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High-dimensional path integral over 
degrees of freedom assigned to points 
and edges of a lattice


- Boltzmann weight  encodes 
distribution over “typical” configurations
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Lattice simulations

x 1

3 24

a

ϕ(x) ϕ(x + 1̂)

ϕ(x + 2̂) ϕ(x + 1̂ + 2̂)

⟨𝒪⟩ = [∏
x

∫
∞

−∞
dϕ(x)] 𝒪(ϕ) e−S(ϕ)/ZThermal expt. value 

of operator 𝒪

Z ≡ [∏
x

∫
∞

−∞
dϕ(x)] e−S(ϕ)Partition function



3

Why machine learning?
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Topological QCD 
observable

Lattice spacing  [fm]a

Eichhorn, et al. (2023) 2307.04742

Continuum

 
State-of-the-art LGT calculations require 
enormous computational cost.


-  degrees of freedom


- “Critical slowing down” as 


- Costly matrix inversion for propagators  
(especially as )


This limits the precision of physics results 
(challenging uncertainties from , , 
 and  limits!)

≳ 109

a → 0

⟨ψψ̄⟩
mq → 0

a → 0 mπ → ∼ 140MeV
V → ∞



4

Why machine learning?

Stokes, Kamleh, Leinweber 1312.0991

Lattice field theories may be well-suited for 
application of ML


- Problem involving lots of well-structured data


- Analytically-known target


- Generative models with exactness now exist



5

Some applications of ML
Two major components to a lattice calculation. 
Ongoing efforts to apply ML to both of these. 

1. Ensemble generation

See e.g. Boyda, et al. 
Snowmass 2022, 2202.05838

2. Observable measurements & analysis

Normalizing flow models Learned contour deformations
• PRD98 (2018) 074511, PoS LATTICE2018 176 
• PRD102 (2020) 014514 
• PRD103 (2021) 094517 
• 2309.00600, NeurIPS ML4PS (2023)

• PRD100 (2019) 034515,  2101.08176,  2107.00734 
• PRL125 (2020) 121601,  ICML (2020) 2002.02428,  PRD103 (2021) 

074504,  2305.02402 
• PRD104 (2021) 114507,  PRD106 (2022) 014514,  PRD106 (2022) 074506,  

PoSLATTICE (2022) 036 
• 2211.07541, 2401.10874, 2404.10819, 2404.11674



 

- Sample from “easy” prior density 


- Apply parametrized diffeomorphism    (the “flow”)


- Output samples follow new “model density” 



- Flow  can be learned to match target density!


r(ξ)

f

q(ϕ) = r(ξ) det |∂f(ξ)/∂ξ |−1

f
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Normalizing flow models
Tabak & Vanden-Eijnden CMS8 (2010) 217

Tabak & Turner CPA66 (2013) 145

blog.evjang.com/2019/07/nf-jax.html

Simple prior 
distribution r(ξ)

Complex model 
distribution q(ϕ)



7

Example of lattice sampling success

Cranmer, GK, Racanière, Rezende, Shanahan Nature Reviews Physics 5 (2023) 526

4 orders of 
magnitudeM
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Bare inverse coupling β

Continuum

Traditional method 1

Traditional method 2

Cost of MCMC vastly reduced due 
to better topological mixing.
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Integral deformations for noisy observables
Lattice integrands are often holomorphic, allowing the integration contour to be 
deformed without bias.

[Image credit: Neill Warrington]
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1
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e−S(ϕ)𝒪(ϕ) =
1
Z ∫ℳ̃

e−S(ϕ̃)𝒪(ϕ̃)

• Defines a modified observable, which may 
have improved variance: 
 

𝒬(ϕ) ≡ det J(ϕ)e−[S(ϕ̃(ϕ))−S(ϕ)]𝒪(ϕ̃(ϕ))

⟨𝒬(ϕ)⟩ = ⟨𝒪(ϕ)⟩
Var[𝒬(ϕ)] ≠ Var[𝒪(ϕ)]

Detmold, GK, Wagman, Warrington  PRD102 (2020) 014514



Parameterize  then minimize variance.

- Caveat: Complex analyticity


- Caveat:  variables


f(ϕ; ω)

SU(N)
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Learning the integration contour

[Image credit: 1805.04829]

The choice of  defines , , and the variance.f : ϕ ↦ ϕ̃ ℳ̃ 𝒬(ϕ)

Detmold, GK, Wagman, Warrington  PRD102 (2020) 014514, 
Detmold, GK, Lamm, Wagman, Warrington  PRD103 (2021) 094517
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