

Thermodynamically optimal processes with memory

MSCA Postdoctoral Fellowship (UKRI)

Sarah A.M. Loos

DAMTP, University of Cambridge Corpus Christi College Cambridge

24 April 2025

Non-equilibrium thermodynamics: from chemical reactions to machine learning Higgs Centre, University of Edinburgh

[M.C. Engel, J.A. Smith, M.P. Brenner, PRX (2023)] [S. Blaber, D. A Sivak, J. Phys. Commun. 7 033001 (2023)]

Most thermodynamically efficient way to bring system from A to B in finite time?

[L. K. Davis, K. Proesmans, and É. Fodor, PRX (2024)]

Microscale processes as "<u>machines</u>"

Biology: Has evolution lead to energy-optimisation?

Sarah A.M. Loos, University of Cambridge

External work input (ATP, external forcing,...) Motion against friction: heat production Thermodynamic processes as "machines" **Efficiency?**

"Swallow the surgeon" – R. Feynman

Engineering: How to build most efficient robots?

Microscale processes as "machines"

Challenges at microscale:

- High friction
- (Non-)thermal noise

*slow, hidden D.O.F. that participate in dynamics but are not directly controllable or measurable (non-Markovianity)

Sarah A.M. Loos, University of Cambridge

 Memory*, e.g., from internal D.O.F. or from viscoelastic environment (cytoskeleton, blood...)

Thanks to my collaborators

Felix Ginot (U Konstanz)

Clemens Bechinger (U Konstanz)

Mike Cates Janik Schüttler Rosalba Garcia-Millan (U Cambridge) (King's College London) (U Cambridge)

Sarah A.M. Loos, University of Cambridge

Loos, Monter, Ginot, Bechinger, Physical Review X 14, 021032 (2024)

Garcia-Millan, Schuettler, Cates, Loos, ArXiv:2407.18542 (2024)

Schuettler, Garcia-Millan, Cates, Loos, ArXiv:2501.18613 (2025)

sl2127@cam.ac.uk

sarahloos.de

Background: Stochastic thermodynamics and optimal control

The optimal dragging problem

Impact of memory and the role of symmetry

Sarah A.M. Loos, University of Cambridge

Outline

Sarah A.M. Loos, University of Cambridge

Paradigmatic model: Markovian Langevin equation

Sarah A.M. Loos, University of Cambridge

white Gaussian noise : $\langle \xi \rangle = 0$, $\langle \xi(t)\xi(t') \rangle = 2k_BT \,\delta(t-t')$

 \rightarrow "Markovian" = no memory, if timescale separation between "system" and "bath"

<u>Stochastic work and heat:</u>

Stochastic entropy production:

 $S_{\rm sys}(x) \propto -\ln\rho(x)$

Seifert, PRL 95, 040602 (2005), Sekimoto, Stochastic Energetics, Springer 2010

= ln

 \Rightarrow 1st law : $\mathrm{d}V = \delta w + \delta q \checkmark$

 $\Rightarrow \delta q = [-\gamma \dot{X}(t) + \xi(t)] \circ dX$

 $\int_0^1 \delta q$ $P[\{\mathbf{X}(t')\}_{0}^{t}]$ \Rightarrow 2nd law: $\Delta S_{\rm sys}$ $\hat{P}[\{\hat{\mathbf{X}}(t')\}_{0}^{t}]$ $\langle \Sigma \rangle \geq 0$ 🗸

Non-Markovian case: Generalised Langevin equation

(Non-Markovian) Generalized Langevin equation: $m\ddot{X}(t) + \int_{-\infty}^{t} \Gamma(t - t')\dot{X}(t')dt' = -\nabla_X V(X)$

retarded friction

Fluctuation-Dissipation Relation: $\Gamma(|t - t'|) \propto \langle \nu(t)\nu(t') \rangle$ (Equilibrium)

Dimensionality given by spectrum of Γ , in general ∞ -dimensional process

- [Esposito. Phys. Rev. E (2012)]
- Acausality of backward process: [Rosinberg, Tarjus, & Munakata, PRE (2017), Loos & Klapp, Sci. Rep. (2019), Loos & Klapp, NJP (2021), ...]

$$(X,\lambda) + \underline{\eta(t)}$$

coloured noise

- <u>Hidden D.O.F.</u>: "No idea" how much entropy we are missing ($\Sigma^{\text{coarse-gr.}} \leq \Sigma^{\text{full}}$) $\Sigma = \ln \frac{P[\{\mathbf{X}(t')\}_{0}^{t}]}{\hat{P}[\{\hat{\mathbf{X}}(t')\}_{0}^{t}]} = \frac{\int_{0}^{t} \delta q}{T} + \Delta S_{\text{sys}} + \Delta I$ "information-flow between presence and past"

Thermodynamic process with "additional d.o.f."

External WORK

Viscoelastic fluid ELASTIC ENERGY

Sarah A.M. Loos, University of Cambridge

Thermodynamically optimal control

Sarah A.M. Loos, University of Cambridge

Most thermodynamically efficient way to bring system from A to B in finite time?

sl2127@cam.ac.uk — <u>sarah</u>

Thermodynamically optimal control — General results so far

• Optimal control theory, variational calculus (Euler-Langrange eq.) + Stochastic calculus

5

2

stiffness $\lambda(t)$

trap

Exact results (Gaussian systems)

Discontinuities of protocol $\lambda(t)$ at beginning and end = "bang-bang solutions"

[Schmiedl & Seifert, PRL 98, 10830 (2007)]

• Jumps generic for "fast-protocol" ($t_f \rightarrow 0$) solutions [S. Blader, M.D. Louwerse, D.A. Sivak, PRE (2021)]

• For nonlinear systems: Approximative schemes

Sarah A.M. Loos, University of Cambridge

Side note: Thermodynamically optimal control of nonlinear systems

• For nonlinear systems: Geometric approach based on response theory

[Crooks, PRL (2007)] [Zhong, DeWeese, PRE (2022)] [Sivak, Crooks, PRL (2012)] [Van Vu and Saito, PRX (2023)]

*[S. Blader, M.D. Louwerse, D. A. Sivak, PRE (2021)]

Sarah A.M. Loos, University of Cambridge

Optimal control problem:

Sarah A.M. Loos, University of Cambridge

The optimal dragging problem

Protocol to move λ from $\lambda(0) = \lambda_0$ to $\lambda(t_f) = \lambda_f$ in time t_f that minimises average work $\langle W[x,\lambda] \rangle$?

...Simple enough to study analytically!

Work spend along dragging: ullet

- λ : Trap center
- X: particle position

Sarah A.M. Loos, University of Cambridge

$$W[X(t), \lambda(t)] = \int_0^{\lambda_{\rm f}} \frac{\partial V}{\partial \lambda} \circ d\lambda = \kappa \int_0^{\lambda_{\rm f}} \dot{\lambda}(\lambda - X) \circ dt$$

Samuel Monter Universität Felix Ginot Konstanz **Clemens Bechinger**

[Schmiedl & Seifert, PRL 98, 10830 (2007)]

Work spend along dragging.

• Particle in viscous fluid:

Sarah A.M. Loos, University of Cambridge

Minimum work dragging problem: viscous case Steady state Steady state

$$\bigvee V = \frac{\kappa}{2} [X - \lambda(t)]^2$$

$$W[X(t),\lambda(t)] = \int_0^{\lambda_{\rm f}} \frac{\partial V}{\partial \lambda} \circ d\lambda = \kappa \int_0^{\lambda_{\rm f}} \dot{\lambda}(\lambda - X)$$

$$\tau_0 \dot{X} = -\left[X - \lambda(t)\right] + \xi \quad \tau_0 = \gamma_0 / \kappa$$
$$\langle \xi(t)\xi(t') \rangle \propto \delta(t - t')$$

Euler-Langrange Eq.

Optimal protocol:

$$\lambda^*(t) = \begin{cases} 0, & t = 0\\ \Delta \lambda^*(1 + t/\tau_0), & 0 < t < t_{\rm f}, \\ \lambda_{\rm f}, & t = t_{\rm f} \end{cases}$$
$$\Delta \lambda^* = \tau_0 / (t_{\rm f} + 2\tau_0) \lambda_{\rm f}$$

[Schmiedl & Seifert, PRL 98, 10830 (2007)]

Work spen \bullet

Langevin equ

Sarah A.M. Loos, University of Cambridge

Optimal protocol:

$$\lambda^*(t) = \begin{cases} 0, & t = 0\\ \Delta \lambda^*(1 + t/\tau_0), & 0 < t < t_{\rm f}, \\ \lambda_{\rm f}, & t = t_{\rm f} \end{cases}$$
$$\Delta \lambda^* = \tau_0 / (t_{\rm f} + 2\tau_0) \lambda_{\rm f}$$

[Schmiedl & Seifert, PRL 98, 10830 (2007)]

Minimum work dragging problem: viscous case

Sarah A.M. Loos, University of Cambridge

 $r = 2.7 \,\mu{\rm m}$

Minimum work dragging problem, non-Markovian case

1_f

Sarah A.M. Loos, University of Cambridge

Wormlike micelles/ polymer solution

8mM mixture of CPyCI and NaSal

 $t_{\rm f} = 10 \,\text{s}, \ r = 2.7 \,\mu\text{m}$ $\lambda_{\rm f} = 3 \,\mu\text{m} \qquad \tau_{\rm b} \approx 17 \,s$

Minimum work dragging problem, non-Markovian case

Sarah A.M. Loos, University of Cambridge

(non-Markovian) Generalized Langevin equation:

 $\tau_0 \dot{X}(t) + \int_{-\infty}^{t} \Gamma(t - t') \dot{X}(t') dt' = -V' + \xi(t) + \underbrace{\eta(t)}_{-\infty}$

coloured noise

retarded friction

 $\langle \eta(t) \rangle = 0$

"Maxwell model": $\Gamma(t-t') \propto \langle \eta(t)\eta(t') \rangle \propto \sum e^{-|t-t'|/\tau_{\mathrm{b,i}}}$ Memory time: τ_{b}

Sarah A.M. Loos, University of Cambridge

$$\left[2\tau_p \mathcal{C}_1 + \tau_b \mathcal{C}_2 + \tau_b (2\mathcal{C}_1 - \mathcal{C}_2) \cosh \frac{\sqrt{\tau_b + \tau_p}}{\tau_b \sqrt{\tau_p}} t - \tau_b \frac{\sqrt{\tau_b + \tau_p}}{\sqrt{\tau_p}} \sinh \frac{\sqrt{\tau_b + \tau_p}}{\tau_b \sqrt{\tau_p}} t\right]$$

$$rac{1}{k}\left[2 au_p(au_b+ au_p+kt)\mathcal{C}_1+ au_b(au_b+ au_p+ au_bk+kt)\mathcal{C}_2
ight.$$

$$(z_b + \tau_b k) \mathcal{C}_2 \cosh \frac{\sqrt{\tau_b + \tau_p}}{\tau_b \sqrt{\tau_p}} t + \frac{\tau_b \sqrt{\tau_p} (\tau_b + \tau_p + \tau_b k) (2\mathcal{C}_1 - \mathcal{C}_2)}{\sqrt{\tau_b + \tau_p}} \sinh \frac{\sqrt{\tau_b + \tau_p}}{\tau_b \sqrt{\tau_p}} t$$

Minimum work dragging problem, non-Markovian case

- Viscous Markovian case (black line)
- Viscoelastic non-Markovian case (red line)

Sarah A.M. Loos, University of Cambridge

\rightarrow Still jumps at beginning and end **line)** \rightarrow No constant-power "NESS regime"

sl2127@cam.ac.uk — <u>s</u>

$$f = \{\langle X \rangle, \lambda\}$$
Time-reversal symmetry

$$f(t) = f(t_{\rm f}) - f(t_{\rm f} - t)$$

$$\dot{f}(t) = -\dot{f}(t_{\rm f})$$

Sarah A.M. Loos, University of Cambridge

try — criterion for optimality

Dptimal solutions: $\langle X \rangle$ and λ are **time-reversal symmetric** $\rightarrow Why??$

sl2127@cam.ac.uk

sarahloos.de

Time-reversal symmetry — criterion for optimality

Time-reversal symmetry
$$f(t) = f(t_f) - f(t_f - t)$$
 $f = \{\langle X \rangle, \lambda\}$

Proof of Symmetry: General Generalized Langevin E (GGLE)

$$m\ddot{X} + \int_{-\infty}^{t} \Gamma(t - t')\dot{X}(t')dt' = -\kappa[X - t]$$

Sarah A.M. Loos, University of Cambridge

 $\lambda(t) + \eta(t)$

Proof using <u>linearity</u> of GGLE, <u>causality</u>, and <u>time-translation</u> invariance of response function and memory kernel Γ ...

Proof of symmetry property

<u>General Generalized Langevin Equation (GGLE)</u> $m\ddot{X} + \int_{-\infty}^{t} \Gamma(t - t')\dot{X}(t')dt' = -\kappa[X - \lambda(t)] + \eta(t)$

Counterexample I: Linear protocol

Sarah A.M. Loos, University of Cambridge

Counterexample II: Single jump protocol

Proof of symmetry property

Key Idea: rewrite mean work as functional of λ (or \dot{x}) only!

$$\begin{split} & \underset{\text{for equivalence}}{\text{In } \ddot{X} + \int_{-\infty}^{t} \Gamma(t - t') \dot{X}(t') dt' = -\kappa [X - \lambda(t)]} \\ & \left\langle W[X(t), \lambda(t)] \right\rangle = \kappa \int_{0}^{t_{\text{f}}} dt \, \dot{\lambda}(t) \left[\lambda(t) - x \right] \\ & \hat{x}(s) = \hat{\Phi}(s) s \hat{\lambda}(s), \\ & \hat{\Phi}(s) \coloneqq \frac{\kappa}{ms^{3} + \hat{\Gamma}(s)s^{2} + \kappa s} \end{split} \end{split}$$

Sarah A.M. Loos, University of Cambridge

sl2127@cam.ac.uk

sarahloos.de

Key Idea: rewrite mean work as functional of λ (or \dot{x}) only!

$$\left\langle W \right\rangle [\lambda] = rac{\kappa \lambda_{\mathrm{f}}^2}{2} + \kappa \int_0^{t_{\mathrm{f}}} \int_0^t \Phi(t - t') \dot{\lambda}(t) \dot{\lambda}$$

<u>Quadratic</u> functional of λ only:

 \rightarrow invariant under time reversal: $\lambda(t) \rightarrow - \lambda(t_{\rm f} - t)$ $\rightarrow \tilde{\lambda}(t) = -\lambda(t_{\rm f} - t) + \lambda(t_{\rm f})$ and $\lambda(t)$ give same work \rightarrow quadratic functional: can only have unique optimum

Sarah A.M. Loos, University of Cambridge

Same argument for $\dot{x} = \langle \dot{X} \rangle$!

$$\begin{split} \langle W \rangle [x] &= \int_0^{t_{\rm f}} \int_0^t \Gamma(t-t') \dot{x}(t) \dot{x}(t') dt' dt + \\ &+ \kappa [x(t_{\rm f}) - \lambda_{\rm f}]^2 / 2 + \mathcal{C}, \end{split}$$

<u>Quadratic</u> functional of $\hat{\lambda}$ only:

 \rightarrow invariant under time reversal: $\lambda(t) \rightarrow -\lambda(t_{\rm f}-t)$ $\rightarrow \tilde{\lambda}(t) = -\lambda(t_{\rm f} - t) + \lambda(t_{\rm f})$ and $\lambda(t)$ give same work \rightarrow quadratic functional: can only have unique optimum

Sarah A.M. Loos, University of Cambridge

Proof of symmetry property

$$m\ddot{X} + \int_{-\infty}^{t} \Gamma(t - t')\dot{X}(t')dt' = -\kappa[X - \lambda(t)]$$

$$\langle W \rangle [x] = \int_0^{t_{\rm f}} \int_0^t \Gamma(t - t') \dot{x}(t) \dot{x}(t') dt' dt + m[\dot{x}^2(t_{\rm f})]/2$$
$$+ \kappa [x(t_{\rm f}) - \lambda_{\rm f}]^2/2 + \mathcal{C},$$

Optimality! $\delta x(0) = \delta x(t_{\rm f}) = 0,$ $\delta \langle W \rangle \left[x(t), \delta x(t) \right] = 0$

Sarah A.M. Loos, University of Cambridge

1) "⇔" : Symmetry <u>exclusive</u> to optimal case \rightarrow Criterion to find optimal processes

Asymmetry as alternative cost functional Value at minimum a priori known!

Sarah A.M. Loos, University of Cambridge

2) Symmetry for GGLEs : <u>universal*</u> property \rightarrow also for e.g. granular or glassy media, and active baths

Outlook (I): Optimal dragging of active particles

Generalized Langevin equation: $\tau_0 \dot{X}(t) = -\left[X - \lambda(t)\right] + \xi(t) + \eta(t)$

[D Gupta, SHL Klapp, DA Sivak, PRE 108 (2), 024117 (2023)] [L. K. Davis, K. Proesmans, and É. Fodor, PRX (2024)] [Garcia-Millan*, Schuettler*, Cates, Loos, ArXiv:2407.18542 (2024)] [Schuettler, Garcia-Millan, Cates, Loos, ArXiv:2501.18613 (2025)]

Sarah A.M. Loos, University of Cambridge

White noise (viscous medium) $\langle \xi(t)\xi(t')\rangle \propto \delta(t-t')$

Coloured noise (activity) $\langle \eta(t)\eta(t')\rangle \propto e^{-|t-t'|/\tau_{\rm b}}$

Active Ornstein-Uhlenbeck particle (AOUP)/ Run-and-Tumble particle (RTP)

Optimal closed-loop (feedback) control

Measurement of system state \rightarrow Allows to extract work (on average)

X measurement allows instantaneous work extraction from potential energy

[D. Abreu and U. Seifert, EPL (2011).]

Sarah A.M. Loos, University of Cambridge

sl2127@cam.ac.uk — <u>s</u>

Optimal closed-loop (feedback) control

Allow one measurement at the beginning: Is the particle heading left or right?

Framework of information thermodynamics (Maxwell demon): Information-to-work conversion

Sarah A.M. Loos, University of Cambridge

[D. Abreu and U. Seifert, EPL (2011).]

Outlook (II): Optimal dragging through critical medium

Steady state driving (quasi static regime):

[Venturelli*, Walter*, Loos*, Roldan, Gambassi, EPL 146, 27001 (2024)]

Sarah A.M. Loos, University of Cambridge

 $\mathcal{H}[\phi, \mathbf{Y}, t] = \mathcal{H}_{\phi}[\phi] + \mathcal{H}^{\text{int}}[\phi, \mathbf{Y}] + \mathcal{U}(\mathbf{Y}, t)$

$$\begin{split} \gamma_{y} \dot{\mathbf{Y}} &= -\nabla_{\mathbf{Y}} \mathcal{H} + \mathbf{F}_{\text{ext}} + \boldsymbol{\nu} \\ \gamma_{\phi} \dot{\phi} &= -(-\nabla^{2})^{\mathfrak{a}} \frac{\delta \mathcal{H}}{\delta \phi} + \eta^{(\mathfrak{a})} \\ \mathcal{H}_{\text{int}} &= -\lambda \int d^{d} \mathbf{x} \, \phi(\mathbf{x}) V(\mathbf{x} - \mathbf{Y}) \\ \text{Demery, Dean. PRL (2010), PRE (2011).} \end{split}$$

- Optimal dragging simple problem to study thermodynamically optimal processes
- Memory effects (correlations in environment) strongly affect optimal dragging strategy
- Symmetry as universal feature of dragging problem (for linear processes)

Loos et al., Physical Review X 14, 021032 (2024) Garcia-Millan*, Schuettler*, Cates, Loos, ArXiv:2407.18542 (2024) Schuettler, Garcia-Millan, Cates, Loos, ArXiv:2501.18613 (2025)

Sarah A.M. Loos, University of Cambridge

Conclusions

