

Synthesis and Analysis of

Life-like Systems

out of Equilibrium

25th April 2025 Shuntaro Amano @Non-equilibrium thermodynamics workshop, Edinburgh

Why Out-of-Equilibrium Systems?

Functional systems inspired by out-of-equilibrium processes in biology

Biology Uses Molecular Machines

> ATP synthase

Synthesize ATP from ADP and phosphate

High efficiency (nearly 100%)

Macroscopic and Microscopic Worlds are Different

Brownian Ratchet Mechanisms

Animations by Arglin Kamplin

Brownian ratchets rectify Brownian motion to achieve directional motion

New Brownian Ratchet: Autonomous Molecular Pump

Macrocycle Take-up Study

Macrocycle Displacement Study

Stropper Removal Study

Dethreading Study

Confirmation of Multi-cycle Pumping

Simple Design Principle?

Operation Conditions: *i*-Pr₂NH, toluene, r.t., 16 h

Kinetic Asymmetry Shows Directionality, but Complicated

Seeman, *Chem. Rev.*, 1983, **83**, 83–134. Otzenberger *et al.*, *J. Org. Chem.*, 1974, **39**, 319–321.

$$\frac{[(R) - \mathbf{1}_d]}{[(S) - \mathbf{1}_d]} \approx \frac{k_{+h}^R}{k_{+h}^S} K_s^a$$

<u>Amano</u> et al., J. Am. Chem. Soc. 144, 20153–20164 (2022)

$$\frac{[(R) - \mathbf{1}_d]}{[(S) - \mathbf{1}_d]} \approx \frac{k_{+h}^R}{k_{+h}^S} K_s^a$$

Amano et al., J. Am. Chem. Soc. 144, 20153–20164 (2022)

 F_{C-H} shows directionality, and simpler

Two Design Elements for Directionality

Chemical gating Power stroke

Power strokes contribute to directionality BUT do not determine it

Power Strokes in a Biological Molecular Machine

Chemical gating Power stroke

$$F_{C-H}^{(kin)} = \frac{k_{+T}^F k_{+h}^B k_{-D}^F}{k_{+T}^B k_{+h}^F k_{-D}^B} K_S$$

$$k_{+T}^F \approx k_{+T}^B, k_{+h}^B \approx k_{+h}^F, k_{-D}^F \approx k_{-D}^B$$

$$F_{C-H}^{(kin)} \approx K_s \approx 1.25 \times 10^6$$

Power strokes are a dominant factor

Liepelt and Lipowsky, *Phys. Rev. Lett.* **98**, 258102 (2007). Schief *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* **101**, 1183–1188 (2004). Carter and Cross, *Nature* **435**, 308–312 (2005).

Connection between K_r and F_{C-H}

Stronger Connection between K_r and F_{C-H}

$$F_{r} = \frac{([F]k_{+f}^{S} + k_{-h}^{S})}{([F]k_{+f}^{R} + k_{-h}^{R})} \times \frac{([W]k_{-f}^{R} + [H_{2}O]k_{+h}^{R})}{([W]k_{-f}^{S} + [H_{2}O]k_{+h}^{S})} \times K_{s}^{d} \times K_{s}^{a}$$
$$= \frac{\gamma + 1 + F_{C-H} \times e^{\Delta\mu/RT}}{\gamma + F_{C-H} + e^{\Delta\mu/RT}} \quad (\Delta\mu = \mu_{F} + \mu_{H_{2}O} - \mu_{W})$$

$$(numerator) - (denominator)$$

= $(F_{C-H} - 1) \times (e^{\Delta \mu/RT} - 1)$

$$\Delta \mu = 0$$

$$K_r = 1$$
 X No directional motion

<u>Amano</u> et al., J. Am. Chem. Soc. 144, 20153–20164 (2022)

Stronger Connection between K_r and F_{C-H}

$$= \frac{([F]k_{+f}^{S} + k_{-h}^{S})}{([F]k_{+f}^{R} + k_{-h}^{R})} \times \frac{([W]k_{-f}^{R} + [H_{2}O]k_{+h}^{R})}{([W]k_{-f}^{S} + [H_{2}O]k_{+h}^{S})} \times K_{s}^{d} \times K_{s}^{a}$$

$$= \frac{\gamma + 1 + F_{C-H} \times e^{\Delta\mu/RT}}{\gamma + F_{C-H} + e^{\Delta\mu/RT}} \quad (\Delta\mu = \mu_{F} + \mu_{H_{2}O} - \mu_{W})$$

$$(numerator) - (denominator)$$

$$= (F_{C-H} - 1) \times (e^{\Delta\mu/RT} - 1)$$

Maxwell's Demon: Violation of the Second Law of Thermodynamics?

High entropy

Low entropy

James Clerk Maxwell 1831–1879

Entropy of the system can be decreased without performing work?

Kay et al., Angew. Chem. Int. Ed. 46, 72-191 (2007)

Resolution: Energetic Cost of Information Processing

Advent of Information Thermodynamics

> Attempts to resolve the paradox of Maxwell's demon

"Information is physical." R. Landauer, Phys. Today 44, 23-29 (1991).

Connection between entropy and quantity of information

$$S = k_B log W$$
 $I(E) = -log P(E)$

Parrondo et al., Nat. Phys. 11, 131-139 (2015).

Similarity of Maxwell's Demon and Brownian Ratchets

Can information thermodynamics be applied to analysis of Brownian ratchets?

Kay et al., Angew. Chem. Int. Ed. 46, 72–191 (2007) <u>Amano</u> et al., Nature 594, 529–534 (2021)

Energy Transduction to Mechanical Transitions Drives Directional Motion

X Difficult to find compatible reactions

X Background fuel decomposition

✓ Compatibility of multiple processes

✓ Suppress background fuel decomposition

Amano et al., Nat. Nanotechnol. 16, 1057–1067 (2021)

Amano, Hermans, J. Am. Chem. Soc. 146, 23289-23296 (2024)

Aim: Transient Self-Assembly

Observation of Transient Self-Assembly

pH 7.90

Effect of pH to Imine Ester 4 Formation

Higher pH, more imine ester 4

Observation by Optical Microscope – pH 7.00

Observation by Optical Microscope – pH 7.90

Can Assemblies of Aldehyde 1 Catalyze Fuel Decomposition?

Assemblies of 1 also catalyse fuel decomposition

Application of Ratchet Mechanism to Other Systems

Can ratchet mechanisms drive other processes?

Endergonic Synthesis: Synthesis away from Equilibrium

Al Shehimy et al., Angew. Chem. Int. Ed. 63, e202411554 (2024)

Single-Batch Fuel Addition

Active Transport: Transport against a Concentration Gradient

Active transport

Significant role in biology (e.g., energy conversion, signaling)

Key requirement: supply of energy

Azobenzene Photoisomerization Coupled to Mass Transport

Yahaya, <u>Amano</u> *et al.*, *in preparation*

Repartition Study in Biphasic Systems

Setup

Co-transport of 1 and counter anions

Additive affects distribution of azobenzene 1

1 and added anions are transported together

Active Transport of Azobenzene Derivatives

> No additive

Co-transport of Counter Anions

Addition of salts

Simple & versatile strategy for active transport of ions

Conclusion and Outlook

Autonomous molecular pump

 Simple & general approach for developing chemically driven systems

> Theories for design

Endergonic synthesis, active transport

Acknowledgements

- Prof. David Leigh
- ➢ Dr. Stephen Fielden
- Dr. Stefan Borsley, Dr. Zhanhu Sun
- Dr. Benjamin Roberts,
 Dr. Elisabeth Kreidt,
 Dr. Emanuele Penocchio,
 Prof. Massimiliano Esposito
- ➢ Prof. Thomas Hermans

- Hermans Lab
- Dr. Giulio Ragazzon
- Dr. Shaymaa Al Shehimy, Hai Dang Le
- Dr. Federico Nicoli Sani Yahaya
- Ragazzon Lab

Non-autonomous vs. Autonomous

➢ Non-autonomous motor

Stepwise operation

> Autonomous motor

Operation in fixed environments

J. V. Hernández, E. R. Kay & D. A. Leigh Science 306, 1532–1537 (2004).

M. R. Wilson, J. Solà, A. Carlone, S. M. Goldup, N. Lebrasseur, D. A. Leigh, *Nature* **534**, 235-240 (2016).

Anhydride Formation

Hydrolysis

$$\frac{[(R) - \mathbf{1}_d]}{[(S) - \mathbf{1}_d]} \approx \frac{k_{+h}^R}{k_{+h}^S} K_s^a$$

<u>¹H NMR in D₂O (pH 7.00)</u>

Control Experiment with Alcohol 9

No aldehyde, no catalysis

Kinetic Modeling with Aldehyde 10

50

Kinetic Modeling with Aldehyde 10

How Does pH Affect Imine Ester Accumulation?

 $k_7 \uparrow$, no effect on [Imine ester 12]

How Does pH Affect Imine Ester Accumulation?

 k_6 or k_{10} \uparrow , [Imine ester 12] \downarrow

How Does pH Affect Imine Ester Accumulation?

Imine formation equilibria shifts to products, [Imine ester 12] 1