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Classical techniques for QFTs

▶ Diagrammatics in QED explain light-matter interactions.

▶ QED created new domains: electronics, solid state, lasers, · · · .
▶ Development of QCD largely through HPC classical computing.
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Quantum simulators and computers: experiments

▶ Precise control of quantum degrees of freedom can potentially

revolutionize computing paradigms: ion-traps, optical lattices,

superconducting qubits.

▶ Experiments with ion-traps and Rydberg atoms have already

demonstrated signi�cant progress, especially for realizing constrained

and gauge theories.

▶ Precise experimental control on �nite number of quantum states.

▶ Novel theory formulations to take advantage of the hardware?

▶ Outstanding problems: �nite density phases, real-time dynamics.
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Explorations guided by RG

Wilson (1975): Calculable

models constructed using

symmetry to extract

universal answers

applicable to a large class of

phenomena.

Ferro- and Ferri-magnetism.

Fig: Michael Schmid, Wikipedia.

Frustrated Magnets (pyrochlores).

Fig: Bramwell, Gringras.

CMP phenomena: emergent gauge

invariance
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What are Quantum Links?

▶ Generalized lattice gauge theories:

▶ Horn (1981); Orland, Rohrlich (1990);
▶ Chandrasekharan, Wiese (1997); + Brower (1999)
▶ Rokhsar, Kivelson (1988); Moessner, Sondhi, Fradkin (2002)→ Tangible connection to CMP (e.g. dimer model, magnets).

▶ Continuous gauge symmetries with discrete link operators→ �nite dimensional Hilbert space→ extension of Wilson LGTs.→ possibility of new physics scenarios.

▶ Excellent candidate models for quantum simulators.

▶ Testbed for analytical (e.g. EFTs) and numerical (e.g. Monte Carlo,

Tensor Network) methods.

▶ Very close to Qubit Regularizations; several common aspects with

Loop-String-Hadrons.
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Quantum Link Schwinger Model
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▶ Quantum links: Finite

dimensional gauge invariant

representations possible.

▶ U = S+; U† = S−; E = Sz

[Exy ,Uxy ] = Uxy

[Exy ,U
†
xy ] = −U†

xy

[Uxy ,U
†
xy ] = 2Exy

▶ Gauge symmetry:

[Gx ,H] = 0; where

Gx = (∇ · Ex − ρx )

selects the physical states:

Gx |Ψ⟩ = 0

V =
∏
x

exp (iqθxGx )

~H = VHV† = H
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String breaking

Using S = 1, a con�ning string can be realized.
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String breaking in a quantum simulator.
DB, Dalmonte, M�uller, Rico Ortega, Stebler, Wiese, Zoller (PRL, 2012).
Experiment:

Yang, Sun, Ott, Wang, Zache, Halimeh, Yuan, Hauke, Yang (Nature, 2020)
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Extrapolating to the continuum limit
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Possible to reliably reproduce the low-lying meson spectra for moderate values of

spin-representation S . Zache, van Damme, Halimeh, Hauke, DB (PRD, 2021).
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Fractional Electric Fluxes

S = 1
2
can realize Stop = iθ

4π

∫
d2xϵµνFµν with θ = π.

Coleman's prediction of a phase transition at �nite m/g for θ = π.
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▶ Z (2) CP symmetry breaking/restoration transition.

▶ Coherent long-lived oscillation of electric ux across the phase

transitions, signatures of dynamical quantum phase transitions.
Huang, DB, Heyl (PRL, 2019),

Deasules, DB, Hudomal, Papic, Sen, Halimeh (2022).



14/29

Connection with experiments

▶ Rydberg chains: observed many-body dynamics with a 51-atom

quantum simulator Bernien et. al. (Nature, 2017).

▶ Directly related to the spin S = 1
2
QLM Surace, Mazza, Giudici,

Lerose, Gambassi, Dalmonte (PRX, 2020)
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▶ Anomalous thermalization −→ quantum scars.

Turner, Michailidis, Abanin, Serbyn, Papic (Nature Phys, 2018).
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Quantum Links in (2+ 1)-d
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Flux fractionalization
Pure (2+ 1)-d U(1) gauge link models reveal phases with global

symmetry breaking. Energy density of static Q = ±1 charges:
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Strands carry fractional E = 1
2
, which can be identi�ed with domain

walls using e�ective �eld theory methods.
DB, Jiang, Widmer, Wiese (J Stat Mech, 2013) → crystalline con�nement.

DB, Caspar, Jiang, Peng, Wiese (Phys. Rev. Res., 2022) → nematic con�nement.
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Flux fractionalization

Such correlated symmetry breaking and ux fractionalization are also

seen in self-adjoint extension of Wilson LGT with θ = π.

Banerjee, DB, Kanwar, Mariani, Rindlisbacher, Wiese (2024)
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Dynamics: Thermalization and ETH
▶ Interacting quantum systems (mostly) thermalize. Fast? Slow?

Evade?

▶ However, QM is unitary: |ψ(t)⟩ = exp(−iHt) |ψ(0)⟩.
▶ Approach to equilibrium generally guided via Eigenstate

Thermalization Hypothesis (ETH). Deutsch (PRA 1991), Srednicki (PRE, 1994).
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Kaufman et. al., (Science, 2016).

Information about the initial state

converted into (non-local)

correlations through spreading of

quantum entanglement.

Nandkishore, Huse (Ann. Rev. of CMP, 2015).

▶ Increasing examples of translational-invariant interacting systems

showing (weak-) ergodicity breaking: quantum many-body scars.
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Quantum Scars

Excited spectrum contains states with anomalous entanglement

entropy and are localized in Hilbert (Fock) space.

DB, Sen (PRL, 2021).
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Larger variety of scars in QLMs and QDMs.

Even non-Abelian gauge theories/QCD show such states?
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Real-time dynamics of plaquettes

Hu�man, Garcia, DB (Phys. Rev. D. 2021).
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Tracking return probability

L(t) = |G(t)|2; G(t) = ⟨ψ0|e
−iHt |ψ0⟩

Results from IBMQ Valencia (5 qubit) and IBMQ Santiago (5 qubit).
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With error-mitigation techniques (zero-noise extrapolation + readout

correct), we were able to handle (sometimes) complexities above the

quantum volume of the computers : VQ = 2min(d ,m)

Hu�man, Garcia, DB (Phys. Rev. D. 2021).



23/29

Non-Abelian QLMs
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Non-Abelian LGTs: low-energy states

▶ Variational algorithms can be used to �nd ground states.

▶ SSB of discrete symmetry → (almost) degenerate GS.

▶ How good are quantum algorithms to extract such states?

▶ Matter-free SO(3) quantum link model in d = 2+ 1.

▶ Results from classical simulators for E0 and E1:
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Maiti, DB, Chakraborty, Hu�man, (Phys Rev Res, 2025).
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Results from IonQ Hardware: SO(3) QLM

Energy extraction using gauge-invariant parameterization of the

wave-function gives promising results in a IonQ hardware.

Tests on larger systems in progress.

Maiti, DB, Chakraborty, Hu�man, (Phys Rev Res, 2025).
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Overview

▶ QLMs exhibit rich physical phenomena in particle physics.

▶ Particle physics applications towards chiral symmetry breaking,

dynamics of con�nement, dense phases.

▶ Applications to frustrated magnetism and high Tc superconductors

are relevant for condensed matter physics.

▶ Gauge-invariant states are useful for both algorithmic developments

as well as quantum simulators.

▶ QLMs very useful for quantum computing applications.

THANK YOU FOR YOUR ATTENTION
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Lego Scars in QDM

Certain scars in the QDM are exceptionally simple: Lego scars.

▶ |ΨQMBS⟩ = 1
2
(|c1⟩− |c2⟩− |c3⟩+ |c4⟩);

▶ (Okin,Opot) = (0, 4); SL/2;AH = 0; SL/2;AV = 2 ln(2).

▶ Can be written as a tensor product state: |ΨQMBS⟩ = |L1⟩ ⊗ |L2⟩
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Quantum Caging
Certain scars in the QDM are exceptionally simple: Lego scars.

Can be written as a tensor product state: |ΨQMBS⟩ = |L1⟩ ⊗ |L2⟩

Biswas, DB, Sen (SciPost Physics, 2022).
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Step Scaling Functions of XY model
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Qubit theory reproduces the universal SSF.

Maiti, DB, Chandrasekharan, Marinkovic (PRL, 2024)
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