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Introduction

• It is clear that in AdS/CFT the notion of a boundary
energy-momentum tensor (EMT) is crucial.

• This is usually defined in terms of holographic renormalisation
methods (see e.g. [de Haro, Solodukhin, Skenderis, 2000]).

• The goal is to do the same for asymptotically flat spacetimes
near future null infinity.

• Null infinity is a Carroll manifold [Duval, Gibbons, Horvathy, 2014].

• This requires understanding solutions with arbitrary Carroll data

at I+.

• This work builds on [Hartong, 2015] where this was done in 3D. For
similar work see [Freidel, Riello, 2024].
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Outline

• Carroll geometry near future null infinity

• Solving the Einstein equations with arbitrary Carroll geometry on
the boundary

• Holographic renormalisation and energy-momentum-news Ward
identities

• Outlook
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Carroll geometry at I+

ds2 = −2UV +EaEa , a = 1, . . . , d

• U and V are null and the Ea are spacelike.

• Treat null infinity as a Penrose boundary (defining function).

• Split: xM = (r, xµ) with r the defining function. Partially fixing

local Lorentz transformations and bulk diffeos:

grr = 0 , grµ = −Vµ , gµν = −SVµVν +Πµν

grr = S , grµ = Uµ , gµν = Πµν

Πµν and Πµν have signature (0, 1, . . . , 1).

• Penrose boundary construction fixes boundary condition:

Vµ

∣

∣

r=∞
= τµ , r−2Πµν

∣

∣

r=∞
= hµν , Uµ

∣

∣

r=∞
= vµ , r2Πµν

∣

∣

r=∞
= hµν
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• Carroll covariant Bondi–Sachs gauge:

grr = 0 , Γρ
rr = 0 , Γµ

µr = dr−1

Constant xµ curves (tangent ∂
∂r

) are null geodesics ending at I+.

• This fixes Vµ = eβτµ and hµνΠµν .

• Often τµdx
µ = du (retarded time) and hµν = celestial sphere.

• We want the boundary geometry τµ, hµν (and also the shear) to

be arbitrary so we can vary it freely in the on shell action.

• However at leading order the EOM fix

Kµν := −1

2
Lvhµν =

1

d
Khµν

This is a constraint in d ≥ 2. Not a problem though, more later.
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• Furthermore we learn that

Πµν = r2hµν + r
(

Cµν − 2τ(µaν)
)

+O(1) , S =
2

d
Kr +O(1) , β = O(r−2)

Cµν is the shear (spatial and STF) and aµ = Lvτµ.

• Residual gauge transformations: ξµ = χµ + r−1hµνλν +O(r−2)
and ξr = rΛD +O(1) (bdry diffeos, Weyl and local Carroll boosts)

δτµ = Lχτµ + ΛDτµ + λµ

δhµν = Lχhµν + 2ΛDhµν

δCµν = LχCµν +ΛDCµν + 2P ρ
〈µP

σ
ν〉 (Dρλσ + aρλσ)

Dρ is some Carroll covariant derivative.

• The boundary geometry and the shear sit inside one ‘multiplet’
related to the ‘gauging’ of the conformal Carroll algebra.
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Solving the Einstein equations

•
(n)

X is the coefficient of r−n in expansion of X. Here d = 1, 2.

• Rrr = 0 determines
(n)

β

• UµRµr = 0 and rdΠµνRµν

∣

∣

r=∞
= 0 give (n− d+ 1)

(n)

S . For

n = d− 1 the equations are identically satisfied.

• Πρ
µRρr = 0 gives (n− d+ 1)P ρ

µv
σ
(n)

Π ρσ. For n = d− 1 the equation

is not identically satisfied. Need a r−1 log r term in Πµν .

• Πρ
〈µΠ

σ
ν〉Rρσ = 0: gives Lv

(

STF part of
(n)

Π µν

)

= · · ·

• rdUµRµν

∣

∣

r=∞
= 0: PDE for

(d−1)

S and P
ρ
µv

σ
(d−1)

Π ρσ

(energy-momentum-news conservation)

• Solutions agree with [Barnich, Troesaert, 2010] and [Geiller, Zwikel, 2022].
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Holographic Renormalisation

• Variation of the bulk action:

δSEH = · · ·+
∫

r=Λ
dd+1xE Jr , Jr = ΠµνδΓr

µν+2UµδΓr
µr−Uµ∂µ

(

E−1δE
)

• IN BS gauge:
√−g = E := det (−VµVν +Πµν) = erdeβ.

• Cutoff surface r = Λ has no definite character. The
generalisation of the GHY extrinsic counterterm is

Sext = 2

∫

dd+1xE
(

δMP + V MNP

)

∇MNP

V M = −(∂r)
M and NP = ∂P r [Parattu, Chakraborty, Padmanabhan, 2016].

• This removes the radial derivatives of δS and δβ and leads to:

δ (SEH + Sext) = · · ·+
∫

r=Λ
dd+1xE

(

T µδVµ +
1

2
T µνδΠµν + dr−1E−1δ (ES)

)
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• dr−1E−1δ (ES) dominates at LO in r and leads to a variation of

an EMT tensor component at O(1). We cancel it by adding

S̃ext = −d

∫

r=Λ
dd+1xEr−1S

• SEH + Sext + S̃ext for d = 1 gives a finite Dirichlet problem. We can
add a finite intrinsic counterterm to make the EMT traceless:

Sfinite = −
∫

d2xErΠµνLUVµLUVν

• For d = 1 the on shell variation gives

δStot

∣

∣

∣

os
=

∫

d2xe

(

Tµδτµ +
1

2
Tµνδhµν

)

Tµ = Mvµ + hµν (∂νK + aνK + Lvaν)

Tµν = −2Pρh
ρ(µvν) +Mhµν

Bondi mass 2M = −
(0)

S + a2 and angular mom. Pµ = P
ρ
µv

σ
(0)

Π ρσ.
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• Recall the asymptotic gauge transformations:

δτµ = Lχτµ +ΛDτµ + λµ , δhµν = Lχhµν + 2ΛDhµν

• The Carroll boosts are anomalous. Associated Ward identities:

0 = −e−1∂µ (e [T
µτν + Tµρhρν ]) + Tµ∂ντµ +

1

2
Tµρ∂νhµρ

0 = Tµτµ + Tµνhµν

Tµhµν = Pµ
ν (∂µK + aµK + Lvaµ) 6= 0

are equivalent to what we get from the Einstein equations.

• There is a conserved current (up to an anomaly) for every Carroll
conformal Killing vector χµ = Kµ which solves 0 = δτµ = δhµν

e−1∂µ (e [T
µτνK

ν + TµρhρνK
ν ]) = λµT

µ

• The anomaly corresponds to the cM central extension of BMS3

[Barnich, Compère, 2006].
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• A magnetic Carroll Liouville theory whose energy momentum
tensor obeys the same properties as the holographic one:

S =

∫

d2xe

[

−1

2
hµν

(

∂µφ+
2

b
aµ

)(

∂νφ+
2

b
aν

)

+ χ

(

vµ∂µφ− 2

b
K

)

− µebφ
]

• On flat space this was studied in [Barnich, Gomberoff, González, 2012].

• φ is a real scalar that is inert under local Carroll boosts and

transforms as δφ = −2
b
ω under Weyl transformations.

• χ transforms under Weyl and local Carroll boosts as

δχ = −ωχ+ λeµ∂µφ+
2

b
eµ∂µλ+

2

b
λL

• The magnetic theory is Weyl invariant and transforms under local
Carroll boosts as

δS =

∫

d2xe
4

b2
λµh

µν (∂νK + aνK + Lvaν)
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δ
(

SEH + Sext + S̃ext

)

= · · ·+
∫

r=Λ
dd+1xE

(

T µδVµ +
1

2
T µνδΠµν

)

• Now we consider d = 2. In this case there is a divergence at
order r. We remove this by adding an intrinsic counterterm

Sint = −
∫

d3xEr

(

R− 1

4
ΠµνLUVµLUVν

)

• We obtain

δStot

∣

∣

∣

os
=

∫

d3xe

(

T ρδτρ +
1

2
T ρσδhρσ +

1

2
SµνδCµν

)

Here Sµν is spatial and STF.

• Geometrically: shear is part of the conformal Carroll geometry.
Physically: shear is a source [Donnay, Fiorucci, Herfray, Ruzziconi, 2022].

• Getting the shear variation is nontrivial. It means that at O(r)

Sµνδhµν = total derivative

Boundary Energy-Momentum Tensor for Asymptotically Flat Spacetimes – p. 12/15



• What about the constraint Kµν = 1
2Khµν? This can be solved

hµνdx
µdxν = M2

(

dX2 + dY 2
)

where M , X and Y are fully unrestricted scalar fields.

• Either we vary M , X, Y are we use a Lagrange multiplier. Either
way we cannot distinguish between Tµν and Tµν + tµν where

tµν = −Kχµν +
1

2
Lvχ

µν − 1

2
aρχ

ρ(µvν) − v(µhν)σ
(0)

Dρχ
ρ
σ

is an improvement transformation for some spatial STF tensor
χµν (the Lagrange multiplier).

• It is convenient to add a finite counterterm such that

Sµν =
1

2
Nµν = −1

2
hµρhνσ

(

LvCρσ +
1

2
KCρσ

)

which is the news tensor with a definite Weyl weight.
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• On shell action is diffeo invariant:

−e−1∂µ

(

e

[

Tµτν + Tµρhρν +
1

2
NµρCρν

])

+Tµ∂ντµ+
1

2
Tµρ∂νhµρ+

1

4
Nµρ∂νCµρ = 0

agrees with the Bondi mass and angular mom. loss equations.

• Schematic form of the renormalised EMT/News complex:

τµT
µ =

(1)

S + C2∂ + C∂2 + ∂3

τµhναT
µν = vµP ν

α

(0)

Πµν + C2∂ + C∂2 + ∂3 + τµhναt
µν

STF part of Tµν = STF part of
(

(0)

S Cµν +K
(0)

Πµν + C∂2 + tµν
)

• Weyl invariance but no Carroll boost invariance:

0 = τµT
µ + hµνT

µν +
1

4
CµνN

µν

Pµ
ρ T

ρ = DρN
ρµ − 1

2
aρN

ρµ + ∂3
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Outlook

• Charges and their algebra

• Anomalies in 4D?

• Covariant notions of soft and hard sectors

• Effective theory for the soft sector
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