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Higher-order brain networks
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Triadic Interactions
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A triadic interaction occurs
when a node
affects the interaction
between other two nodes
(Sun et. al Nature Communications 2023, Millan et al 2024, Sun 2024, Niedostatek 2024)



Triadic interactions
From neuroscience to triadic percolation
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(Sun et. al Nature Communications 2023, Millan et al 2024)
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Complexity challenge




Simplicial complexes

Simplicial complexes are characterising the
interactions between two ore more nodes and

are formed by nodes, links, triangles, tetrahedra etc.

d=2 simplicial complex d=3 simplicial complex



Higher-order networks
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Higher-order structure and dynamics
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% Check for updates Higher-order networks capture the many-body interactions presentin
complex systems, shedding light on the interplay between topology
and dynamics. The theory of higher-order topological dynamics, which




Topology and Betti numbers
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Topological signals

Beyond the node centered description of network dynamics
The dynamical state of a simplicial complex includes
node, edge, and higher-order topological signals

4 A

Or21(0) Pr141(t) $11231()

t t t
TN T X
w(t) = ¢(t) @ @ @ ) @ @
() o ® ®



Topological signals

Synaptic signal

Edge signals in the brain iy "-«»/\/\‘JU—’

Citations in a collaboration network &

Speed of wind at given locations MMJ\L\
o0

Currents at given locations in the ocean 2

Fluxes in biological transportation networks

Battiston et al. The physics of higher-order interactions in complex systems Nature Physics 2021
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Dynamical state of a higher-order network

The dynamical state on a higher order network

formed by nodes, edges and triangles is defined by a topological spinor
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Discrete exterior calculus

« The Oth order coboundary operator 0 : C° > Clis defined as
(5())()(3:[,',]'] =Xi—Xi gradient
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Discrete exterior calculus

« It adjoint operator 56‘< . C! > (Y is defined as

Oy w); = Z W, — Z y, divergence
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divergence




Discrete exterior calculus

« The 1st order coboundary operator 51* : C! > C? is defined as

(5I’<lll)l-jk = W + Wy — Wy curl




Basics of Algebraic Topology:
the boundary operators

Boundary operators
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Simplicial complexes and
Hodge Laplacians

Hodge Laplacians

The Hodge Laplacians describe higher-order diffusion
e.g. the 1-Hodge Laplacian describes diffusion from edges to edge

through nodes or through triangles

_ T T
( Ly =By, By + BB )

The dimension of the kernel of the Hodge Laplacian L[n] is given by the n Betti number /3,




Harmonic eigenvectors of
the graph Laplacian

r The graph Laplacian N

— T _
Ligy =By By, =K-A

The harmonic eigenvectors of the graph

Laplacian are constant on each connected
component of the graph.




Higher-order harmonic
eigenvectors

The harmonic eigevectors of the
higher-order Hodge Laplacian L,

are determined by the homology
of the simplicial complex

Wee et al. (2023)



Hodge decomposition

The Hodge decomposition implies that topological signals can be decomposed

in a irrotational, harmonic and solenoidal components

RD: = im(B[Tn]) @ ker(L,) ® im@B,, )

which in the case of topological signals of the links can be decomposed as

<> A

Irrotational component Harmonic component Solenoidal component
Gradient Flow Curl Flow



Topology and Dynamics



Synchronization
on a network

The Kuramoto model

(9 =W +02a sm( ) With w ~ /V(Q,l)

describes synchronization of
node phases of 0 > 0,
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The Topological Kuramoto model

dn2

How to define
the Topological Higher-order Kuramoto model
coupling higher dimensional
topological signals?

A. P. Millan, J.J. Torres and G. Bianconi PRL (2020)




Topological Kuramoto model

¢[1,2]

v

Standard Kuramoto model Topological Higher-order Kuramoto model

0 = ® — oB;;sinB/, 0 ¢ =@ — 0B, sinB], ¢ — B[ sinB, .

A. P. Millan, J.J. Torres and G. Bianconi PRL (2020)



The Kuramoto model for
node signals

Standard Kuramoto model

- —_
0 = —oB[;;sinB 0

In the Standard Kuramoto model the free dynamics is along the
harmonic eigenvector of the graph Laplacian

d<uharm9 0)
dt

— <uharm’ 0)>

The free dynamics is uniform on each connected component




The Topological Kuramoto model

dn2

Topological Higher-order Kuramoto model

o A . T T .
P=w-— 0B, 1;sin B[nH]qb - aB[n] sin B[n]qb,

In the Topological Kuramoto model the free dynamics
is localised on the

n-dimensional holes

d(“harm’ ¢> A

— <uharm’ @

dt

The free dynamics is localised on harmonic components

A. P. Millan, J.J. Torres and G. Bianconi PRL (2020)



Hamiltonian of the Topological
Kuramoto model

The Topological Kuramoto is an Hamiltonian gradient flow

Hamiltonian of the Standard Kuramoto model (XY model)

H=-w'6-0l1"cos(B} )

= — i w0, — o Z COS(QJ' —0)
i=1

<i,j>
Hamiltonian of the Topological Kuramoto model

H=-&"¢p-ol1" cos(B, ) — o1’ COS(B[TnH]Cb)




Topological Synchronisation

The dynamical ordered state has many minima
Each corresponding to a single homology class of the simplicial complex (hole)



Topology shapes dynamics




Higher-order synchronization transition

K Emergence of order \
We project the signal one dimension up
or one dimension down
If we have a signal of the links
we project the signal on nodes and triangles

Edge dynamics
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Upward projection Downward projection
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Topological Higher-order Kuramoto model
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Higher-order synchronization transition

Order parameters
of topological synchronisation
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Explosive higher-order
Kuramoto model

Adaptive global coupling

h— & - - RT T

[n]
4 S
Coupled projected dynamics 0.8

sin B, ¢

+ ——Simple | T
pl+l = BT & — oRITILdownl g; + = e e | T
¢ = B[n+1]w oR! ]L[n?l-vi)’]q Sln(¢[ ]) " 0a f!f ‘\ Explosive] |
(j,[—] — B[n](f) — GR[+]L{Z1111] sin(¢p!™ 0.2 f ) |
..._-—/"#M

\_ AN




Higher-order synchronisation
on real Connectomes
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Analytical predictions of
discontinuous transition on networks

Y
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The annealed solution
reveals that the transition
is discontinuous
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R. Ghorbanchian, Torres, Restrepo, Bianconi (2021)



Global Topological
Synchronization

Which are the topological

and dynamical conditions

. under which we can observe
Global Topological Synchronization?

—0.8

For example all the edges
displaying the same dynamics?

- Carletti, Giambagli Bianconi
i (/X PRL 2023

% A Wang, Muolo, Carletti, Bianconi
l PRE 2024

-0.8



Cell complexes

(a) (b)

(c) (d) (e)
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Coupled identical
topological signals

e Let X, indicate a topological signal

e The coupled dynamics obeys

dax

o = 1) - 0; (Ll rg B(Xp)

e In order to ensure eqivariance, i.e. invariance under change

of orientation of the simplices f(x), h(x) should be odd
functions.




Properties of global synchronization
of topological signals

e The globally synchronised state is aligned with an harmonic
eigenvector of the Hodge Laplacian

e Harmonic eigenvectors are localised on holes.

e Global synchronisation requires topologies with holes
that span the entire simplicial or cell complex.

Carletti, Giambagli, Bianconi (2023)



Example of manifolds sustaining
global synchronisation

Synchronisation of (n — 1)-dimensional Synchronisation of any k-dimensional
topological signal topological signal

-

n-dimensional hypersphere
n-dimensional torus (cell complex)

Betti numbers
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Betti numbers



Global topological synchronization
of unweighted d-dimensional Tori

d-dimensional Tori admit,
under suitable dynamical conditions,

global synchronization of any

g

m-dimensional topological signal with

0<m<d




Global Topological Synchronisation
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Processing topological signals

How can we treat and process
topological signals of different dimension
together?

G. Bianconi,
Topological Dirac equation on networks and simplicial complexes JPhys Complexity (2021)



Dirac legacy




The Dirac operator of
simplicial complexes

The Dirac operator allows

to study interacting topological signals of different dimensions
coexisting in the same network topology

Dirac operator

(0 B, 0
D=|B/ 0 B,

-
(0 B] 0,

Topological signal “spinor”

' 4

5

X  Node signal
¥  Link signal
'g' Triangle signal



The action of the Dirac operator

In signal processing, the Dirac operator allows cross-talking
between signals of different dimension

(0 B, 0)
D=|B/ 0 B,|actson¥=|¥ - DW¥=|B/y+B
0 B, 0




The Dirac as the square-root of the Laplacian

The Dirac operator
can be interpreted as the
“square-root” of the Laplacian

(0 B, 0 () Ly 0 0
D=|B] 0 B,|actson¥=|¥ - DP=2=|0 Ly 0

0 B; 0 &) 0 0 Ly




Topological Dirac equation

G. Bianconi,
Topological Dirac equation on networks and simplicial complexes
JPhys Complexity (2021)



Topological Dirac equation

The topological Dirac equation is then given by

0¥ =#Y
with Hamiltonian

A =D+ mp

(X (1 0
Where‘I’—<y/)andﬂ—<0 _1>

leading to the anti-commutator {D,f} = 0



Energy Eigenstates

The energy eigenstates satisfy EWY = #Z'¥V

which leads to

Ey = By + my,
Ey =B'y—my

X, W are respectively the singular vectors of B

with singular value A and the energy E

is given by Ezi\/|/1|2+m2




Matter-Antimatter asymmetry and homology

For E> > m? there is symmetry between positive
energy eigenstates and negative energy
eigenstates.

However the symmetry between positive energy
states and negative energy states breaks down

for |[E| =m

The states at energy states at £ = m
are localised on nodes and they have a

degeneracy given by the Betti number /5,

The energy states £ = — m
are localised on links and they have a degeneracy

given by the Betti number /,




Dirac equation spectrum and eigenstate

1 [ ]

m=0.5
e m=1.0




Nambu-Jona Lasinio legacy




Mass of simple and higher-order networks

Gap equation

0.4f | | // g g M,
My=—) pi+— ) ——
0 /Vg‘ 2 /VZ

{202/ . ' ’1>0\/M(%+’12
E .

_ 8 g M,
s s s My = Db+ s
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G. Bianconi The mass of simple and higher-order networks JPhysA (2023)



Mass of a random network

=

4073 02— ..
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The mass of the
giant component
of a random
Erdos-Renyi graph
with average
degree c



Dependence on the mass on the network

geometry
Changing the geometry 30 w w 1.05
of the network by considering 257 1.04 |
. : : 20 |
non trivial metric matrices so 1.03!
=
=15
changes the mass of the network S 1.02!
10
Here comparing the mass of the weighted 101
5 :
and unweighted collaboration network 0 j | | 1 |
0 10 20 30 0 2

G. Bianconi The mass of simple and higher-order networks JPhysA (2023)



Dirac operator
and
Complexity



Coupling topological signals
of different dimension
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Dirac operator
In complex systems

Dirac synchronisation:

Synchronisation involving node and edge topological signals entangled with each other.
The dynamical order involves many minima corresponding with the multiple harmonic
eigenvector of the network or simplicial complex
(Communication Physics 2022, Chaos 2023)

Dirac Turing patterns:
Node and edge topological signal can give rise to dynamical instabilities
and Dirac pattern formation
(PRE 2022, Chaos Solitons and Fractals 2024)

Global Topological Dirac Synchronization:
The Dirac operator can be used to couple identical oscillators on simplices
of different dimensions
(arxiv preprint 2024)




Dirac Signal Processing

noisy signal reconstructed

> 4

true signal

reconstruction
+ noise

The Dirac operator allows us to filter out nodes and links signals jointly

L. Calmon, M. Schaub and G. Bianconi (2023)
R. Wang, Y. Tian, P. Lio, G. Bianconi (2024)



Dirac-Equation Signal Processing

Given a noisy topological signal defined on both nodes and edges
W = ¥ + € with € noise
Joint-filtering with the Dirac:
a2 A 2 .
Z =y —wl3+y@" (D +my—EI)
E = m = 0 Hodge Laplacian kernel

m = 0,E # 0 Dirac signal processing
m # 0,FE # 0 Dirac-equation signal processing

The parameters E and 7 can be learned from data



Dirac-Equation Signal Processing

Eigenstates of the Topological Dirac equation with mass m=1.5

E=-15 E=1.5 E=1.86 E=2.4




The Iterated Dirac-equation signal
processing (IDESP) on real data

Noisy signal First iteration of IDESP Second iteration of IDESP

The IDESP can reconstruct real signal on nodes and edges

It outperform the Hodge Laplacian signal processing (LSP)
if the true signal is not harmonic

It reduces to the Hodge Laplacian signal processing
if the signal is almost harmonic

True data
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Dirac persistent homology:
Application to Biomolecules

filtration process
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Wee et al. (2023)



(@)

Dim 2

Classification of molecules with

XYZ-coordinates

Dim 2

(b)

Persistent Dirac

Discrete Dirac

(€)

Persistent Dirac

Dim 1

Wee et al. (2023)
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Dirac-based Gaussian kernel
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Gaussian Processes on Cellular Complexes
In International Conference on Machine Learning, 2024



Simplicial Attention Neural Networks
based on Dirac decomposition

0 B, 0
Dy=|BT 0 B, (12)
0 B o

Due to its structure, it can be easily shown that a Dirac
decomposition similar to the Hodge decomposition in (10)
holds [42]. In particular, for a simplicial complex Xs of order
two, the Dirac decomposition is given by:

RVHEHT — im(DY) @ im(DY) @ ker(Dy),  (13)

where:
0 B, 0 0 0 O
DY =BT o o, D¥W=|0 0 By|. (14
0 0 O 0 B o

Battiloro, C., Testa, L., Giusti, L., Sardellitti, S., Di Lorenzo, P. and Barbarossa, S., 2024.
Generalized simplicial attention neural networks.
IEEE Transactions on Signal and Information Processing over Networks.



Dirac-Bianconi Graph Neural Networks-Enabling
long-range graph predictions

Topological Dirac equation neural network

2 ()= (e (5 ) ()

_ x(t)
= (Opp + Wp) (e(t)> : )
= O,
: . . T times
Hnoe . (same weights)
FAREH
Ry oI T
B L e
DI ke |
"""""""""""""""""""" FNri pBi1s | - | o
§ P § ! (optional)
SO : N

K times

(a) Dirac Bianconi 1-Step (DB1S) (b) Dirac Bianconi T-Step

(c) DBGNN layer, where Lin denotes a linear layer.

Nauck, C., Gorantla, R., Lindner, M., Schirholt, K., Mey, A.S. and Hellmann, F. 2024,
Dirac--Bianconi Graph Neural Networks-Enabling long-range graph predictions.

In ICML 2024 Workshop on Geometry-grounded Representation Learning and Generative Modeling.



Conclusions

Network theory
unveils the interplay between network topology and dynamics
in complex systems with applications
to brain research, theoretical physics and Al

Higher-order networks reveal how topology shapes dynamics.
(PRL 2020, Communications Physics 2021,PRL 2023)

The Dirac operator is key to build a fundamental
theory of networks
(JPhys Complexity 2021, Communications Physics 2022,
JPhysA 2023,New Journal of Physics 2023)

The new physics challenge
is to combine statistical mechanics and information theory
with our novel understanding of
the role of network topology and geometry
to shape the dynamics of complex systems

Theory of
complexity

[\
v
‘>'4‘



Collaborators

* Runyue Wang e Timoteo Carletti (Namur University)

* Marta Niedostatek  Lorenzo Giambagli (Freie Universitat of Berlin)
e Hanlin Sun (now at NORDITA)  Juergen Kurths (PIK)

e Lucille Calmon (Now at Sorbonne University)  Pietro Lio (Cambridge University)

* Ana Paula Millan (now at Granada University)  Riccardo Muolo (Institute of Science Tokyo)

e Filippo Radicchi (Indiana University)

e Juan Restrepo (Colorado University)

e Michael Schaub (Aachen University)

e Yu Tian (Max Planck, Dresden)

e Joaquin Torres (Granada University)

e Kelin Xia (Nangyang Technical University, SG)

\Qs’ Queen Mary

University of London



