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e [ acking of fundamental understanding: how does
deep learning worR?
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e Turn qualitative questions (how does deep learning
worR?) into quantitative ones (scaling exponents? #
data to learn up to specific accuracy?).
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Deep Learning and structured data

Curse of dimensionality:
randomly sample P pointsind
dimensions:

To avoid sparsification, P >> e

Data are structured:

e.g. low-dim. manifold, smoothness
[F. Bach, the quest for adaptivity, 2021]

e \Xhatis the structure of
natural data such as images
and text?

e How does it guide deep
learning?



The structure of
‘natural’ data
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More empirical regularities:
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‘natural’ data e Hierarchy of features can be found in
the weights of trained deep CNNSs;
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More empirical regularities:

e Hierarchy of features can be found in
the weights of trained deep CNNSs;
[Le et al. '13, Zeiler, Fergus 14, Olah et al. ‘20l

e Intuitive explanation of:

o advantage of deep over shallow
(e.g. kernels, two-layer percep.);
o reduction of dimensionality of
representations;
[Ansuini et al.,, Recanatesi et al. '19]



The structure of
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Hierarchical Compositionality:
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More empirical regularities:

e Hierarchy of features can be found in

the weights of trained deep CNNSs;
[Le et al. '13, Zeiler, Fergus 14, Olah et al. ‘20l

e Intuitive explanation of:

o advantage of deep over shallow
(e.g. kernels, two-layer percep.);
o reduction of dimensionality of
representations;
[Ansuini et al.,, Recanatesi et al. '19]

e Hierarchy of contextual information

found also in trained LLMs;
[Peters et al. '18, Tenney et al. '19,
Manning et al. ‘20|
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Outline of the talk

1. Introduce an ensemble of hierarchically compositional
datasets as a toy' model of learnable data;

2. Build a theory of deep representation learning based on data
correlations and test with modern ML methods;

3. Extrapolate predictions to test with real benchmark datasets
In computer vision and language modelling.

[Cagnetta et al., How deep neural networks learn compositional data, PRX '24]
[Cagnetta, Wyart, Towards a theory of how the structure of language.., NeurlPS24]

[Favero et al., How compositional generalization and creativity improve .., arXiv:2502.12089)]
[More very soonl]



Probabilistic Context-Free
Grammars as models of
structured data
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(Probabilistic) Context-Free Grammars
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(Probabilistic) Context-Free Grammars

. (sentence)

Introduced to model syntax via
a generative process
[Chomsky ‘56, Tesniére ‘60l (noun ph.)
e Starting symbol (root); (houn ph)  (verb ph))
e Nonterminals (hidden nodes); /\ /\
e Terminals (leaves), (adj)  (adj) (noun)(verb) (adv)
e Production rules (branches); | | | | |

eg. Colorless green ideas sleep furiously

NP ->Adj + N,
S->NP+VP
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PCFGs as generalised Markov Processes

e Add an extra dimension by expanding the number of variables:

ON

()<
()<

(hidden)

@<
®<4E
@<
@<

(observable)

Higher expressivity than Markov
models, power-law correlations!

[Ebeling, W., & Poschel, T., ‘94]
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The Random Hierarchy Model (cagnetiaet ai. Prx 24

Ensemble of PCFGs sampled uniformly with the following constraints:

@ < ‘ e Regular tree topology (depth L,

@ branching factor s);
<><

() <
@@<

e Same vocab. size v for all
symbols;

ON

Unambiguous production rules;

e M equiprobable rules per hidden

[66668066

symbol.
(hidden) (observable)
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RHM: ensemble of hierarchically compositional tasks with fixed parameters
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RHM: ensemble of hierarchically compositional tasks with fixed parameters

e Classification: predict the root from H
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e MLM/Next-token prediction: predict I IH
missing leaves from visible ones A A
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The Random Hierarchy Model (cagnetiaet ai. Prx 24

RHM: ensemble of hierarchically compositional tasks with fixed parameters

target
e Classification: predict the root from

the leaves;

e MLM/Next-token prediction: predict

missing leaves from visible ones A

(reconstruction of joint leaves prob.)
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The Random Hierarchy Model icagnetia wyart, Nips 24

RHM: ensemble of hierarchically compositional tasks with fixed parameters

e Classification: predict the root from ﬁ
the leaves;

e MLM/Next-token prediction: predict

missing leaves from visible ones

(reconstruction of joint leaves prob.)

A\
@@@Q@Q target

input

10
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Learning the RHM via next-token prediction

! e Sampe RHM instance and P
training data;
! ! e [rain neural network to

approximate P( x_ | x_

e Measure performance via
9@0@0@@@ ce v

cross-entropy (KL div. with true
Context window target RHM distribution);

12



Learning the RHM via next-token prediction

919
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Context window target

-4 empirical

test loss £
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training set size P

depth 3 transformer trained with adam
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Learning the RHM via next-token prediction
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Step 1: Flat vs. Hierarchical approximation
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Step 1: Flat vs. Hierarchical approximation
x N-gram strategy: simply
count occurrences of

’ , (X, X, ... X 4/

x ‘ ‘ e Agnostic of the tree structure;
e Number of contexts grows
‘@‘@‘ @@@ exponentially with dim.;
-

target

Context window

13



Step 1: Flat vs. Hierarchical approximation
x Hierarchical N-gram: count
occurrences in latent space
; , (X—l , X—z’ X—Z(Z) ’ X—z(l)’ )
0@0@0@@@
<

target

Context window
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Step 1: Flat vs. Hierarchical approximation
Hierarchical N-gram: count
occurrences in latent space
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Step 1: Flat vs. Hierarchical approximation
Hierarchical N-gram: count
occurrences in latent space

(2) (1)
2 , (X_I’X_ZIX_Z ’X_Z - ')

e Uses minimal humber of
variables that influence target;

‘@‘@' @@@ e Number Qf contgxts grows
-

exponentially with depth;;

: target ,
Context window 7 e Requires latent structure!
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Step 2: latent structure via correlations
[P { X} - probability of a sentence,
token-token correlations:

, ’ =P{X_t=pX 1=v}-
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Step 2: latent structure via correlations

[P { X} - probability of a sentence,
tuple-token correlations:

ﬂ A\ P{X—tZH}P{X—le}
‘@‘@‘@@@
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Context window
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Step 2: latent structure via correlations

[P { X} - probability of a sentence,
tuple-token correlations:

P{X_¢ =} P{X_1 =)
R R Al
‘@‘@‘ @@@ Function of the latent variable X,
- — (above X ;)
Context window target

15



Step 2: latent structure via correlations

ASSUMPTION 1: a latent variable is available if the corresponding
correlations are resolved in the training data.
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Step 2: latent structure via correlations

ASSUMPTION 1: a latent variable is available if the corresponding
correlations are resolved in the training data.
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Step 2: latent structure via correlations

ASSUMPTION 1: a latent variable is available if the corresponding
correlations are resolved in the training data.

Y

Variance due to the sampling < Variance between the correlations
of the training set of different latent variables

Y

1 2
Coln, > ~P>P
<<< V) prag =

(vm)v X P

17



Step 3: performance-vs-#data

ASSUMPTION 1: a latent variable is available if the corresponding
correlations are resolved in the training data (P > Fy);

ASSUMPTION 2: A ML model trained with P > PE data can use
available hidden variables to reproduce P(X_1|X_o,..., X )

Ly=FEx rHM [— logp(x_1|z_9,...,2_ )

18



Learning the RHM via next-token prediction

More training data -> longer
range of correlations;

Longer range -> deeper
hidden variables;

Deeper hidden variables ->
better performance;

test loss £
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== random
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A empirical

10 10° 10° 107 10°

training set size P
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Learning the RHM via next-token prediction

More training data -> longer
range of correlations;

Longer range -> deeper
hidden variables;

Deeper hidden variables ->
better performance;

== random

== stage 1

= stage 2
- stage 3

A empirical

[e—y
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~
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o
1

test loss £

10 10° 10° 107 10°
training set size P

Scaling law exponent depends on
data structure via correlations!
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Learning the RHM via next-token prediction

More training data -> longer
range of correlations;

Longer range -> deeper
hidden variables;

Deeper hidden variables ->
better performance;

excess loss £ — L4

10°
1 F 44
T~ -~ (v,m) = (16,4) 1
§ —— (’U, m) = (24‘ ())
1 = (v,m) = (32,8)
1 -- p— log f/2logm
1072 e

10 10° 10* 0°
training step (1 batch = 128 data)

108

Scaling law exponent depends on
data structure via correlations!
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Learning the RHM: the role of depth

Probe network’s representations via sensitivity to changing production
rules (r) over sensitivity to changing latent variables (s):
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Learning the RHM: the role of depth

Probe network’s representations via sensitivity to changing production
rules (r) over sensitivity to changing latent variables (s):
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Learning the RHM: the role of depth

Probe network’s representations via sensitivity to changing production
rules (r) over sensitivity to changing latent variables (s):

1.0

’)"2/32
o
t

0.0 “rm———rrr——

1
102 103 10% 10° 108
training set size P

L5

OftQ)

20



Learning the RHM: the role of depth

Probe network’s representations via sensitivity to changing production
rules (r) over sensitivity to changing latent variables (s):

1.0 i

1
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~+ 4-th rep. : ! .
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training set size P
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RHM: Conclusions

For hierarchical data correlations decay with distance and carry
information on the latent hierarchical structure;

ML tasks based on such data can be learnt efficiently by deep
neural networks that can reconstruct said latent structure;
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RHM: Conclusions

For hierarchical data correlations decay with distance and carry
information on the latent hierarchical structure;

ML tasks based on such data can be learnt efficiently by deep
neural networks that can reconstruct said latent structure;

Beyond the example discussed here: classification (advantage of
depth), score-based diffusion (creativity vs memorisation),
non-uniform production rule probabilities (role of features
distribution in scaling), varying tree topology;

- What about real data?

21
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Saturation of performance due to finite context

test cross-entropy
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Saturation of performance due to finite context

test cross-entropy

+ t=1
- ke P 0 - t=2
=, 3 = 107 4 b=
. : & -+ t=3
Ly 5 -+ t=5
g + t=7
7 & __|-4 t=15
10° - = 2% 100 P, N
] S a ~ 0.095
14 t=1 Z
1+ t=3 -
. 102 10° 107 10° 10°
102 103 10* 10° 108 P

training set size P
Left: 3 multi-head attention layers trained on the RHM dataset;

Right: 6-layers encoder only transformer trained on a character-based
tokenisation of WikiText-105 [Merity et al. 171



Saturation of correlations due to finite data

correlation ¢ p(t)
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Saturation of correlations due to finite data

correlation Cp(t)

1079 1

104 -

T SR 103 &
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— P =1024 E 10744 — P=2048
—~— P =16384 < ]{— P=8192
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- P =4194304 O — P =131072
we PaPes | TEEEEEEEEEE — P =524288
T T T T T I T
1 2 3 5 7 10° 10!

token distance t token distance ¢

Conjecture: finite data = effective context window
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Scaling theory of language modelling

10 :‘-: ~
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correlation C'p(i)
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token distance ¢

C(t) ~ t=0  noise ~ 1/VP, t*~ PY%(z=2b)
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Scaling theory of language modelling

correlation C‘p(t)

10 3-: ~

107 4

P =512
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C(t) ~t7°
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x 10 1-:
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noise ~ 1/@,

101 109
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t* ~ PU* (2 = 2b)

24



Scaling theory of language modelling
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Scaling theory of language modelling
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Scaling theory of language modelling

Q -+ t=1
S I ][)U 1 = t=2 ~ 0
& HERE 6 % 10
g + t=7 %
% + =15 X 4 % 10° 1
2 2% 107 P N ~
© a =~ 0.095
z 3 x 10”1

102 103 10* 10° 10°

P

Same for dataset of Shakespeares’s lines




Correlations generated by a diffusion model

MD4 on OpenWebText

t), N=21

1077

10° 10!
Token distance ¢

—o— 5.4e+08 tokens 2.1e+09 tokens
—o— 7.6e+08 tokens —o— 4.3e+09 tokens
1.1e+09 tokens —eo— 8.6e+09 tokens
1.3e+09 tokens ---- sampling noise

1.5e+09 tokens

(b) Correlations in the generated text.



Correlations generated by a diffusion model

MD4 on OpenWebText

10® training tokens

In popular spokesman typeted in diversity adventure allow price Zha
Tampa usually Pages superstays’s under leveldowns swim a cycle
who retains highly weapons batch floor despite

219

10° training tokens

t), N

Just like you are growing fast and growing strong. But this way you 5 o

became organic, changed someone else 2019s. But even then you
made them off. I sort came to smile around, because I was in China
okay. —

° e 1(‘)0 1(‘)1
10'° training tokens Token distance ¢
At the beginning of winter when I walked around; even if he would
be talking to me, on the highest field and back in the second round
in my team I would take him over in his cell because it was my game
against Juventus.

—o— 5.4e+08 tokens 2.1e+09 tokens

—e— 7.6e+08 tokens —o— 4.3e+09 tokens
1.1e+09 tokens —eo— 8.6e+09 tokens
1.3e+09 tokens ---- sampling noise
1.5e+09 tokens

(a) Text generated at different training stages. L.
(b) Correlations in the generated text.
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