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The higher-order interactions of complex systems, such as the brain, are captured by their simplicial
complex structure and have a significant effect on dynamics. However, the existing dynamical models
defined on simplicial complexes make the strong assumption that the dynamics resides exclusively on the
nodes. Here we formulate the higher-order Kuramoto model which describes the interactions between
oscillators placed not only on nodes but also on links, triangles, and so on. We show that higher-order
Kuramoto dynamics can lead to an explosive synchronization transition by using an adaptive coupling
dependent on the solenoidal and the irrotational component of the dynamics.
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From the brain [1–5] to social interactions [6–9] and
complexmaterials [10,11], a vast number of complex systems
have the underlying topology of simplicial complexes
[12–14]. Simplicial complexes are topological structures
formed by simplices of different dimension such as nodes,
links, triangles, tetrahedra, and so on, and capture the many-
body interactions between the elements of an interacting
complex system. In the last years, simplicial complex model-
ing has attracted significant attention [15–18] revealing the
fundamental mechanisms determining emergent network
geometry [19] and the interplay between network geometry
and degree correlations [16]. Modeling complex systems
using simplicial complexes allows for the very fertile per-
spective of considering the role that higher-order interactions
have on dynamical processes. For instance, recent works
[6–9,20–24] on simplicial complex dynamics, including
works on simplicial complex synchronization [21–24], reveal
that the topology and geometry of the simplicial complexes
and their many-body interactions induce cooperative phe-
nomena that cannotbe found inpairwise interactionnetworks.
In the last years, explosive synchronization [25,26] has

been attracting increasing scientific interest. Different
pathways to explosive synchronization have been explored
in the framework of the Kuramoto dynamics of single and
multilayer networks. These notably include correlating the
intrinsic frequency of the nodes to their degree [27] or
modulating the coupling between different oscillators
adaptively using the local order parameter in single net-
works and in multiplex networks [28,29]. An outstanding

open question is to establish the conditions that allow
explosive synchronization on simplicial complexes.
Among the papers investigating synchonization dynam-

ics beyond pairwise interactions [30,31], recent works
[22,32] have proposed a many-body Kuramoto model
where the phases associated with the nodes of the network
can be coupled in triplets or quadruplets if the correspond-
ing nodes share a triangle or a tetrahedron. Interestingly, in
this context it has been shown [22] that the many-body
Kuramoto dynamics can lead to explosive, i.e., discontinu-
ous phase transitions. However this work, together with the
vast majority of works that address the study of dynamics
on simplicial complexes has the limitation that they
associate a dynamic variable exclusively with nodes of a
network. Here we are interested in a much more general
scenario where the dynamics can be associated with the
faces of dimension n ≥ 0 of a simplicial complex. Indeed,
dynamical processes might not just reside on nodes, instead
they might be related directly to dynamics defined on
higher-dimensional simplices leading to the definition of
topological dynamical signals [33]. For instance, each link
can be associated with a flux. Flow dynamics is relevant for
biological transport networks including fungal networks
[34], tree vascular networks [35], microvascular networks
[36], or hemodynamic in the mammalian cortex [37], where
there is some evidence that the dynamics can spontaneously
give rise to oscillatory currents. Flow signals can also be
used to analyze functional magnetic resonance image
(fMRI) [38] and to study blood flow between different
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Triadic interactions

A triadic interaction occurs  
when a node  

affects the interaction  
between other two nodes

(Sun et. al Nature Communications 2023, Millan et al 2024, Sun 2024, Niedostatek 2024)



Triadic interactions  
From neuroscience to triadic percolation

GLIA

Neuron

Neuron

(Sun et. al Nature Communications 2023, Millan et al 2024)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0



 Complexity challenge

Network
Topology

 Network
Geometry

Dynamics

  Theory of 
complexity

   



 Simplicial complexes are characterising the 
interactions between two ore more nodes and   

 are  formed by nodes, links, triangles, tetrahedra etc. 
They allow for topological and geometrical 
interpretation of higher-order interactions

d=2 simplicial complex     d=3 simplicial complex

Simplicial complexes



Higher-order networks

Book  
by Cambridge University Press 

Providing a general view of the interplay 
between topology and dynamics
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Simplicial complex models 

Emergent Hyperbolic Geometry 
Network Geometry with Flavor (NGF) 

[Bianconi Rahmede ,2016 & 2017]

Maximum entropy model 
Configuration model  

of simplicial complexes 
[Courtney Bianconi 2016]
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Topology shapes dynamics of higher-order 
networks
 

Ana P. Millán    1, Hanlin Sun    2, Lorenzo Giambagli    3,4, Riccardo Muolo    5, 
Timoteo Carletti    6, Joaquín J. Torres    1, Filippo Radicchi    7, Jürgen Kurths8,9 & 
Ginestra Bianconi    10,11 

Higher-order networks capture the many-body interactions present in 
complex systems, shedding light on the interplay between topology 
and dynamics. The theory of higher-order topological dynamics, which 
combines higher-order interactions with discrete topology and nonlinear 
dynamics, has the potential to enhance our understanding of complex 
systems, such as the brain and the climate, and to advance the development 
of next-generation AI algorithms. This theoretical framework, which goes 
beyond traditional node-centric descriptions, encodes the dynamics of a 
network through topological signals—variables assigned not only to nodes 
but also to edges, triangles and other higher-order cells. Recent !ndings 
show that topological signals lead to the emergence of distinct types of 
dynamical state and collective phenomena, including topological and Dirac 
synchronization, pattern formation and triadic percolation. These results 
o"er insights into how topology shapes dynamics, how dynamics learns 
topology and how topology evolves dynamically. This Perspective primarily 
aims to guide physicists, mathematicians, computer scientists and network 
scientists through the emerging !eld of higher-order topological dynamics, 
while also outlining future research challenges.

Understanding, modelling and predicting the emergent behaviour of 
complex systems are among the biggest challenges in current scientific 
research. Major examples include brain function, epidemic spread-
ing and climate change. Through the use of graphs and networks to 
represent interactions, network science has provided a powerful theo-
retical framework that has deeply transformed the theory of complex 
systems. Networks encode relevant information about the complex 
systems that they represent1,2, and their statistical and combinatorial 
properties strongly affect the unfolding of dynamical processes and 

critical phenomena3–6. The success of network science stems from the 
simplicity of its basic assumption: a complex system can be described in 
terms of interactions between its elements. However, this assumption 
also highlights a limitation of conventional network representations, 
as they encode only pairwise interactions.

As a matter of fact, representing a complex system with just  
pairwise interactions provides only an approximation of reality. 
Assuming the presence of many-body interactions is certainly more  
appropriate for many, if not all, systems. In high-energy physics, 
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Topology and Betti numbers
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Fungi network from  
Sang Hoon Lee, et. al. Jour. Compl. Net. (2016) 



Topological signals
Beyond the node centered description of  network dynamics 

The dynamical state of a simplicial complex includes  
node, edge, and higher-order topological signals
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Topological signals

• Synaptic signal


• Edge signals in the brain


• Citations in a collaboration network


• Speed of wind at given locations


• Currents at given locations in the ocean


• Fluxes in biological transportation networks

Topological signals are not only defined on 
nodes but also on links, triangles and 

higher-order simplices

Battiston et al. The physics of higher-order interactions in complex systems Nature Physics 2021

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ycQXwWgAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=ycQXwWgAAAAJ:BzfGm06jWhQC


Dynamical state of a higher-order network
 The dynamical state on a higher order network 


formed by nodes, edges and triangles is defined by a topological spinor


 


with 


   defined on nodes,  ,   defined on edges, 


   defined on triangles, i.e. 


Ψ =
χ
ψ
ξ

χ χ ∈ C0 ψ ψ ∈ C1

ξ ξ ∈ C2



Discrete exterior calculus
• The 0th order coboundary operator  is defined as 


    gradient 

δ0 : C0 → C1

(δ0 χ)e=[i,j] = χj − χi

χ1

χ2

χ3

χ4

gradient



Discrete exterior calculus
• It adjoint operator   is defined as 


    divergence

δ*0 : C1 → C0

(δ*0 ψ)i = ∑
e∈E+

i

ψe − ∑
e∈E−

i

ψe

ψ
[12]

ψ
[23]

ψ
[24] ψ

[34]

divergence



Discrete exterior calculus
• The 1st order coboundary operator   is defined as 

 curl

δ*1 : C1 → C2

(δ*1 ψ)ijk = ψij + ψjk − ψik

ψ
[12]

ψ
[23]

ψ
[24] ψ

[34]

Curl



Basics of Algebraic Topology: 
the boundary operators

B[1] =

[1,2] [1,3] [2,3] [3,4]
[1] −1 −1 0 0
[2] 1 0 −1 0
[3] 0 1 1 −1
[4] 0 0 0 1

, B[2] =

[1,2,3]
[1,2] 1
[1,3] −1
[2,3] 1
[3,4] 0

.

Boundary operators

The boundary of the boundary is null 

B[1]

B⊤
[1]

B⊤
[2]

Discrete divergence 

Discrete gradient 

Discrete Curl

B[n−1]B[n] = 0, B⊤
[n]B⊤

[n−1] = 0



Simplicial complexes and 
Hodge Laplacians

L[n] = B⊤
[n]B[n] + B[n+1]B⊤

[n+1]

The Hodge Laplacians describe higher-order diffusion 


e.g. the 1-Hodge Laplacian describes diffusion from edges to edge 


through nodes or through triangles 


Hodge Laplacians

The dimension of the kernel of the Hodge Laplacian  is given by the  Betti number L[n] n βn



Harmonic eigenvectors of 
the graph Laplacian

The graph Laplacian





The harmonic eigenvectors of the graph 
Laplacian are constant on each connected 

component of the graph. 

L[0] = B[1]B⊤
[1] = K − A

The dropdown menu allows us to quickly switch colourings according to each category, without
needing to recompute the underlying graph.

Change the layout algorithm

By default, plot_static_mapper_graph  uses the Kamada–Kawai algorithm for the layout;
however any of the layout algorithms defined in python-igraph are supported (see here for a list
of possible layouts). For example, we can switch to the Fruchterman–Reingold layout as follows:

# Reset back to numpy projection
pipe.set_params(filter_func=Projection(columns=[0, 1]));
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Wee et al. (2023)

The harmonic eigevectors of the  
higher-order Hodge Laplacian  
are determined by the homology  

of the simplicial complex 

There is a basis in which they localise  
along the holes  

of the simplicial complex 

 

L[n]

 Higher-order harmonic 
eigenvectors



Hodge decomposition
The Hodge decomposition implies that topological signals can be decomposed


 in a irrotational, harmonic and solenoidal components


which in the case of topological signals of the links can be decomposed as  


ℝDn = im(B⊤
[n]) ⊕ ker(L[n]) ⊕ im(B[n+1])

Solenoidal component 
Curl Flow

Harmonic componentIrrotational component 
Gradient Flow



Topology and Dynamics



Synchronization  
on a network

·θr = ωr + σ
N

∑
j=1

arj sin (θj − θr)
1

2

3

4

5
6

7

8

θ1

ω ∼ 𝒩(Ω,1)

The Kuramoto model  

describes  synchronization of  
node phases of σ > σc
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R

With

R =
1
N

N

∑
r=1

eiθr

Order parameter 



The Topological Kuramoto model

How to define  
the Topological Higher-order Kuramoto model  

coupling higher dimensional  
topological signals?

A. P. Millan, J.J. Torres and G. Bianconi PRL (2020)

ϕ[1,2]ϕ[1,2]



Topological Kuramoto model

·θ = ω − σB[1] sin B⊤
[1]θ

·ϕ = ω̂ − σB[n+1] sin B⊤
[n+1]ϕ − σB⊤

[n] sin B[n]ϕ,

1

2
3

4

5
6

7
8

θ1 ϕ[1,2]ϕ[1,2]

Topological Higher-order Kuramoto modelStandard Kuramoto model

A. P. Millan, J.J. Torres and G. Bianconi PRL (2020)



The Kuramoto model for 
node signals

 
Standard Kuramoto model 

 

In the Standard Kuramoto model the free dynamics is along the 
harmonic eigenvector of the graph Laplacian 

 

The free dynamics is uniform on each connected component

·θ = ω − σB[1] sin B⊤
[1]θ

d⟨uharm, θ⟩
dt

= ⟨uharm, ω⟩



 

 

In the Topological Kuramoto model the free dynamics  
is localised on the  
-dimensional holes 

 

The free dynamics is localised on harmonic components 

Topological Higher-order Kuramoto model 

·ϕ = ω̂ − σB[n+1] sin B⊤
[n+1]ϕ − σB⊤

[n] sin B[n]ϕ,

n

d⟨uharm, ϕ⟩
dt

= ⟨uharm, ω̂⟩

ϕ[1,2]ϕ[1,2]

The Topological Kuramoto model

A. P. Millan, J.J. Torres and G. Bianconi PRL (2020)



Hamiltonian of the Topological 
Kuramoto model

The Topological Kuramoto is an Hamiltonian gradient flow 

Hamiltonian of the Standard  Kuramoto model (XY model) 

Hamiltonian of the Topological Kuramoto model 

H = −ω̂⊤ϕ − σ1⊤ cos(B[n]ϕ) − σ1⊤ cos(B⊤
[n+1]ϕ)

H = −ω⊤θ − σ1⊤ cos(B⊤
[1]θ)

= −
N

∑
i=1

ωiθi − σ ∑
<i,j>

cos(θj − θi)



Topological Synchronisation
The dynamical ordered state has many minima  

Each corresponding to a single homology class of the simplicial complex (hole)



Topology shapes dynamics



Higher-order synchronization transition 

ϕ ϕ[+] = B⊤
[n+1]ϕ ϕ[−] = B[n]ϕ

·ϕ[+] = B⊤
[n+1]ω̂ − σL[down]

[n+1] sin(ϕ[+])
·ϕ[−] = B[n]ω̂ − σL[up]

[n−1] sin(ϕ[−])

Projected dynamics

·ϕ = ω̂ − σB[n+1] sin B⊤
[n+1]ϕ − σB⊤

[n] sin B[n]ϕ,

Topological Higher-order Kuramoto model

Emergence  of order  
We project the signal one dimension up  

or one dimension down 
If we have a signal of the links  

we project the signal on nodes and triangles 



Higher-order synchronization transition 

R[+] =
1

Nn+1

Nn+1

∑
α=1

e ϕ[+]
α R[−] =

1
Nn−1

Nn−1

∑
α=1

e ϕ[−]
α

Order parameters  
of topological synchronisation



Explosive higher-order 
Kuramoto model 
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·ϕ = ω̂ − σR[−]B[n+1] sin B⊤
[n+1]ϕ − σR[+]B⊤

[n] sin B[n]ϕ

·ϕ[+] = B⊤
[n+1]ω̂ − σR[−]L[down]

[n+1] sin(ϕ[+])
·ϕ[−] = B[n]ω̂ − σR[+]L[up]

[n−1] sin(ϕ[−])

Adaptive global coupling

Coupled projected dynamics



Higher-order synchronisation 
on real Connectomes

Homo sapiens Connectome 

C.elegans Connectome
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Analytical predictions of 
discontinuous transition on networks

The annealed solution  
reveals that the transition  

is discontinuous 

  

Poisson network Scale-free network

R. Ghorbanchian, Torres, Restrepo, Bianconi (2021)

·ϕ = ω̂ − σR0B⊤
[n] sin B[n]ϕ

·θ = ω − σR[−]
1 B[1] sin B⊤

[1]θ



Which are the topological  
and dynamical conditions  

under which we can observe 
Global Topological Synchronization? 

For example all the edges  
displaying the same dynamics? 

Carletti, Giambagli Bianconi 
PRL 2023 

Wang, Muolo, Carletti, Bianconi 
PRE 2024

Global Topological 
Synchronization



Cell complexes

12 Series Name

and in general open d-dimensional cells are topological spaces homeomorphic
to an open ball. Therefore 0-dimensional cells are nodes, 1-dimensional cells
are links, and therefore do not di�er from 0-dimensional and 1-dimensional
simplices. However 2-dimensional cells includes m-polygons such as triangles
(2-dimensional simplices), squares, pentagons ect. Similarly 3-dimensional
cells includes the Platonic solids, such as tethrahedra (3-dimensional simplices),
cubes, octahedra, dodecahedra, and icosahedra (see Figure 5). Interestingly in
dimension d = 4 the regular polytopes are more than in dimension d = 3 (being
6), but for any dimension d > 4 there are only three types of regular (convex)
polytopes: the simplex, the hypercube and the orthoplex.

A cell complex K̂ has the following two properties:

(a) it is formed by a set of cells that is closure-finite, meaning that every cell is
covered by a finite union of open cells;

(b) given two cells of the cell complex ↵ 2 K̂ and ↵0 2 K̂ then either their
intersection belongs to the cell complex, i.e. ↵ \ ↵0 2 K̂ or their intersection
is a null set, i.e. ↵ \ ↵0 = ;.

In this book we will discuss mostly the properties of simplicial complexes
however in a number of places we will refer to results applying to more general
cell complexes.

2.2 Generalized degrees of simplicial complexes

For networks a key local structural property is the degree of the nodes. The
degree of a node characterizes only the local structure of the network around the
node, its number of interactions. However the statistical properties associated
with the degree are instead important global properties of the network that
can significantly a�ect its global dynamics as in the case of scale-free degree
distributions [1]. It is therefore natural to desire to extend the notion of degrees
also to simplicial complexes. The generalized degrees [12, 29, 39] are the
fundamental combinatorial properties describing the structure of simplicial
complexes. Interestingly, in simplicial complex not only nodes can be associated
to a generalized degrees, but also links and higher dimensional simplices can be
associated to their generalized degrees.

GENERALIZED DEGREES AND FACET SIZES

The generalized degree [12,29,39] kd,m(↵) of a m-dimensional simplex ↵
indicates the number of d-dimensional simplices incident to the m-simplex
↵.



Coupled identical 
topological signals

• Let  indicate a topological signal


• The coupled dynamics obeys


• In order to ensure eqivariance, i.e. invariance under change 
of orientation of the simplices  should be  odd 
functions.

xr

f(x), h(x)

dxr

dt
= f(xr) − σ∑

β

[L[n]]rq h(xq)



Properties of global synchronization 
of  topological signals

• The globally synchronised state is aligned with an harmonic 
eigenvector of the Hodge Laplacian


• Harmonic eigenvectors are localised on holes.


• Global synchronisation requires topologies with  holes 
that span the entire simplicial or cell complex.

Carletti, Giambagli, Bianconi (2023)



Example of manifolds sustaining 
global synchronisation

-dimensional hypersphere


Betti numbers


n

β0 = βn−1 = 1
βk = 0 for 0 < k < n − 1

-dimensional torus (cell complex)


Betti numbers


n

βk = (n − 1
k )

Synchronisation of -dimensional  
topological signal 

(n − 1) Synchronisation of any -dimensional  
topological signal

k



Global topological synchronization 
of unweighted d-dimensional Tori

d-dimensional Tori admit, 


under suitable dynamical conditions, 


global synchronization of any


 m-dimensional topological signal with 


0 ≤ m ≤ d

k-dimensional faces; therefore condition (i) can be sat-
isfied also if k is odd [see Figs. 1(e) and 1(f)]. This implies
that on cell complexes we can overcome topological
obstruction. Until now we have focused on the combi-
natorial implication of conditions (i) and (ii). However,
these conditions also have topological consequences.
In fact, since on manifolds the eigenvectors of the
kernel of the Hodge Laplacian Lk are localized on the
k-dimensional holes, manifolds that will display an
eigenvector with the properties of the above defined v
are characterized by holes spanning the whole structure
as, for instance, (kþ 1)-dimensional hyperspheres or
d-dimensional tori with d > k.
Master stability equation for topological signals.—Let

us now assume the reference solution sðtÞ to also be a
solution of the coupled system Eq. (2), then by introducing
the distance from the reference orbit, δxi ¼ xi − sðtÞ, we
can derive its time evolution by linearizing Eq. (2):

dδxi

dt
¼ JfðsÞδxi −

XNk

j¼1

Lkði; jÞJhðsÞδxj; ∀ i¼ 1;…;Nk;

with JfðsÞ [JhðsÞ] the Jacobian of the function f [h]
evaluated on the reference solution.
The matrixLk being symmetric, it admits an orthonormal

basis ϕðαÞ
k associated to eigenvalues ΛðαÞ

k , α ¼ 1;…; Nk;
namely, Lkϕ

ðαÞ
k ¼ ΛðαÞ

k ϕðαÞ
k . In particular, since we work

under the assumption that the simplicial complex is balanced,
ϕð1Þ
k ∼ ð1;…; 1Þ⊤ ∈ RNk , ΛðαÞ

k ¼ 0 for 1 ≤ α ≤ βk and
ΛðαÞ
k > 0 for all α > βk.
Let us decompose the deviation vectors δxi onto this

eigenbasis: δxi ¼
P

α δx
ðαÞϕðαÞ

k ðiÞ. Then linearizing the
dynamical equation, we obtain

dδxðαÞ

dt
¼ ½JfðsÞ − ΛðαÞ

k JhðsÞ&δxðαÞ ∀ α ¼ 1;…; Nk:

Perturbations aligned with the kernel do not change the
stability of the uncoupled system; therefore only the pertur-
bations orthogonal to the kernel can modify the stability of
the reference solution. This is the MSF in the framework
of simplicial synchronization of topological signals. It is a
linear, in general nonautonomous, ordinary differential
equation parametrized by the eigenvalues ΛðαÞ

k , allowing
us to infer the stability character of the reference solution by
looking at its spectrum.
Simplicial Stuart-Landau (SL) model.—As an applica-

tion of the general theory introduced above, let us consider
the Stuart-Landau model [47–49] defined for topological
signals of dimension k and d ¼ 2. For k ¼ 0 the model
describes a nonlinear oscillator anchored at each node,
while for k ¼ 1 it can describe an oscillating flux associated
to an edge linking two nodes. More precisely, let us define
wj ¼ x1j þ ix2j and let us consider the “local reaction”
function fðxÞ¼ f̃ðwÞ¼ σw−βwjwj2, where σ¼ σℜþ iσℑ

and β ¼ βℜ þ iβℑ are complex control parameters. We
can prove that the uncoupled dynamics _wj ¼ fðwjÞ in
each simplex j admits a limit cycle solution ẑðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σℜ=βℜ

p
eiωt, where ω ¼ σℑ − βℑσℜ=βℜ, that is stable

provided σℜ > 0 and βℜ > 0, conditions that we hereby
assume. We now consider the coupled dynamics Eq. (2)
with nonlinear coupling function hðxÞ ¼ h̃ðwÞ ¼
μwjwjm−1, where m is a positive integer and μ ¼ μℜ þ
iμℑ a complex parameter that sets the coupling strength
[50]. We study the stability of the reference limit cycle
solution ẑðtÞ (see SM [46]) and we prove that the system
can globally synchronize, i.e., the dispersion relation is
negative, only if the model parameters do satisfy
μℜ þ μℑβℑ=βℜ > 0, and the simplicial complex is such
that u ∈ kerLk. To measure global synchronization we
compute the (generalized) Kuramoto order parameter
RðtÞ ¼ j

P
j ρjðtÞeiθjðtÞj=Nk, where wjðtÞ ¼ ρjðtÞeiθjðtÞ is

the polar form of the complex signal. Then RðtÞ → 1

FIG. 2. The Kuramoto order parameter R is plotted versus time
t for the Stuart-Landau model of topological oscillators of the
balanced simplicial and cell complexes represented in (a) and (d),
respectively. Panels (b) and (c) refer, respectively, to the order
parameter of triangles and links of the simplicial complex in (a).
Panels (e) and (f) refer, respectively, to the order parameter of the
squares and links of the cell complex in (d). The insets display the
dynamical time series of the topological signals. It is clear that
while on the links of the simplicial complex the oscillators do not
globally synchronize, the links of the cell complex do support
synchronization. The model parameters are σ ¼ 1.0þ 4.3i,
β ¼ 1.0þ 1.1i, μ ¼ 1.0 − 0.5i, and m ¼ 3, ensuring the neg-
ativity of the dispersion relation (see SM [46]).
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Global Topological Synchronisation



 How can we treat and process  
topological signals of different dimension  

together?

Processing topological signals 

G. Bianconi, 
 Topological Dirac equation on networks and simplicial complexes JPhys Complexity (2021)



Dirac legacy



The Dirac operator of 
simplicial complexes

The Dirac operator allows  
to study interacting topological signals of different dimensions  

coexisting in the same network topology
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0 B1 0

B⊤
1 0 B2

0 B⊤
2 0

, s =
χ
ψ
ξ

Dirac operator Topological signal “spinor” 

χ
ψ
ξ

Node signal 
Link signal 
Triangle signal



The action of the Dirac operator 
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In signal processing, the Dirac operator allows cross-talking  
between signals of different dimension



The Dirac as the square-root of the Laplacian

The Dirac operator  
can be interpreted as the  

“square-root” of the Laplacian  
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Topological Dirac equation

G. Bianconi, 
 Topological Dirac equation on networks and simplicial complexes  

JPhys Complexity (2021)



Topological Dirac equation
The topological Dirac equation is then given by 


 

with Hamiltonian


  


Where  and    


leading to the anti-commutator 

i∂tΨ = ℋΨ

ℋ = D + mβ

Ψ = ( χ
ψ) β = (1 0

0 −1)
{D, β} = 0



Energy Eigenstates 
The energy eigenstates satisfy     


which leads to


      


 are respectively the singular vectors of  


with singular value   and the energy   


is given by      

EΨ = ℋΨ

Eχ = Bψ + mχ,
Eψ = B⊤χ − mψ

χ, ψ B

λ E

E = ± |λ |2 + m2



For  there is symmetry between positive 
energy eigenstates and negative energy 

eigenstates. 

However the symmetry between positive energy 
states and negative energy states breaks down 

for  

The states at energy states at   
are localised on nodes and they have a 

degeneracy given by the Betti number  

The energy states   
are localised on links and they have a degeneracy 

given by the Betti number 

E2 > m2

|E | = m

E = m

β0

E = − m

β1

Matter-Antimatter asymmetry and homology



Dirac equation spectrum and eigenstate
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Mass of simple and higher-order networks
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The mass of  simple or  
higher-order networks  

depends  
on their geometry and topology

G. Bianconi The mass of simple and higher-order networks JPhysA (2023)

Gap equation



Mass of a random network 
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Dependence on the mass on the network 
geometry
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non trivial metric matrices  

changes the mass of the network 

Here comparing the mass of the weighted   

and unweighted collaboration network

G. Bianconi The mass of simple and higher-order networks JPhysA (2023)



Dirac operator  
and 

Complexity 



Coupling topological signals 
of different dimension



Dirac operator  
In complex systems 

Dirac synchronisation:  
Synchronisation involving node and edge topological signals entangled with each other. 

The dynamical order involves many minima corresponding with the multiple harmonic 


eigenvector of the network or simplicial complex

(Communication Physics 2022, Chaos 2023)


Dirac Turing patterns:  
Node and edge topological signal can give rise to dynamical instabilities 


and Dirac pattern formation

(PRE 2022, Chaos Solitons and Fractals 2024)


  
Global Topological Dirac Synchronization:  

The Dirac operator can be used to couple identical oscillators on simplices 

of different dimensions

( arxiv preprint 2024)



Dirac Signal Processing

+ noise
reconstruction

The Dirac operator allows us to filter out nodes and links signals jointly 

L. Calmon, M. Schaub and G. Bianconi  (2023) 
R. Wang, Y. Tian, P. Lio, G. Bianconi (2024)



Dirac-Equation Signal Processing

Given a noisy topological signal defined on both nodes and edges 
   with  noise 

Joint-filtering with the Dirac: 

 

ψ̃ = ψ + ϵ ϵ

ℒ = ∥ψ̃ − ψ̂∥2
2 + γψ̂T (D + mγ − EI)2 ψ̂

  Hodge Laplacian kernel  
  Dirac signal processing 
  Dirac-equation signal processing

E = m = 0
m = 0,E ≠ 0
m ≠ 0,E ≠ 0

The parameters  and  can be learned from dataE m



Dirac-Equation Signal Processing
Eigenstates of the Topological Dirac equation with mass m=1.5



The Iterated Dirac-equation signal 
processing (IDESP) on real data

Noisy signal                   First iteration of IDESP    Second iteration of IDESP              True data

The IDESP can reconstruct real signal on nodes and edges 
  

It outperform the Hodge Laplacian signal processing (LSP)  
if the true signal is not harmonic  

It reduces to the Hodge Laplacian signal processing  
if the signal is almost harmonic



• c

Wee et al. (2023)

Dirac persistent homology: 
Application to Biomolecules



Classification of molecules with 
Persistent Dirac

15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11183  |  https://doi.org/10.1038/s41598-023-37853-z

www.nature.com/scientificreports/

In addition to the 11 statistical attributes, we also consider the persistent multiplicity of zero eigenvalues. 

 (xii) Persistent Multiplicity of zero eigenvalues.

Figure 4c shows the persistent multiplicity, persistent mean, persistent standard deviation and persistent (sign-
less) Euler–Poincaré number for the "ltration of guanine molecule. Further information such as the persistent 
multiplicities of Lk ( 0 ≤ k ≤ 2) and Ldownk  ( 1 ≤ k ≤ 3 ) can be found in Appendix G. Recall that the persistent 
multiplicity is equivalent to the persistent Betti number. Here, the persistent multiplicity and persistent (signless) 
Euler–Poincaré number of Dp can be quantitatively analysed by comparing the persistent multiplicity of Ldownp+1  
and the k-th persistent Betti numbers for 0 ≤ k ≤ p . It can be seen that these persistent attributes change with 
the "ltration value. Each variation of the persistent attribute indicates a certain change in the simplicial complex.

At the very start of the "ltration, there are 16 isolated atoms which means that there are 16 connected 
components. Hence, the persistent multiplicity of L0 is 16 since β0 = 16 . As all other Betti numbers are zero 
and there are no higher order simplices present at the start of the "ltration, D0 , D1 and D2 are all-zero 16 × 16 
matrices. #erefore, the persistent multiplicity of D0 , D1 and D2 are all equal to 16. Using Eq. (15), the persistent 
(signless) Euler–Poincaré number is zero.

As "ltration parameter f increases, the size of D0 , D1 and D2 matrix increases as well. #is di$ers from the 
Hodge Laplacian matrix L0 , whose size remains unchanged.

At "ltration size 4.7Å, a complete simplicial complex is achieved, i.e., any p+ 1 vertices will form a p-simplex. 
When this happens, the size of Dp no longer increases any further. Here, the size of D0 , D1 and D2 are distinct. 
#e size of D0 is 136 × 136 since 16×15

2  (no. of 1-simplices) + 16 (no. of 0-simplices) = 136. Similarly, the sizes of 
D1 and D2 are 696 × 696 and 2516 × 2516 respectively. Furthermore, the persistent multiplicity of D0 , D1 and 
D2 are also distinct. Using Eq. (14), the persistent multiplicity of D0 is 105 (persistent multiplicity of Ldown1  ) and 
1 (0-dimensional persistent Betti number) which sums up to 106. Since the persistent multiplicity of L1 (see 
Appendix G) is zero, then Eq. (3) implies that the rank of B!

2  is 105. In addition, the persistent multiplicity of D1 
and D2 are 456 and 1366 respectively. Based on the non-zero eigenvalues, the persistent (signless) Euler–Poincaré 
number of D0 , D1 and D2 is 15, 120 and 575 due to Eq. (15).

Persistent Dirac for molecular structure representation. Recently, a series of persistent models, 
including persistent homology, persistent spectral, persistent Ricci curvature, and persistent Laplacian, have 
demonstrated their great power in molecular  representations3,6,38,71. #ey have consistently outperformed tra-
ditional graph-based models in various tasks of drug design. Here we study the representation capability of 
Persistent Dirac in molecular data analysis.

We consider the organic-inorganic halide perovskite (OIHP) dataset. More speci"cally, three kinds of 
Methylammonium lead halides (MAPbX3 , X =Cl, Br, I), i.e., orthorhombic, tetragonal, and cubic phase of 
MAPbX3 are used. For each kind, there are 3 types of X atoms, including chlorine Cl, bromine Br and iodine I. 
#e molecular dynamic simulations are systematically carried out on these molecular structures with the initial 
con"gurations based on pre-de"ned crystal cell parameters. For each MAPbX3 structure, 1000 con"gurations 
are equally sampled from its MD simulation trajectory and the last 500 con"gurations, which represent stable 
structures, are selected for the test of our persistent Dirac model. Essentially, a total of 4500 con"gurations from 
the 9 types of MAPbX3 structures are mixed together and our persistent Dirac based molecular "ngerprint is 
used in the clustering of these con"gurations.

Computationally, our persistent Dirac is generated based on Alpha complex and the "ltration parameter 
is the circumradius. More speci"cally, for each frame, an Alpha complex is constructed based on Delauney 
triangulation and circumradius of the simplex. #e Dirac matrices D0 and D1 are computed from 1Å to 6.5Å 

Figure 5.  #e clustering of 9 types of OIHP molecular dynamics (MD) trajectories. #ree feature generation 
schemes are considered, including (a) XYZ-coordinates, (b) Discrete Dirac at 3.5Å and (c) Persistent 
Dirac. Each trajectory contains 1000 con"gurations and t-SNE model is used for clustering (of the last 500 
con"gurations at equilibrium). #e x-axis and y-axis are the two principal components obtained from the t-SNE 
model.

Wee et al. (2023)



Dirac-based Gaussian kernel 

Mathieu A., So T., Brooks P., and Deisenroth M. P.. 

Gaussian Processes on Cellular Complexes

In International Conference on Machine Learning, 2024

Gaussian Processes on Cellular Complexes

Figure 5. Prediction of geostrophic current around the Southern tip
of Africa using the CC-Matérn GP on edges. (Top left) Ground
truth. (Top right) Predicted mean. (Bottom left) Absolute er-
ror. (Bottom right) Standard deviation. Orange dots are observed
edges.

plex geometries, e.g., arising from the coastlines in ocean
modelling. As there is an increasing adoption of FEM for
weather and climate modelling (for example, the UK Met
Office’s GungHo model uses FEM with cubical elements
(Staniforth et al., 2013)), it is of interest to consider methods
that propagate information from observations directly onto
the finite element vertices and edges.

Our CC-GP model can naturally be applied in this set-
ting: Consider the geostrophic current data from the
NOAA CoastWatch (2023) database. First, we project the
geostrophic current around the southern tip of Africa onto
the oriented edges of a two-dimensional cubical complex by
averaging the flow along each edge (Desbrun et al., 2006).
This yields directed signals on the edges representing the
vector field. We then train our edge-based Matérn GP (see
Section 4.3.1 defined over a 1-cochain) on 30% of the data,
selected randomly. The main objective of this experiment is
to demonstrate that our approach can capture the directional
information of the vector field, which would otherwise be
difficult with existing approaches.

Figure 5 shows resulting predictions. For ease of visuali-
sation, we display the magnitude of the predicted signals
by colours on the edges; arrows indicate the predicted di-
rection on each cell, computed by averaging the signals on
its boundaries and then taking the resulting direction. We
see that our CC-Matérn GP on edges captures the general
characteristics of the ground-truth vector field with similar
magnitudes and directions, indicating that it can correctly
diffuse information onto neighbouring edges.

We compare the results with a graph Matérn GP baseline

MSE (#) NLL (#)

Graph Matérn 0.030± 0.000 �684.54± 4.20
Edge Matérn (ours) 0.029± 0.001 �703.42± 5.10

Table 2. Mean square error (MSE) and negative log-likelihood
(NLL) of ocean current magnitude predictions using (a) a graph
Matérn baseline, and (b) the edge Matérn GP. Mean and standard
error are shown.

MSE (#) CC-Matérn Reaction-diffusion

Vertices 0.165 ± 0.005 0.076 ± 0.004
Edges 0.335 ± 0.014 0.200 ± 0.010
Triangles 0.272 ± 0.005 0.166 ± 0.005

NLL (#)

Vertices 28.81 ± 1.75 -9.31 ± 1.61
Edges 136.77 ± 4.32 71.07 ± 6.29
Triangles 82.84 ± 1.56 39.78 ± 2.47

Table 3. Mean square error (MSE) and negative log-likelihood
(NLL) of predictions on the synthetic data (mean and standard
error across 20 random seeds). Overall, the performance of the
reaction-diffusion GP is superior to that of the Matérn GP on the
cellular complex, highlighting the benefits of mixing information
across different cell types.

defined over the corresponding line graph5. Since this base-
line cannot infer directions on the edge signals, we use it
to only predict its magnitude. The results are shown in Ta-
ble 2, where we report the mean square error (MSE) and
negative log-likelihood (NLL) scores on the magnitude of
the ocean current. MSE results for both models are compa-
rable; however, our edge-based Matérn GP performs better
than the graph Matérn GP on the NLL. This suggests that in
addition to being able to infer the directions on edges, pre-
dictive uncertainties are better and the topological inductive
bias contained in the edge-based Matérn GP also helps to
improve predictions for the magnitudes.

5.2. Signal Mixing

We illustrate the benefits of mixing signals using the
reaction-diffusion kernel on synthetic data, where we con-
structed a 2D-simplicial mesh consisting of 10⇥10 vertices.
We generated artificial signals on the edges by considering a
random 1-cochain f =

PK
i=k ⇠iui, where ⇠i ⇠ N (0,��1

i ),
{(�i, ui)}i are the eigenpairs of the Hodge Laplacian �1

and 0 < k < K are the minimal and maximal wavenumbers
controlling the smoothness of the edge field. We then gener-
ated data supported on the triangles and vertices of the mesh
by applying the coboundary operator d1 and its adjoint d⇤1
respectively to f (numerically, this corresponds to applying

5This is the graph constructed by treating the edges as vertices
and connecting them if they share a vertex.

7

Gaussian Processes on Cellular Complexes

Consider the Dirac matrix

D =

0

BBBB@

0 B1 · · · 0

B>
1

. . . . . .
...

...
. . . . . . Bn

0 . . . B>
n 0

1

CCCCA
, (20)

whose k-th column is a numerical representation of the k-th
Dirac operator (10). We can check that D2 = L holds.
Thus, the Dirac matrix D and the super-Laplacian matrix L
share a common eigenbasis U with eigenvalues ⇤ and ⇤2,
respectively. Now consider the stochastic system

(rI� cD + dL)
⌫
2 f = w, w ⇠ N (0, I) (21)

for some constants r, c, d, ⌫ 2 R�0. Then, the correspond-
ing kernel matrix is given by

K = U(rI� c⇤+ d⇤2)�⌫U>, (22)

which we term the reaction-diffusion kernel.4 This is a
kernel in the sense that it satisfies the following result.
Proposition 13. The kernel defined by (22) is related to the
solution f of the system (21) by

[K]ij = E[fifj ], 8i, j. (23)

Proof: Appendix D.2.1.
Remark 14. Our naming of the reaction-diffusion kernel
derives from the similarity of system (21) with the multi-
component reaction-diffusion equation

@f

@t
= (r � cD + dL)f , (24)

where the first and third term model the reaction and diffu-
sion of a quantity respectively, and the second term models
the cross-diffusion of multiple quantities.

To interpret this kernel, we look at the corresponding pre-
cision matrix P = K�1, which encodes the probabilis-
tic graphical model (PGM) representation of the model
f , wherein variables fi and fj are linked if and only if
[P]ij 6= 0 (Rue & Held, 2005). For simplicity, taking ⌫ = 1
and restricting to a 1-dimensional cellular complex, the
precision takes the expression

P =

✓
rI+ d�0 �cB1

�cB>
1 rI+ d�1

◆
. (25)

4In general, K is indefinite. To fix this, we set ⌫ to be an even
integer in (22), which will make it positive definite for all r, c, d 2
R�0, excluding the set X :=

S
i{(r, c, d) : r ± c�i + d�2

i =
0}. This set has Lebesgue measure zero. If (r, c, d) 2 X, K
becomes positive semi-definite. Therefore it defines a degenerate
Gaussian measure. Inference using degenerate Gaussian measures
is, however, still valid, provided � > 0 is strictly positive in
(1)–(2).

(a) 1D cellular complex (b) PGM representation

Figure 4. Probabilistic graphical structure of the reaction-diffusion
GP. Interactions between vertices (green) and between edges (blue)
are shown as well as the mixing between cochains of different
orders (red). The cellular Matérn kernel does not have this mixing
property.

For f = (f0,f1)
> in (21), the graphical structure of the

k-th component fk is summarised by the matrix rI+ d�k

for k 2 {0, 1}, and the dependence between f0 and f1 is
represented by the incidence matrix B1 (dotted red in 4b).
Since no communication between f0 and f1 occurs when
c = 0, the Dirac term is essential for allowing information
to propagate between cochains of different orders.

Let us now consider two special cases of the kernel (22). In
the first case, taking r = 2⌫/`2, c = 0, d = 1 and ⌫ = ⌫,
we see that (22) recovers the Matérn kernel (19). Since
c = 0, there is no flow of information between cochains
of different orders, resulting in independence between the
random cochains f0, . . . ,fn.

For r = m2, c = 1, d = 0 and ⌫ = 2, we obtain

K = U(mI�⇤)�2U> = (mI�D)�2. (26)

This kernel is considered by (Calmon et al., 2023) (in the
form of a regulariser) for retrieving mixed topological sig-
nals supported on the k-cells for k  2.

5. Results
In this section, we demonstrate the results of our GP model
defined over cellular complexes (hereafter referred to as CC-
GP) on two examples. First, we demonstrate that CC-GPs
can make directed predictions on the edges of a graph by
considering the problem of ocean current interpolation. In
the second example, we investigate the effect of inter-signal
mixing in the reaction-diffusion kernel. We provide details
of the experimental setups in Appendix E.

5.1. Directed Edge Prediction

In the numerical simulation of fluids and especially in fi-
nite element methods (FEMs), it is common to treat vector
fields as signals supported on the edges of a mesh (Arnold
et al., 2006) to give them the flexibility for dealing with com-
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orders (red). The cellular Matérn kernel does not have this mixing
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Since no communication between f0 and f1 occurs when
c = 0, the Dirac term is essential for allowing information
to propagate between cochains of different orders.

Let us now consider two special cases of the kernel (22). In
the first case, taking r = 2⌫/`2, c = 0, d = 1 and ⌫ = ⌫,
we see that (22) recovers the Matérn kernel (19). Since
c = 0, there is no flow of information between cochains
of different orders, resulting in independence between the
random cochains f0, . . . ,fn.

For r = m2, c = 1, d = 0 and ⌫ = 2, we obtain

K = U(mI�⇤)�2U> = (mI�D)�2. (26)

This kernel is considered by (Calmon et al., 2023) (in the
form of a regulariser) for retrieving mixed topological sig-
nals supported on the k-cells for k  2.

5. Results
In this section, we demonstrate the results of our GP model
defined over cellular complexes (hereafter referred to as CC-
GP) on two examples. First, we demonstrate that CC-GPs
can make directed predictions on the edges of a graph by
considering the problem of ocean current interpolation. In
the second example, we investigate the effect of inter-signal
mixing in the reaction-diffusion kernel. We provide details
of the experimental setups in Appendix E.

5.1. Directed Edge Prediction

In the numerical simulation of fluids and especially in fi-
nite element methods (FEMs), it is common to treat vector
fields as signals supported on the edges of a mesh (Arnold
et al., 2006) to give them the flexibility for dealing with com-
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Simplicial Attention Neural Networks 
based on Dirac decomposition

3

Fig. 1: Representation of a order 2 simplicial complex X2

where V = {vi}9i=1, E = {ei}14i=1 and T = {ti}4i=1 denote,
respectively, the set of vertices, edges and triangles.

multi-hop processing over the complex’s neighborhoods and a
tailored processing of the harmonic data component. Also, we
develop distinct attention mechanisms for different adjacencies,
as opposed to the single attention function in [39]. Finally,
even if our method can be cast into the general topological
attentional framework in [40] (just as most GNNs can be seen
as a particular case of the message passing framework [9]),
our principled derivation based on formal arguments from TSP
leads to a unique architecture and a novel theoretical analysis
that is not readily derivable from [40].
Notation. Scalar, column vector and matrix variables are
indicated by plain letters a, bold lowercase letters a, and bold
uppercase letters A, respectively. [A]i,j is the (i, j)-th element
of A, [A]i is the i-th row of A, I is the identity matrix, and
�MAX(A) denotes the largest eigenvalue of the matrix A.
im(·), ker(·), and supp(·) denote the image, the kernel, and the
support of a matrix, respectively; � is the direct sum of vector
spaces. Also, a ||b denotes the vertical concatenation between
two vectors a and b, and ||K

k=1ak represents the concatenation
of K vectors. Similarly, ||K

k=1Ak denotes the concatenation of
K matrices, which happens over the common dimension (if
the matrices are square, we assume horizontal concatenation).
Finally, {ak}Kk=1 and {Ak}Kk=1 represents the collection of K
vectors and matrices, respectively. Other specific notation is
defined along the paper if necessary.

II. BACKGROUND ON TOPOLOGICAL SIGNAL PROCESSING

In this section, we review some concepts from topological
signal processing that will be useful to introduce the proposed
GSANs architecture.
A. Simplicial complex and signals

Given a finite set of vertices V , a k-simplex Hk,i is a subset
of V with cardinality k + 1. A face of Hk,i is a subset with
cardinality k and thus a k-simplex has k + 1 faces. A coface
of Hk,i is a (k + 1)-simplex that includes Hk,i [17] [44].
If two simplices share a common face, then they are lower
neighbours; if they share a common coface, they are upper
neighbours [32]. A simplicial complex XK of order K, is a
collection of k-simplices Hk,i, k = 0, . . . ,K such that, if a
simplex Hk,i belongs to XK , then all its subsets Hk�1,i ⇢ Hk,i

also belong to Xk (inclusivity property). We denote the set

of k-simplex in XK as Dk := {Hk,i : Hk,i 2 XK}, with
cardinality |Dk| = Nk.

In this paper, we are interested in processing signals defined
over a simplicial complex. A k-simplicial signal is defined
as a collection of mappings from the set of all k-simplices
contained in the complex to real numbers:

xk = [xk(Hk,1), . . . , xk(Hk,i), . . . , xk(Hk,Nk)]
T 2 RNk ,

(1)
where xk : Dk ! R. The order of the signal is one less the
cardinality of the elements of Dk. In most of the cases the
focus is on complexes of order up to two X2, thus having
a set of vertices V with |V| = V , a set of edges E with
|E| = E, and a set of triangles T with |T | = T , which result
in D0 = V (simplices of order 0), D1 = E (simplices of order
1), and D2 = T (simplices of order 2). In general, we define
a simplicial complex (SC) signal as the concatenation of the
signals of each order:

xX =
⇥
x0k . . . kxK

⇤
2 R

PK
k=0 Nk . (2)

To give a simple example, in Fig. 1 we sketch a simplicial
complex of order 2. Therefore, the k-simplicial signals are
defined as the following mappings:

x0 : V ! R, x1 : E ! R, x2 : T ! R, (3)

representing graph, edge and triangle signals, respectively. In
this case, the corresponding SC signal is clearly given by:

xX =
⇥
x0kx1kx2

⇤
2 RN+E+T

. (4)

B. Algebraic representation

The structure of a simplicial complex XK is fully described
by the set of its incidence matrices Bk, k = 1, . . . ,K, given a
reference orientation [45]. The entries of the incidence matrix
Bk establish which k-simplices are incident to which (k � 1)-
simplices. We use the notation Hk�1,i ⇠ Hk,j to indicate two
simplices with the same orientation, and Hk�1,i 6⇠ Hk,j to
indicate that they have opposite orientation. Mathematically,
the entries of Bk are defined as follows:

⇥
Bk

⇤
i,j

=

8
<

:

0, if Hk�1,i 6⇢ Hk,j

1, if Hk�1,i ⇢ Hk,j and Hk�1,i ⇠ Hk,j

�1, if Hk�1,i ⇢ Hk,j and Hk�1,i 6⇠ Hk,j

.

(5)
As an example, considering a simplicial complex X2 of order
two, we have two incidence matrices B1 2 RV⇥E and B2 2
RE⇥T . From the incidence information, we can build the high
order Hodge Laplacian matrices [45], of order k = 0, . . . ,K,
as follows:

L0 = B1B
T

1 , (6)
Lk = B

T

k
Bk| {z }

L
(d)
k

+Bk+1B
T

k+1| {z }
L

(u)
k

, k = 1, . . . ,K � 1, (7)

LK = B
T

K
BK . (8)

All Laplacian matrices of intermediate order, i.e. k =
1, . . . ,K � 1, contain two terms: The first term L

(d)
k

, also
known as lower Laplacian, encodes the lower adjacency of
k-order simplices; the second term L

(u)
k

, also known as upper
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Laplacian, encodes the upper adjacency of k-order simplices.
Thus, for example, two edges are lower adjacent if they share
a common vertex, whereas they are upper adjacent if they are
faces of a common triangle. Let us denote with N (d)

k,i
and N (u)

k,i

the lower and upper neighbors of the i-th simplex (comprising
i itself) of order k, respectively. Note that the vertices of a
graph can only be upper adjacent, if they are incident to the
same edge. This is why the Laplacian L0 contains only one
term, and it corresponds to the usual graph Laplacian.

C. Hodge decomposition

Hodge Laplacians admit a Hodge decomposition, stating that
the signal space associated with each simplex of order k can be
decomposed as the direct sum of the following three orthogonal
subspaces [44]:

RNk = im(BT

k

�
� im

�
Bk+1

�
� ker

�
Lk

�
. (9)

Thus, every signal xk of order k can be decomposed as:

xk = B
T

k
xk�1| {z }
(a)

+Bk+1 xk+1| {z }
(b)

+ exk|{z}
(c)

. (10)

Let us give an interpretation of the three orthogonal components
in (10) considering edge signals x1 (i.e., k = 1) [17], [34]:

(a) Applying matrix B1 to an edge flow x1 means
computing its net flow at each node, thus B1 is called
a divergence operator. Its adjoint BT

1 differentiates a
node signal x0 along the edges to induce an edge flow
B

T

1 x0. We call BT

1 x0 the irrotational component of
x1 and im(BT

k
) the gradient space.

(b) Applying matrix B
T

2 to an edge flow x1 means
computing its circulation along each triangle, thus
B

T

2 is called a curl operator. Its adjoint B2 induces
an edge flow x1 from a triangle signal x2. We call
B2x2 the solenoidal component of x1 and im(B2)
the curl space.

(c) The remaining component ex1 is the harmonic com-

ponent since it belongs to ker(L1) that is called
the harmonic space. Any edge flow ex1 has zero
divergence and curl.

D. Dirac Decomposition

Hodge Laplacians have been used as a way to design filters
acting on simplicial signals of a given order in a parsimonious
way [24]. However, in general, it is beneficial to combine
signals defined over simplices of consecutive order. To enable
this possibility, we rely on the recently introduced Dirac
operator [26], [42]. Given a simplicial complex XK of order K
and a SC signal xX , the Dirac operator is an indefinite operator
that acts on xX and that can be written as a sparse block matrix
DX 2 R

PK
k=0 Nk⇥

PK
k=0 Nk whose blocks are either zeros or

the boundary operators {Bk}Kk=1, such that its square gives a
block diagonal concatenation of the Laplacians {Lk}Kk=0:

D
2
X =

2

6664

L0 0 . . . 0

0 L1 . . . 0

...
...

. . .
...

0 0 . . . LK

3

7775
. (11)

For instance, for a simplicial complex X2 of order two, the
Dirac operator reads as:

DX =

2

4
0 B1 0

B
T

1 0 B2

0 B
T

2 0

3

5 . (12)

Due to its structure, it can be easily shown that a Dirac
decomposition similar to the Hodge decomposition in (10)
holds [42]. In particular, for a simplicial complex X2 of order
two, the Dirac decomposition is given by:

RN+E+T = im(D(d)
X

�
� im(D(u)

X
�
� ker

�
DX

�
, (13)

where:

D
(d)
X =

2

4
0 B1 0

B
T

1 0 0

0 0 0

3

5 , D
(u)
X =

2

4
0 0 0

0 0 B2

0 B
T

2 0

3

5 . (14)

Therefore, also in this case we can give an interpretation of
the spaces in (13) [26]; in particular, im(D(d)

X
�

is the joint
gradient space, whereas im(D(u)

X
�

is the joint curl space.
E. Simplicial complex filters

Generalizing the approach of [26], [32], we leverage the Dirac
operator and the Dirac decomposition to introduce an extended
definition of simplicial complex filters that reads as:

HX =
JX

j=1

w
(d)
j

�
D

(d)
X

�j

| {z }
H

(d)
X

+
JX

j=1

w
(u)
j

�
D

(u)
X

�j

| {z }
H

(u)
X

+w
(h) eQ| {z }
H

(h)
X

, (15)

where w
(d) =

h
w

(d)
1 , ..., w

(d)
J

iT
2 RJ , w

(u) =
h
w

(u)
1 , ..., w

(u)
J

iT
2 RJ and w

(h) 2 R are the upper, lower,
and harmonic filter weights, respectively, and J 2 N is the
filters order; the matrix eQ represents a sparse operator that
approximates the orthogonal projector onto the harmonic space
ker

�
DX

�
, thus the summations in (15) start from 1 and not

from 0, differently from [26], [32], to avoid that the harmonic
component passes through the solenoidal and irrotational filters.
Since from (13) it holds that ker(DX ) =

L
K

k=0 ker(Lk), we
can define eQ as a block diagonal matrix given by:

eQ =

2

6664

bQ0 0 . . . 0

0 bQ1 . . . 0

...
...

. . .
...

0 0 . . . bQK

3

7775
, (16)

with bQk 2 RNk⇥Nk being a sparse operator that approximates
the orthogonal projector onto the harmonic space ker

�
Lk

�
. In

particular, from (9), harmonic signals can be represented as
a linear combination of a basis of eigenvectors spanning the
kernel of Lk. However, since there is no unique way to identify
a basis for such a subspace, the approximation can be driven by
ad-hoc criteria to choose a specific basis, as in [19], [20]. Once
defined a proper basis eUk, composed by eigenvectors of Lk

corresponding to the zero eigenvalue of multiplicity Nh 2 N,
the orthogonal projection operator onto ker

�
Lk

�
is given by

Qk = eUk
eUT

k
. In general, the orthogonal projector Qk is a
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(a) Dirac Bianconi 1-Step (DB1S) (b) Dirac Bianconi T-Step (c) DBGNN layer, where Lin denotes a linear layer.

Figure 2. Illustration of the Dirac–Bianconi Graph Neural Network (DBGNN) layer (c) and its components. The Dirac–Bianconi T-step
layer (b) consists of multiple DB1S (a). By stacking multiple DB1S and applying them sequentially, information can be propagated along
the graph.

(a) DBGNN with 1 layer and 1,000 steps per layer (b) GCN with 100 layers

Figure 3. Evolution of the normalized Dirichlet energy (DE) of the node feature embeddings for a sample of dataset20 with five different
seeds and no training. For DBGNNs, the DE remains at a high level, meaning that information can be deeply propagated, while for GCNs,
information is quickly lost.

introduction, Equation (10) can induce both oscillatory and
non-oscillatory behavior, depending on the weights. Here
we investigate the properties of the oscillatory regime, in
which we might expect propagating waves. To do so, we
constrain the weights to be W ne = �W en† and W n/e

�
antisymmetric.

We evolve these models on a 5x20 rectangular grid, where
one of the short edges has all nodes randomly initialized,
and all other edge and node features are identically zero.
Figure 4 shows example trajectories for five models with
four edge and node features to illustrate the behavior of
DBGNNs in comparison to MPNNs. The linear DB equa-
tion shows a leading edge, a concentrated wave of activation
that spreads rapidly into the network before dissipating,
with ripples radiating into the rest of the network. Due to
the oscillatory initialization, the linear MPNN equation also
shows oscillatory behavior, but this does not result in spread-
ing into the network. Adding the non-linearities stabilizes
the leading edge of the DB equation, which now reaches the
other end of the graph, and also sharpens the ripples into
a coherent excitation that travels slower down the graph.
For the MPNN, the non-linearities suppress the oscillations,

leaving us with pure diffusion. For higher dimensional
internal spaces, as well as for many non-oscillatory random
weights, most configurations of all layers exhibit slow diffu-
sion in the system. Occasionally, we can randomly generate
coherent traveling excitations in the DBGNN, which are
not observed in the MPNN. We provide examples of these
trajectories in the appendix. We conclude that the wave
aspects of the DBGNN enable deep propagation of signals
into the graph, while edge non-linearities play a minor role.

6. Experimental results
We evaluate the performance of our DBGNN on challenging
tasks involving long-range dependencies. The datasets
deal with power grid properties and properties associated
with the molecular structures of peptides. Power grids
are known to encompass long-range dependencies, as
highlighted by Ringsquandl et al. (2021). For the power
grid dataset, GNNs capable of effectively propagating
information over extended distances demonstrate superior
performance (Nauck et al., 2023). The emphasis for this
dataset is on topological relationships, given the absence
of edge features and the presence of only one binary node

6

Topological  Dirac equation neural network

Nauck, C., Gorantla, R., Lindner, M., Schürholt, K., Mey, A.S. and Hellmann, F. 2024, 

Dirac--Bianconi Graph Neural Networks-Enabling long-range graph predictions. 

In ICML 2024 Workshop on Geometry-grounded Representation Learning and Generative Modeling.


Dirac–Bianconi Graph Neural Networks - Enabling long-range graph predictions

• We generalize the topological Dirac equation and use
it to define the novel Dirac–Bianconi T-Step Layer
(DBTS).

• We show experimentally that this layer allows for
shape-preserving long-range propagation of feature ac-
tivation along the graph. MPNN architectures with the
same random weights do not exhibit this behavior. We
also show empirically that the Dirichlet energy does
not go to zero under repeated applications of this layer.

• To validate its performance on benchmark datasets,
we use an architecture with several DBTS layers
and skip connections. We find that the new layer
shows superior performance on challenging power
grid tasks with crucial long-range dependencies. On
molecular tasks for predicting peptide properties from
long-range benchmark datasets, DBGNN outperforms
conventional message passing (MPNN) methods while
using a quarter of the parameters, and is competitive
with transformer-based GNNs.

Our work presents a key contribution to improving GNNs
and providing long-range capabilities by propagating node
and edge features. This paves the way for assembling more
complex graph-based datasets that rely on edge features and
long-range propagation. In the following sections, we in-
troduce Bianconi’s Dirac operator for graphs, as well as the
topological Dirac equation and our generalization thereof
in more detail. This provides the basis for the introduction
of the DBGNN layer. We then present experimental results
and compare the performance with benchmark models.

2. Background
Notation: Graphs G consist of nodes N and edges E . Each
edge occurs twice, with the two possible orientations, and
we write an edge e as an ordered pair [i, j] 2 E of nodes
i, j 2 N . The set of neighbors of node i is denoted as Ni.
The space of features on an edge/node is called Fe/n, the
space of all edge features of our graph G is F E

e , and FN
n

for node features.

The structure of a graph can be described using the
incidence matrix B 2 R|N |⇥|E|:

Bie =

8
><

>:

+1 if e = [i, j]

�1 if e = [j, i]

0 otherwise.
(6)

Introducing the Dirac operator: The incidence matrix
B maps from the edge space to the node space. It can
be checked that matrix BB† gives the usual Laplacian
matrix, where † denotes the conjugate transpose. Consider
a vector of node features x and a vector of edge features
e. Bianconi’s Dirac operator on graphs is given by:

@DB

✓
x
e

◆
=

✓
0 bB

(bB)† 0

◆✓
x
e

◆
=

✓
bBe
b⇤B†x

◆
(7)

for some b 2 C. We see that this operator maps node
features to edge features, and vice versa. The equation
considered by Bianconi (2021) contains a mass term �.
Taking x and e as a function of t 2 R, the topological Dirac
equation is

i@t

✓
x(t)
e(t)

◆
=

✓
@DB +

✓
� 0
0 ��

◆◆✓
x(t)
e(t)

◆
(8)

= (@DB +W�)

✓
x(t)
e(t)

◆
. (9)

Bianconi (2021) discusses in detail how this equation relates
to the motivating Dirac equation for certain graphs; however,
it is not at all obvious what the analog of plane waves and
wave packets should be for arbitrary topologies. This is a
topic of ongoing research.

At the same time, the spectral properties of this equation
make it clear that it is fundamentally different from the heat
equation. Recall that the heat equation is @tx = �x with
solutions given in terms of eigenvectors vi and eigenvalues
�i by

P
i e

�itvi. Since � is a negative semi-definite matrix,
we have �i  0. For connected graphs, only one � is zero
and all solutions decay to the corresponding eigenvector.

In contrast, the operator @DB +W� has an equal number of
positive and negative eigenvalues (Bianconi, 2021). These
are bounded away from zero by |�|. Thus, the evolution
according to this operator cannot equilibrate – there are al-
ways expanding and contracting directions. Furthermore, if
we note the imaginary unit in front of the time-derivative on
the left-hand side, i@t, the positive and negative eigenvalues
correspond to rotating and counter-rotating oscillations in
time, which can be superimposed to approximate temporal
envelopes for wave packets. Spatially, these oscillations
couple the node and edge spaces together. We therefore
hypothesize that such wave packets propagate directly into
the graph.

Details on the Dirac operator: For completeness,
the following subsection discusses further aspects and
motivation for the Dirac operator, although the details are
not necessary for understanding the rest of the paper.

In differential geometry, any square root of the Laplacian
(typically on a vector bundle over a Riemannian manifold) is
called a Dirac operator. While the eigenvalues of the Lapla-
cian operator show how diffusive processes disperse, they
do not distinguish between different directions in the man-
ifold. In contrast, those of the Dirac operators typically do
so by coupling directions in space to different directions in

3
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