edu.au/theory/staff/ leinweber/VisualQCD/Nobel]

RBC-UKQCD lattice

volume	$48^3 \times 96$
а	pprox 0.114 fm
L	pprox 5.5 fm
$m_{\pi}L$	≈ 3.8
m_{π}	pprox 139 MeV
m _K	$pprox 499~{ m MeV}$

[Blum et al, PRD, 2016]

 $N_f = 2 + 1 \begin{cases} m_u = m_d \\ m_s \end{cases}$

Open-source and free software

- Grid: data parallel C++ lattice library
- Hadrons: workflow management for lattice simulations Hadrons

Open-source and free software

- Grid: data parallel C++ lattice library
- Hadrons: workflow management for lattice simulations Madrons

Distillation within Grid and Hadrons

- agnostic to action
- stochastic/diluted sources

Open-source and free software

- Grid: data parallel C++ lattice library
- Hadrons: workflow management for lattice simulations Madrons

Distillation within Grid and Hadrons

- agnostic to action
- stochastic/diluted sources

Running

[dirac.ac.uk/extreme-scaling-edinburgh]

- 2 DiRAC machines, same high-level code
- 'raw' correlators publicly shared

[repository.cern/records/vy9x7-bzn92]

Open-source and free software

- *Grid*: data parallel C++ lattice library
- Hadrons: workflow management for lattice simulations Madrons

Distillation within Grid and Hadrons

- agnostic to action
- stochastic/diluted sources

Running

[dirac.ac.uk/extreme-scaling-edinburgh]

- 2 DiRAC machines, same high-level code
- 'raw' correlators publicly shared

[repository.cern/records/vy9x7-bzn92]

GRID

 $\{O_i\} \rightarrow \{\Omega_i\}$ such that $\langle 0 | \Omega_i | n \rangle \approx \delta_{ni}$?

 $\{O_i\} \rightarrow \{\Omega_i\}$ such that $\langle 0 | \Omega_i | n \rangle \approx \delta_{ni}$?

 $\{O_i\} \rightarrow \{\Omega_i\}$ such that $\langle 0 | \Omega_i | n \rangle \approx \delta_{ni}$? Solve $C(t)u^n(t) = \lambda^n(t)C(t_0)u^n(t)$

 $\{O_i\} \rightarrow \{\Omega_i\}$ such that $\langle 0 | \Omega_i | n \rangle \approx \delta_{ni}$? Solve $C(t)u^n(t) = \lambda^n(t)C(t_0)u^n(t)$

 $K_3\pi_3$

 $\{O_i\} \rightarrow \{\Omega_i\}$ such that $\langle 0 | \Omega_i | n \rangle \approx \delta_{ni}$? Solve $C(t)u^n(t) = \lambda^n(t)C(t_0)u^n(t)$

fit via correlated χ^2 : $\lambda_n^{\text{mod}}(t) = Z_n^{\text{mod}} e^{-tE_{\text{mod}}^n}$

 $K_3\pi_3$

QC reminder:

$$\delta_1 \big(E_{\rm cm}(L) \big) = n\pi - \phi^{\Lambda} \big(E_{\rm cm}(L) \big)$$

Allows computation of $\delta_1(E_{\rm cm}^{(i)})$, but poles inaccessible

 $_{\mathsf{m}}(L), L$), $n \in \mathbb{Z}$

 $(i) \equiv (n, \text{ irrep } \Lambda, \text{ flavour})$

QC reminder: $\delta_1(E_{\rm cm}(L)) = n\pi - \phi^{\Lambda}(E_{\rm cm}(L), L), \quad n \in \mathbb{Z}$

Allows computation of $\delta_1(E_{\rm cm}^{(i)})$, but poles inaccessible

Instead, find δ^{mod} with parameters α^{mod} through a fit

 $(i) \equiv (n, \text{ irrep } \Lambda, \text{ flavour})$

QC reminder: $\delta_1(E_{\rm cm}(L)) = n\pi - \phi^{\Lambda}(E_{\rm cm}(L), L), \quad n \in \mathbb{Z}$

Allows computation of $\delta_1(E_{cm}^{(i)})$, but poles inaccessible

Instead, find δ^{mod} with parameters α^{mod} through a fit

Resonance Pole

Substitute and analytically-continue

$$T^{\mathsf{mod}}(\sqrt{s}) = -$$

Uncertainties?

Uncertainties?

- data-driven systematic: weighted 95 % confidence interval of (central) weighted mean
- statistical: fluctuation of above over replicas
- 50000 fit-ranges \times 2000 replicas

- data-driven systematic: weighted 95 % confidence interval of (central) weighted mean
- statistical: fluctuation of above over replicas
- 50000 fit-ranges \times 2000 replicas
 - \times 4 'runs'

- data-driven systematic: weighted 95 % confidence interval of (central) weighted mean
- statistical: fluctuation of above over replicas
- 50000 fit-ranges \times 2000 replicas
 - \times 4 'runs'
 - $\times \quad \begin{array}{l} & \delta^{\rm BW} \text{ Breit-Wigner,} \\ & \delta^{\rm ERE} \text{ effective range} \end{array}$

mod cuts fit ranges

extended model average:

- interval of (central) weighted mean

- data-driven systematic: weighted 95 % confidence interval of (central) weighted mean
- statistical: fluctuation of above over replicas
- 50000 fit-ranges \times 2000 replicas

Physical units

Statistical and data-driven systematic (quadrature in plot)

$$K^*(892) \begin{cases} M = 893(2)(8) \text{ MeV} \\ \Gamma = 51(2)(11) \text{ MeV} \end{cases}$$

$$\rho(770) \begin{cases} M = 796(5)(15) \text{ MeV} \\ \Gamma = 192(10)(28) \text{ MeV} \end{cases}$$

Physical units

Statistical and data-driven systematic (quadrature in plot)

$$K^*(892)$$

$$\begin{cases} M = 893(2)(8)(54) \text{ MeV} \\ \Gamma = 51(2)(11)(3) \text{ MeV} \end{cases}$$

$$\rho(770) \begin{cases} M = 796(5)(15)(48) \text{ MeV} \\ \Gamma = 192(10)(28)(12) \text{ MeV} \end{cases}$$

Other: single lattice spacing and naive power counting :

• assume $(a\Lambda_{QCD}) \approx 5\%$ conservative discretisation uncertainty + other estimated extra systematics ~ 6\% total

Physical units

Statistical and data-driven systematic (quadrature in plot)

next frontier: continuum limit

[Green et al, PRL, 2021] [Peterken & Hansen, 2408.07062, 2024]

$$K^*(892)$$

$$\begin{cases} M = 893(2)(8)(54) \text{ MeV} \\ \Gamma = 51(2)(11)(3) \text{ MeV} \end{cases}$$

$$\rho(770) \begin{cases} M = 796(5)(15)(48) \text{ MeV} \\ \Gamma = 192(10)(28)(12) \text{ MeV} \end{cases}$$

Other: single lattice spacing and naive power counting :

• assume $(a\Lambda_{QCD}) \approx 5\%$ conservative discretisation uncertainty + other estimated extra systematics ~ 6\% total

Conclusions

Important towards precision

- continuum limit

$\frac{PhysRevD.111.054510}{PhysRevLett.134.111901} \begin{cases} K^*(892) \text{ and } \rho(770) \text{ at } m_{\pi} \approx 139 \text{ MeV from Lattice QCD} \\ \text{Data-driven systematic via sampling method of lattice energies} \end{cases}$

• reliable errors $\begin{cases} \text{lattice analysis systematics} \\ \text{operators, higher waves, IB/QED, } \geq 3\text{-body, } \dots \end{cases}$

Conclusions

Important towards precision

- continuum limit

Outlook:

- hadronic decays $D \to K\pi, ...$ heavy flavour weak decays $B \to \rho \ell \nu$

dp393

• scalars $\sigma, f_0 \to \pi \pi \ 0^+(0^{++}), \ \kappa \to K \pi \ 1/2(0^-)$

$\frac{PhysRevD.111.054510}{PhysRevLett.134.111901} \begin{cases} K^*(892) \text{ and } \rho(770) \text{ at } m_{\pi} \approx 139 \text{ MeV from Lattice QCD} \\ \text{Data-driven systematic via sampling method of lattice energies} \end{cases}$

• reliable errors $\begin{cases} \text{lattice analysis systematics} \\ \text{operators, higher waves, IB/QED, } \geq 3\text{-body, } \dots \end{cases}$

$$\rightarrow K^*\ell^+\ell^-$$

Conclusions

Important towards precision

- continuum limit

Outlook:

- hadronic decays $D \to K\pi, ...$ heavy flavour weak decays $B \to \rho \ell \nu$

scalars

dp393

 $\sigma, f_0 \to \pi \pi \ 0^+ (0^{++}), \ \kappa \to K \pi \ 1/2(0^-)$

$\frac{PhysRevD.111.054510}{PhysRevLett.134.111901} \begin{cases} K^*(892) \text{ and } \rho(770) \text{ at } m_{\pi} \approx 139 \text{ MeV from Lattice QCD} \\ \text{Data-driven systematic via sampling method of lattice energies} \end{cases}$

• reliable errors $\begin{cases} \text{lattice analysis systematics} \\ \text{operators, higher waves, IB/QED, } \geq 3\text{-body, } \dots \end{cases}$

Thanks for the attention!

DiRAC

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813942

L/a

t/a

g

am

g

Outlook

[Joswig et al, Lattice2022 & MIT Colloquium]

Hadronic $D \to K\pi$ decays at $SU(3)_f$ point

$$A(D \to h_1 h_2) = \mathcal{C}_{n,L,h_1 h_2}^{\mathsf{LL}} \left| \lim_{a \to 0} Z^{\overline{\mathsf{MS}}} \langle n, L | \mathcal{H}_W \right|$$

taken from [Hansen, talk at Lattice 2023]

Outlook

[Joswig et al, Lattice2022 & MIT Colloquium]

Hadronic $D \to K\pi$ decays at $SU(3)_f$ point

$$A(D \to h_1 h_2) = \mathcal{C}_{n,L,h_1 h_2}^{\mathsf{LL}} \left[\lim_{a \to 0} Z^{\overline{\mathrm{MS}}} \langle n, L | \mathcal{H}_W | \right]$$

taken from [Hansen, talk at Lattice 2023]

"Heavy-flavour weak decays into resonant scattering states"

- 232 MeV pion mass, DWF
- Allocated DiRAC project

[Erben et al]

3pt-functions $\langle n, \mathbf{P} | J^{\mu}(0, \mathbf{q}) | B, \mathbf{p}_{B} \rangle$

e.g. see [Erben, Lattice2024 plenary] [Leskovec et al, Lattice2022]

 $B_{(s)} \to K^* \ell^+ \ell^ B \to \rho \ell \nu$

Phase Shift

Phase Shift

 $2 \rightarrow 2$ scattering

• S-matrix element

asymptotic states

$\sim _{out} \langle \pi(p_1) \pi(p_2) | S | \pi(p_3) \pi(p_4) \rangle_{in}$

Phase Shift

 $2 \rightarrow 2$ scattering

• S-matrix element

unitarity & symmetry

phase shift

 $S_{\ell}(E_{cm}) = e^{2i\delta_{\ell}(E_{cm})}$

asymptotic states

~ $_{out}\langle \pi(p_1)\pi(p_2) | S | \pi(p_3)\pi(p_4) \rangle_{in}$

partial waves

 $2 \rightarrow 2$ scattering

• S-matrix element

• phase

shift

unitarity & symmetry

 $S_{\ell}(E_{cm}) = e^{2i\delta_{\ell}(E_{cm})}$

scattering amplitude

asymptotic states

~ $_{out}\langle \pi(p_1)\pi(p_2) | S | \pi(p_3)\pi(p_4) \rangle_{in}$

partial waves

$$\begin{array}{c} & \longrightarrow & & \\ & & \longrightarrow & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & &$$

[Asner & Hanhart, 50.Resonances, PDG, 2022]

28

$T(E_{\rm cm}) \to T(\sqrt{s}), \qquad \sqrt{s} \text{ complex}$

• bound state: below E_{thr} on sheet-I (or virtual on sheet-II)

[Asner & Hanhart, 50.Resonances, PDG, 2022]

(b) second Riemann sheet

28

$T(E_{\rm cm}) \to T(\sqrt{s}), \qquad \sqrt{s} \text{ complex}$

- bound state: below E_{thr} on sheet-I (or virtual on sheet-II)

[Asner & Hanhart, 50.Resonances, PDG, 2022]

• **resonance**: above E_{thr} pushed into Im $\sqrt{s} \neq 0$ (unitarity) on **sheet-II** (causality)

(b) second Riemann sheet

$T(E_{\rm cm}) \to T(\sqrt{s}), \qquad \sqrt{s} \text{ complex}$

- bound state: below E_{thr} on sheet-I (or virtual on sheet-II)

• **resonance**: above E_{thr} pushed into Im $\sqrt{s} \neq 0$ (unitarity) on sheet-II (causality)

What about scattering?

What about scattering? LSZ: $\prod_{i} \int_{i} e^{-ip_{i}x_{i}} (\Box_{i} + P_{i})^{2} dA_{i}$

can compute nonperturbatively, but...

What about scattering? LSZ: $\prod_{i} \int_{i} e^{-ip_{i}x_{i}} (\Box_{i} + m)$

Euclidean

analytical continuation of statistical data

can compute nonperturbatively, but...

What about scattering? LSZ: $\prod_{i} \int_{i} e^{-ip_{i}x_{i}} (\Box_{i} + m)$

Euclidean

analytical continuation of statistical data

can compute nonperturbatively, but...

(Periodic) Finite volume

discrete spectrum, *L*-dependent

Generic effective dofs: scalar fields, mass *m*

No interactions: $E(L) = 2\sqrt{m^2 + p^2}$

Generic effective dofs: scalar fields, mass *m*

No interactions: $E(L) = 2\sqrt{m^2 + p^2}$

Interacting levels: weak repulsive, attractive

Generic effective dofs: scalar fields, mass *m*

No interactions: $E(L) = 2\sqrt{m^2 + p^2}$

Interacting levels: weak repulsive, attractive

Generic effective dofs: scalar fields, mass *m* No interactions: $E(L) = 2\sqrt{m^2 + p^2}$

Interacting levels: weak repulsive, attractive

Introducing $m_R > 2m \rightarrow$ avoided levels

Generic effective dofs: scalar fields, mass *m* No interactions: $E(L) = 2\sqrt{m^2 + p^2}$

Interacting levels: weak repulsive, attractive

Introducing $m_R > 2m \rightarrow$ avoided levels

Generic effective dofs: scalar fields, mass m No interactions: $E(L) = 2\sqrt{m^2 + p^2}$ Interacting levels: weak repulsive, attractive Introducing $m_R > 2m \rightarrow$ avoided levels

Quantisation Condition (QC)

[Lüscher, 1986]
$$\delta(E_{\rm cm}(L)) = n\pi - \phi(E_{\rm cm}(L),L),$$

 \rightarrow driven by $\mathcal{O}(L^{-b})$, neglects $\mathcal{O}(e^{-mL})$

- $n \in \mathbb{Z}$

Generic effective dofs: scalar fields, mass m No interactions: $E(L) = 2\sqrt{m^2 + p^2}$ Interacting levels: weak repulsive, attractive Introducing $m_R > 2m \rightarrow$ avoided levels

Quantisation Condition (QC)

[Lüscher, 1986]
$$\delta(E_{\rm cm}(L)) = n\pi - \phi(E_{\rm cm}(L), L),$$

[Lüscher, 1991] $\delta(E_{\rm cm}(L)) = n\pi - \phi(E_{\rm cm}(L), L),$ known fur

 \rightarrow driven by $\mathcal{O}(L^{-b})$, neglects $\mathcal{O}(e^{-mL})$

nction

Generic effective dofs: scalar fields, mass m No interactions: $E(L) = 2\sqrt{m^2 + p^2}$ Interacting levels: weak repulsive, attractive Introducing $m_R > 2m \rightarrow$ avoided levels

Quantisation Condition (QC)

[Lüscher, 1986]
$$\delta(E_{\rm cm}(L)) = n\pi - \phi(E_{\rm cm}(L), L),$$

[Lüscher, 1991] $\delta(E_{\rm cm}(L)) = n\pi - \phi(E_{\rm cm}(L), L),$
at $E_{\rm cm}(L)$ known fun

 \rightarrow driven by $\mathcal{O}(L^{-b})$, neglects $\mathcal{O}(e^{-mL})$

nction

Generic effective dofs: scalar fields, mass mNo interactions: $E(L) = 2\sqrt{m^2 + p^2}$ Interacting levels: weak repulsive, attractive Introducing $m_R > 2m \rightarrow$ avoided levels

Quantisation Condition (QC)

[Lüscher, 1986]
$$\delta(E_{\rm cm}(L)) = n\pi - \phi(E_{\rm cm}(L), L),$$

[Lüscher, 1991] $\delta(E_{\rm cm}(L)) = n\pi - \phi(E_{\rm cm}(L), L),$
at $E_{\rm cm}(L)$ known fun

 \rightarrow driven by $\mathcal{O}(L^{-b})$, neglects $\mathcal{O}(e^{-mL})$

generalised to multiple channels, spin,...

[Rummukainen & Gottlieb, 1995] [Kim & Sachrajda & Sharpe, 2005] [Hansen & Sharpe, 2012] [Leskovec & Prelovsek, 2012] [Fu, 2012] [Briceno, 2014]...

VO-POINT functions $S_{\text{quark}} \propto \bar{\psi} D \psi \text{ : integrate in terms of } D^{-1} = \langle q\bar{q} \rangle$ $\langle O(x)O(y)^{\dagger} \rangle = \mathscr{Z}^{-1} \int DU \left(O(x)O(y)^{\dagger} \right) [U] e^{-S_{\text{lat}}[U]} \approx \sum_{i}^{n_{\text{cfg}}} \left(O(x)O(y)^{\dagger} \right) [U^{(i)}]$

 $\langle O(x)O(y)^{\dagger} \rangle = \mathscr{Z}^{-1} \int DU \sum_{i \in \text{Wick}} \langle O(x)O(x)O(x) \rangle$

$$O(y)^{\dagger} \Big\rangle_{F}^{i}[U] \ e^{-S'_{\mathsf{lat}}[U]} \approx \sum_{i}^{n_{\mathsf{cfg}}} \sum_{i \in \mathsf{Wick}} \langle O(x)O(y)^{\dagger} \Big\rangle_{F}^{i}[U]$$

$$\langle O(x)O(y)^{\dagger} \rangle = \mathscr{Z}^{-1} \int DU \sum_{i \in \mathsf{Wick}} \langle O(x)O(y)^{\dagger} \rangle_{F}^{i}[U] \ e^{-S'_{\mathsf{lat}}[U]} \approx \sum_{i}^{n_{\mathsf{cfg}}} \sum_{i \in \mathsf{Wick}} \langle O(x)O(y)^{\dagger} \rangle_{F}^{i}[U]$$

Example: bilinear $O_V = \bar{q}\gamma^i q'$

 $\langle (\bar{q}\gamma^i q')(x) (\bar{q}'\gamma^i q)(y)^{\dagger} \rangle_F = \operatorname{tr} [\gamma^i D_{(q)}^{-1}(y;x)\gamma^i P_{(q)}^{-1}(y;x)\gamma^i P_{(q)}^{-1}(y;$

$$D_{(q')}^{-1}(x;y)$$

$$\langle O(x)O(y)^{\dagger} \rangle = \mathcal{Z}^{-1} \int DU \sum_{i \in \text{Wick}} \langle O(x)O(y)^{\dagger} \rangle_{F}^{i}[U] \ e^{-S_{\text{lat}}^{i}[U]} \approx \sum_{i \in \text{Wick}} \sum_{i \in \text{Wick}} \langle O(x)O(y)^{\dagger} \rangle_{F}^{i}[U]$$

$$\text{nple: bilinear } O_{V} = \bar{q}\gamma^{i}q'$$

$$(\bar{q}'\gamma^{i}q)(\mathbf{P} \ t) \ (\bar{q}'\gamma^{i}q)(\mathbf{P} \ 0)^{\dagger} \rangle_{F} = \sum_{i \in \text{Wick}} \operatorname{tr}[\gamma^{i}D^{-1}(0; \mathbf{x} \ t) \ \gamma^{i}D^{-1}(\mathbf{x} \ t; 0)]$$

Exam $\langle \left(\bar{q}\gamma^{i}q'\right)(\mathbf{P},t) \left(\bar{q}'\gamma^{i}q\right)(\mathbf{P},0)^{\dagger} \rangle_{F} = \sum e^{-i\mathbf{x}\cdot\mathbf{P}} \operatorname{tr} \left[\gamma^{i}D^{-1}(0;\mathbf{x},t) \gamma^{i}D^{-1}(\mathbf{x},t;0)\right]$ X

$$\langle O(x)O(y)^{\dagger} \rangle = \mathscr{Z}^{-1} \int DU \sum_{i \in \mathsf{Wick}} \langle O(x)O(y)^{\dagger} \rangle_{F}^{i}[U] \ e^{-S_{\mathsf{lat}}^{i}[U]} \approx \sum_{i}^{n_{\mathsf{cfg}}} \sum_{i \in \mathsf{Wick}} \langle O(x)O(y)^{\dagger} \rangle_{F}^{i}[U]$$

$$\text{nple: bilinear } O_{V} = \bar{q}\gamma^{i}q'$$

$$\stackrel{i}{q'}(\mathbf{P}, t) \ \left(\bar{q}'\gamma^{i}q\right)(\mathbf{P}, 0)^{\dagger} \rangle_{F} = \sum e^{-i\mathbf{x}\cdot\mathbf{P}} \operatorname{tr}\left[\gamma^{i}D^{-1}(0; \mathbf{x}, t) \ \gamma^{i}D^{-1}(\mathbf{x}, t; 0)\right]$$

Exam $\langle (\bar{q}\gamma)$ X $\sum \langle 0 | O_V | n \rangle \langle n | O_V^{\dagger} | 0 \rangle e^{-tE_n} = \sum Z_n e^{-tE_n} \xrightarrow{t \gg 1} Z_0 e^{-tE_0}$ n n

$$\langle O(\mathbf{x})O(\mathbf{y})^{\dagger} \rangle = \mathcal{Z}^{-1} \int DU \sum_{i \in Wick} \langle O(\mathbf{x})O(\mathbf{y})^{\dagger} \rangle_{F}^{i}[U] e^{-S_{lat}^{i}[U]} \approx \sum_{i}^{n_{efg}} \sum_{i \in Wick} \langle O(\mathbf{x})O(\mathbf{y})^{\dagger} \rangle_{F}^{i}[U^{i}]$$

$$= \sum_{i}^{n_{efg}} \frac{1}{i \in Wick} \langle O(\mathbf{x})O(\mathbf{y})^{\dagger} \rangle_{F}^{i}[U^{i}]$$

$$= \sum_{i}^{n_{efg}} \frac{1}{i \in Wick} \langle O(\mathbf{x})O(\mathbf{y})^{\dagger} \rangle_{F}^{i}[U^{i}]$$

$$= \sum_{i}^{n_{efg}} e^{-i\mathbf{x}\cdot\mathbf{P}} \operatorname{tr}\left[\gamma^{i}D^{-1}(0;\mathbf{x},t) \gamma^{i}D^{-1}(\mathbf{x},t;0)\right]$$

$$= \sum_{i}^{n_{efg}} \frac{1}{i \in Wick} \langle O(\mathbf{x})O(\mathbf{y})^{\dagger} \rangle_{F}^{i}[U^{i}]$$

$$= \sum_{i}^{n_{efg}} \frac{1}{i$$

Exam $\langle (\bar{q}\gamma^i$ $\sum \langle$ n

• *D*

• lar

 \rightarrow more interpolators? nadronic dimension?

Non-local

 $O_{MM'}(\mathbf{x}, \mathbf{y}, t) \sim \left(\bar{q}_1 \gamma^5 q_1'\right)(\mathbf{x}, t) \ \left(\bar{q}_2 \gamma^5 q_2'\right)(\mathbf{y}, t)$

 $\sum_{\mathbf{x},\mathbf{y},\mathbf{z}} e^{-i\mathbf{x}\cdot\mathbf{p}-i\mathbf{y}\cdot\mathbf{q}-i\mathbf{z}\cdot\mathbf{k}} \times \langle O_{MM'}(\mathbf{x},\mathbf{y},t) O_{MM'}(\mathbf{z},\mathbf{0},0)^{\dagger} \rangle_{F}$

Non-local $O_{MM'}(\mathbf{x},\mathbf{y},t) \sim (\bar{q}_1\gamma^5 q_1')(\mathbf{x},t) (\bar{q}_2\gamma^5 q_2')(\mathbf{y},t)$

Information from $D^{-1}(x; y)_{ab}^{\alpha\beta}$ is needed (all-to-all)

• dimension $4 \times 3 N_t N^3 \sim \mathcal{O}(10^8)$: unfeasible

Non-local $O_{MM'}(\mathbf{x}, \mathbf{y}, t) \sim (\bar{q}_1 \gamma^5 q_1')(\mathbf{x}, t) \ (\bar{q}_2 \gamma^5 q_2')(\mathbf{y}, t)$

Information from $D^{-1}(x; y)_{ab}^{\alpha\beta}$ is needed (all-to-all)

• dimension $4 \times 3 N_t N^3 \sim \mathcal{O}(10^8)$: unfeasible

Non-local $O_{MM'}(\mathbf{x}, \mathbf{y}, t) \sim (\bar{q}_1 \gamma^5 q_1')(\mathbf{x}, t) \ (\bar{q}_2 \gamma^5 q_2')(\mathbf{y}, t)$

Information from $D^{-1}(x; y)_{ab}^{\alpha\beta}$ is needed (all-to-all)

• dimension $4 \times 3 N_t N^3 \sim \mathcal{O}(10^8)$: unfeasible

Non-local $O_{MM'}(\mathbf{x}, \mathbf{y}, t) \sim (\bar{q}_1 \gamma^5 q_1')(\mathbf{x}, t) \ (\bar{q}_2 \gamma^5 q_2')(\mathbf{y}, t)$

Information from $D^{-1}(x; y)_{\alpha b}^{\alpha \beta}$ is needed (all-to-all)

• dimension $4 \times 3 N_t N^3 \sim \mathcal{O}(10^8)$: unfeasible

Use freedom to build sources:

• smaller and more efficient basis than entire lattice?

Low-lying N_{vec} eigenvectors of 3D- covariant Laplacian $-\nabla^2_{ab}(t)$

full propagator $D^{-1}(x; y)_{ab}^{\alpha\beta}$

Distillation

perambulator $\tau(t, t') = v(t)^{\dagger} D^{-1}(t, t')v(t')$

space-color encoded in $v_k^a(\mathbf{X},t)$

Low-lying N_{vec} eigenvectors of 3D- covariant Laplacian $-\nabla^2_{ab}(t)$

full propagator $D^{-1}(x;y)^{\alpha\beta}$

Source is built from N_{vec} inversions D^-

 their superposition gives source with smeared spatial profile

perambulator $\tau(t, t') = v(t)^{\dagger} D^{-1}(t, t')v(t')$

space-color encoded in $v_k^a(\mathbf{X},t)$

$$^{-1}v_k$$
 for each t'

Low-lying N_{vec} eigenvectors of 3D- covariant Laplacian $-\nabla^2_{ab}(t)$

full propagator $D^{-1}(x;y)_{\alpha\beta}^{\alpha\beta}$

Distillation

Source is built from N_{vec} inversions $D^{-1}v_k$ for each t'

 their superposition gives source with smeared spatial profile

perambulator $\tau(t, t') = v(t)^{\dagger} D^{-1}(t, t')v(t')$

space-color encoded in $v_k^a(\mathbf{X},t)$

, various $\mathbf{p}_i, \gamma_\mu, \dots$

Hidden until now

Finite-volume breaks rotational into cubic subgroup

- $SO(3) \rightarrow O$: 24 symmetries of a cube (\mathbb{Z} spin)
- parity $\rightarrow O_h$: 48 elements

bic subgroup be ($\mathbb Z$ spin)

[M. S. Dresselhaus, et al. "Group Theory: Application to the Physics of

Condensed Matter. 2008"]

Hidden until now

Finite-volume breaks rotational into cubic subgroup

- $SO(3) \rightarrow O$: 24 symmetries of a cube (\mathbb{Z} spin)
- parity $\rightarrow O_h$: 48 elements

Rest and moving frames (MF) mapped into O_h subgroups

- all states/operators labelled by irreps $\Lambda[\mathbf{P}]$ of O_h
- parity in MF is not always a good quantum number

[M. S. Dresselhaus, et al. "Group Theory: Application to the Physics of Condensed Matter. 2008"]

"Subduction":

$$J = 1, 3, \dots \rightarrow [000]T_{1u}$$

 $J = 1, 2, \dots \rightarrow [001]E$

Hidden until now

Finite-volume breaks rotational into cubic subgroup

- $SO(3) \rightarrow O$: 24 symmetries of a cube (\mathbb{Z} spin)
- parity $\rightarrow O_h$: 48 elements

Rest and moving frames (MF) mapped into O_h subgroups

- all states/operators labelled by irreps $\Lambda[\mathbf{P}]$ of O_h
- parity in MF is not always a good quantum number

 $m_1 \neq m_2$

 $J = 0, 1, 2, \dots \rightarrow [001]A_1$

[M. S. Dresselhaus, et al. "Group Theory: Application to the Physics of Condensed Matter. 2008"]

"Subduction":

$$J = 1, 3, \dots \rightarrow [000]T_{1u}$$

 $J = 1, 2, \dots \rightarrow [001]E$

QC reminder:

$$\delta(E_{\rm cm}(L)) = n\pi - \phi^{\Lambda}(E_{\rm cm})$$

 $(i) \equiv (n, \Lambda, flavour), lattice$ Allows computation of $\delta_1(E_{\rm cm}^{(i)})$, but poles inaccessible

(L), L, $n \in \mathbb{Z}$

35

QC reminder:

$$\delta^{\text{mod}}(\mathscr{C}_{\text{cm}}(L)) = n\pi - \phi^{\Lambda}(\mathscr{C}_{\text{cm}}(L), L), \quad n \in \mathbb{Z}$$

 $(i) \equiv (n, \Lambda, \text{flavour}), \text{ lattice}$ Allows computation of $\delta_1(E_{\text{cm}}^{(i)})$, but poles inaccessible

Invert QC: given model δ^{mod} with parameters α^{mod} , find $\mathscr{E}_{cm}^{(i)}$

35

QC reminder:

$$\delta^{\text{mod}}(\mathscr{C}_{\text{cm}}(L)) = n\pi - \phi^{\Lambda}(\mathscr{C}_{\text{cm}}(L), L), \quad n \in \mathbb{Z}$$

 $(i) \equiv (n, \Lambda, \text{flavour}), \text{ lattice}$ Allows computation of $\delta_1(E_{\text{cm}}^{(i)})$, but poles inaccessible

Invert QC: given model δ^{mod} with parameters α^{mod} , find $\mathscr{E}_{cm}^{(i)}$

35

QC reminder: $\delta^{\mathsf{mod}}(\mathscr{E}_{\mathsf{cm}}(L)) = n\pi - \phi^{\Lambda}(\mathcal{E}_{\mathsf{cm}}(L))$

Allows computation of $\delta_1(E_{\rm cm}^{(i)})$, but poles inaccessible

Invert QC: given model δ^{mod} with para

Minimise correlated

$$\chi^{2}_{\mathsf{PS}}(\alpha^{\mathsf{mod}}) = \sum_{i,j} \left[E^{i}_{\mathsf{cm}} - \mathscr{E}^{i}_{\mathsf{cm}}(\alpha^{\mathsf{mod}}) \right] (\mathsf{Cov}^{-1})_{ij} \left[E^{j}_{\mathsf{cm}} - \mathscr{E}^{j}_{\mathsf{cm}}(\alpha^{\mathsf{mod}}) \right]$$

to constrain δ^{mod}

$$\mathscr{E}_{\rm cm}(L), L \Big), \quad n \in \mathbb{Z}$$

 $(i) \equiv (n, \Lambda, \text{flavour}), \text{ lattice}$

ameters
$$\alpha^{mod}$$
, find $\mathscr{E}_{cm}^{(i)}$

Eigenvalue fits

Remember
$$\begin{cases} \langle \Omega_n(t)\Omega_n^{\dagger}(0) \rangle = \sum_n Z_n e^{-t} \\ \lambda^n(t) \xrightarrow{t \gg 1} \approx Z_n e^{-E^n t} \end{cases}$$

$\begin{cases} \text{Model: } \lambda^{\text{mod}}(t) = Z_n^{\text{mod}} e^{-tE_{\text{mod}}^n} + \cdots \\ \text{Correlated } \chi^2 \text{ to constrain it} \end{cases}$

Statistical errors in $\lambda^n(t)$ from MC: few samples : bootstrap N_h replicas • fit on every replica: $E_{\text{mod},b}^n \rightarrow \sigma^2 \approx \text{Var}(E_{\text{mod},b}^n)$

•
$$E^n_{\mathrm{mod},b} \xrightarrow{\mathrm{boost}} E^n_{\mathrm{cm},b}$$

Eigenvalue fits

Statistical errors in $\lambda^n(t)$ from MC: few samples : bootstrap N_h replicas • fit on every replica: $E_{\text{mod},b}^n \rightarrow \sigma^2 \approx \text{Var}(E_{\text{mod},b}^n)$

•
$$E^n_{\mathrm{mod},b} \xrightarrow{\mathrm{boost}} E^n_{\mathrm{cm},b}$$

Eigenvalue fits

Statistical errors in $\lambda^n(t)$ from MC: few samples : bootstrap N_h replicas • fit on every replica: $E_{\text{mod},b}^n \rightarrow \sigma^2 \approx \text{Var}(E_{\text{mod},b}^n)$

•
$$E^n_{\mathrm{mod},b} \xrightarrow{\mathrm{boost}} E^n_{\mathrm{cm},b}$$

Model-averaging

Akaike information criterion (AIC)

- probabilities for different models
- hybrid: "Bayesian" model comparison, but frequentist weights
- uncertainty prescription: spread of final weighted distribution

$$w \propto \exp{-\frac{1}{2}\left[\frac{AIC}{\chi^2 + 2n^{par}}\right]}$$

Model-averaging

Akaike information criterion (AIC)

- probabilities for different models
- hybrid: "Bayesian" model comparison, but frequentist weights
- uncertainty prescription: spread of final weighted distribution

Different $[t_{min}, t_{max}] = \mathbf{f} \leftrightarrow \text{different models}$ $w_{\text{corr}}^{i}(\mathbf{f}_{(i)}) = \exp{-\frac{1}{2}AIC_{\text{corr}}(\mathbf{f}_{i})}$

$$w \propto \exp{-\frac{1}{2}\left[\frac{\chi^2 + 2n^{\mathsf{par}} - n^{\mathsf{data}}}{2}\right]}$$

Model-averaging

Akaike information criterion (AIC)

- probabilities for different models
- hybrid: "Bayesian" model comparison, but frequentist weights
- uncertainty prescription: spread of final weighted distribution

Different $[t_{\min}, t_{\max}] = \mathbf{f} \leftrightarrow \text{different models}$ \downarrow $w_{\text{corr}}^{i}(\mathbf{f}_{(i)}) = \exp{-\frac{1}{2}\text{AIC}_{\text{corr}}(\mathbf{f}_{i})}$

$$w \propto \exp{-\frac{1}{2}\left[\frac{\chi^2 + 2n^{\text{par}} - n^{\text{data}}}{2}\right]}$$

 n^{lev} fits $\lambda_i, \mathbf{f}_i \to E^i_{\mathsf{cm}}$

static data

38

a E_{cm}

 n^{lev} fits $\lambda_i, \mathbf{f}_i \to E^i_{\mathsf{cm}}$

...reliable systematic propagation to scattering?

38

 n^{lev} fits $\lambda_i, \mathbf{f}_i \to E^i_{\text{cm}}$

...reliable systematic propagation to scattering?

First, imagine

global minimisation unfeasible

one fit $\{\lambda, f\} \to \delta^{mod}$

Still, too many fit range combinations

Still, too many fit range combinations

Proposal $w_{corr}(\mathbf{f}) = \prod_{i} w_{corr}^{(i)}(\mathbf{f}^{(i)})$

Proposal $w_{\text{corr}}(\mathbf{f}) = \prod_{i} w_{\text{corr}}^{(i)}(\mathbf{f}^{(i)})$

Proposal
$$w_{corr}(f) = \prod_{i} w_{corr}^{(i)}(f^{(i)})$$

Target $w_t(f, \delta^{\text{mod}}) = w_{\text{PS}}(f, \delta^{\text{mod}}) w_{\text{corr}}(f) \rightarrow \text{Reweight} w_{\text{PS}}(f, \delta^{\text{mod}})$

Model-average estimate $\hat{\alpha}^{\text{mod}} = \sum_{k} \alpha^{\text{mod}, s^{k}} w_{\text{PS}}^{\text{mod}}(s^{k})$

Proposal
$$w_{corr}(f) = \prod_{i} w_{corr}^{(i)}(f^{(i)})$$

Model-average estimate $\hat{\alpha}^{\text{mod}} = \sum_{k} \alpha^{\text{mod}, s^{k}} w_{\text{PS}}^{\text{mod}}(s^{k})$

40