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● Lacking of fundamental understanding: how does 
deep learning work?



[Kaplan et al. ‘20] (scaling)
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Empirical regularities (scaling)
Num. parameters

Num. data
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● Turn qualitative questions (how does deep learning 
work?) into quantitative ones (scaling exponents? # 
data to learn up to specific accuracy?).

Num. parameters
Num. data

Empirical regularities (scaling)



 

Deep Learning and structured data

Curse of dimensionality: 
randomly sample P points in d 
dimensions:

dist. ~ P -1/d

To avoid sparsification, P >> ed
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Deep Learning and structured data

dist. ~ P -1/d

To avoid sparsification, P >> ed

Data are structured:
e.g. low-dim. manifold, smoothness

● How does it guide deep 
learning?

● What is the structure of 
natural data such as images 
and text?

[F. Bach, the quest for adaptivity, 2021]
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Curse of dimensionality: 
randomly sample P points in d 
dimensions:



The structure of 
‘natural’ data

Hierarchical Compositionality:

[Goodfellow, Bengio, Courville Deep Learning ‘16]
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● Hierarchy of features can be found in 
the weights of trained deep CNNs;
[Le et al. ‘13, Zeiler, Fergus ‘14, Olah et al. ‘20]

More empirical regularities:
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● Hierarchy of features can be found in 
the weights of trained deep CNNs;

● Intuitive explanation of:
○ advantage of deep over shallow 

(e.g. kernels, two-layer percep.);
○ reduction of dimensionality of 

representations;
[Ansuini et al., Recanatesi et al. ‘19]

[Le et al. ‘13, Zeiler, Fergus ‘14, Olah et al. ‘20]

More empirical regularities:
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● Hierarchy of features can be found in 
the weights of trained deep CNNs;

● Intuitive explanation of:
○ advantage of deep over shallow 

(e.g. kernels, two-layer percep.);
○ reduction of dimensionality of 

representations;
[Ansuini et al., Recanatesi et al. ‘19]

[Le et al. ‘13, Zeiler, Fergus ‘14, Olah et al. ‘20]

● Hierarchy of contextual information 
found also in trained LLMs;
[Peters et al. ‘18, Tenney et al. ‘19, 
Manning et al. ‘20] 

More empirical regularities:
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Outline of the talk

[Cagnetta et al., How deep neural networks learn compositional data, PRX ‘24]
[Cagnetta, Wyart, Towards a theory of how the structure of language…, NeurIPS24]
[Favero et al., How compositional generalization and creativity improve …, arXiv:2502.12089]
[More very soon!]

2. Build a theory of deep representation learning based on data
    correlations and test with modern ML methods;

1. Introduce an ensemble of hierarchically compositional
   datasets as a `toy’ model of learnable data;

3. Extrapolate predictions to test with real benchmark datasets
    In computer vision and language modelling.



Probabilistic Context-Free 
Grammars as models of 
structured data
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Introduced to model syntax via 
a generative process
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[Chomsky ‘56, Tesnière ‘60]
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Colorless  green  ideas  sleep  furiously

Introduced to model syntax via 
a generative process

(Probabilistic) Context-Free Grammars
(sentence)

[Chomsky ‘56, Tesnière ‘60]

● Starting symbol (root);
● Nonterminals (hidden nodes);
● Terminals (leaves);
● Production rules (branches);

Colorless  green  ideas  sleep  furiously

     (adj)        (adj)   (noun) (verb)     (adv)

                            (noun  ph.)       (verb ph.)    

                     (noun  ph.)

e.g.
         NP -> Adj + N,
         S -> NP + VP
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PCFGs as generalised Markov Processes
● Add an extra dimension by expanding the number of variables: 
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Higher expressivity than Markov 
models, power-law correlations!

[Ebeling, W., & Pöschel, T., ‘94]
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The Random Hierarchy Model [Cagnetta et al., PRX ‘24]

Ensemble of PCFGs sampled uniformly with the following constraints:
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The Random Hierarchy Model [Cagnetta et al., PRX ‘24]

Ensemble of PCFGs sampled uniformly with the following constraints:

● Regular tree topology (depth L, 
branching factor s);

● Same vocab. size v for all 
symbols;

● Unambiguous production rules;

● m equiprobable rules per hidden 
symbol.



The Random Hierarchy Model
RHM: ensemble of hierarchically compositional tasks with fixed parameters
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[Cagnetta et al., PRX ‘24]
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[Cagnetta et al., PRX ‘24]

● Classification: predict the root from 
the leaves;

● MLM/Next-token prediction: predict 
missing leaves from visible ones 
(reconstruction of joint leaves prob.)
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The Random Hierarchy Model
RHM: ensemble of hierarchically compositional tasks with fixed parameters
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[Cagnetta, Wyart, NIPS ‘24]

● Classification: predict the root from 
the leaves;

● MLM/Next-token prediction: predict 
missing leaves from visible ones 
(reconstruction of joint leaves prob.)

x(0)

x(1)2x(1)1

x(2)4x(2)3x(2)2x(2)1

x4,8

x1 x2 x3 x4 x5 x6 x7 x8

input

target



Learning the RHM via 
next-token prediction
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Learning the RHM via next-token prediction

x(0)

x(1)-1x(1)-2

x(2)-1x(2)-2x(2)-3x(2)-4

x-8 x-7 x-6 x-5 x-4 x-3 x-2 x-1x-5

Context window target

{

● Sampe RHM instance and P 
training data;

● Train neural network to 
approximate P(  x-1  | x-2 , . . . , x-8 );

● Measure performance via 
cross-entropy (KL div. with true 
RHM distribution);
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Learning the RHM via next-token prediction

depth 3 transformer trained with adam
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Step 1: Flat vs. Hierarchical approximation

N-gram strategy: simply 
count occurrences of
(x-1 , x-2 , . . . , x-d )
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x(0)

x(1)-1x(1)-2

x(2)-1x(2)-2x(2)-3x(2)-4

x-8 x-7 x-6 x-5 x-4 x-3 x-2 x-1x-5x-5

Context window target

{
● Number of contexts grows 

exponentially with dim.;

● Agnostic of the tree structure;

N-gram strategy: simply 
count occurrences of
(x-1 , x-2 , . . . , x-d )

Step 1: Flat vs. Hierarchical approximation
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Hierarchical N-gram: count 
occurrences in latent space 
(x-1 , x-2 , x-2

(2) , x-2
(1) , . . . )

x(0)

x(1)-1x(1)-2

x(2)-1x(2)-2x(2)-3x(2)-4

x-8 x-7 x-6 x-5 x-4 x-3 x-2 x-1x-5x-5

target

{

Context window

Step 1: Flat vs. Hierarchical approximation



14

Hierarchical N-gram: count 
occurrences in latent space 
(x-1 , x-2 , x-2

(2) , x-2
(1) , . . . )

● Number of contexts grows 
exponentially with depth.;

● Uses minimal number of 
variables that influence target;

Step 1: Flat vs. Hierarchical approximation

x(0)

x(1)-1x(1)-2

x(2)-1x(2)-2x(2)-3x(2)-4

x-8 x-7 x-6 x-5 x-4 x-3 x-2 x-1x-5x-5

target

{

Context window



14

Hierarchical N-gram: count 
occurrences in latent space 
(x-1 , x-2 , x-2

(2) , x-2
(1) , . . . )

● Number of contexts grows 
exponentially with depth.;

● Uses minimal number of 
variables that influence target;

● Requires latent structure!

Step 1: Flat vs. Hierarchical approximation

x(0)

x(1)-1x(1)-2

x(2)-1x(2)-2x(2)-3x(2)-4

x-8 x-7 x-6 x-5 x-4 x-3 x-2 x-1x-5x-5

target

{

Context window
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                  = probability of a sentence, 
token-token correlations:

Step 2: latent structure via correlations
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                  = probability of a sentence, 
tuple-token correlations:

Step 2: latent structure via correlations

x(0)
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                  = probability of a sentence, 
tuple-token correlations:

Step 2: latent structure via correlations

Function of the latent variable x(2)
-t

( above X-t )

x(0)

x(1)-1x(1)-2

x(2)-1x(2)-2x(2)-3x(2)-4

x-8 x-7 x-6 x-5 x-4 x-3 x-2 x-1x-5x-5

target

{

Context window



16

ASSUMPTION 1: a latent variable is available if the corresponding 
correlations are resolved in the training data.
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ASSUMPTION 1: a latent variable is available if the corresponding 
correlations are resolved in the training data.

Step 2: latent structure via correlations

Variance due to the sampling 
of the training set

Variance between the correlations 
of different latent variables
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Step 3: performance-vs-#data

ASSUMPTION 2: A ML model trained with                    data can use 
available hidden variables to reproduce                                              ,

ASSUMPTION 1: a latent variable is available if the corresponding 
correlations are resolved in the training data (                 );
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Learning the RHM via next-token prediction

● More training data -> longer 
range of correlations;

● Longer range -> deeper 
hidden variables;

● Deeper hidden variables -> 
better performance;
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Learning the RHM: the role of depth

Probe network’s representations via sensitivity to changing production 
rules (r) over sensitivity to changing latent variables (s):
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RHM: Conclusions

● ML tasks based on such data can be learnt efficiently by deep 
neural networks that can reconstruct said latent structure;

● For hierarchical data correlations decay with distance and carry 
information on the latent hierarchical structure;
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● Beyond the example discussed here: classification (advantage of 
depth), score-based diffusion (creativity vs memorisation), 
non-uniform production rule probabilities (role of features 
distribution in scaling), varying tree topology;

● ML tasks based on such data can be learnt efficiently by deep 
neural networks that can reconstruct said latent structure;

● For hierarchical data correlations decay with distance and carry 
information on the latent hierarchical structure;



RHM: Conclusions
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- What about real data?

● Beyond the example discussed here: classification (advantage of 
depth), score-based diffusion (creativity vs memorisation), 
non-uniform production rule probabilities (role of features 
distribution in scaling), varying tree topology;

● ML tasks based on such data can be learnt efficiently by deep 
neural networks that can reconstruct said latent structure;

● For hierarchical data correlations decay with distance and carry 
information on the latent hierarchical structure;
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Saturation of performance due to finite context
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Saturation of performance due to finite context
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Right: 6-layers encoder only transformer trained on a character-based 
tokenisation of WikiText-105 [Merity et al. ‘17]

Left: 3 multi-head attention layers trained on the RHM dataset;

Saturation of performance due to finite context
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Saturation of correlations due to finite data
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Conjecture: finite data = effective context window

Saturation of correlations due to finite data
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Scaling theory of language modelling
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Scaling theory of language modelling
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Scaling theory of language modelling

Same for dataset of Shakespeare’s lines
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Correlations generated by a diffusion model 
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Correlations generated by a diffusion model 


