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Given no direct experimental input, we learn from string theory:

® Holography (dual microscopic formulation) [top-down]

® Bootstrap (causality, unitarity/ QM) [bottom-up]
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1. Identity an observable

2. Impose known properties (analyticity, unitarity, crossing,
experimental data, integrability, localization,. . .)
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1. Identity an observable

2. Impose known properties (analyticity, unitarity, crossing,
experimental data, integrability, localization,. . .)

If one 1s lucky, there 1s enough tension between various properties and
something nontrivial can be learned.

® AdS (CFT bootstrap)

® M, 4 (S-matrix bootstrap)

In other cases, it could be that we are unlucky, and no fruittul bootom-up
approach 1s possible (M, dS, cosmology). Hard to be sure.



A convenient observable to study is a 2-2 scattering amplitude
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There is indeed an interesting tension between (analyticity/causality,
crossing and unitarity).

Mathematically, 1t 1s expressed, for example, in the existence of the
2SDR (twice-subtracted dispersion relations).
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extra sum rules

[Essentially the same in AdS]
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Higher derivatives = massive higher spins

What controls corrections to general relativity?
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In d = 4, the bound depends on the IR cutotf. Consider an explicit
ansatz for the 2-2 amplitude and maximize the three-point coupling
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Our explicit amplitude 1s consistent with loosing the bound.
[Haring,AZ '23]
[Chang, Parra-Martinez '25]



Minimal correction to GR

There are situations when a, = a; = 0 (maximal SUSY).
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Can be pushed further, technically challenging.



To summarize, in AdS and M, there 1s a powertul method to explore the
space ot theories. Currently, everything 1s done at the level of 2-2, going
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® challenging in tlat space finite Gy (M-theory)
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Going to d = 4, 1t 1s curious to ask the tollowing question:

What is the simplest bootstrap-friendly IR safe quantity in 4d?



The usual 2-2 scattering amplitude implements momentum
conservation, but in 4d this 1s extended to the conservation of

QBMS. [Strominger "13]

It we start with a tamiliar two-particle state, the final states are Tolish.Wald /141
. . . . [Strominger, AZ '14]
necessarily accompanied by nontrivial memoty.

A tformal construction of such (improper) states was recently given. How to
perform systematic computations (bootstrap) ot the BMS-matrix elements in
a given gravitational EFT?

[Talk Freidel]
[Prabhu,Satishchandran,Wald '22,’24]

[Bekaert,Donnay,Herfray '24]



One way to avoid this 1s to consider inclusive observables. Consider
an initial state
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on top ot a trivial memory vacuum. The norm ot the state
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Then energy correlators in such states have to be finite according to
ogeneral arguments

positivity
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Wave packets complicate kinematics significantly. We can avoid talking about
them by detecting several particles x oft the beam axis
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® the initial state has an infinite norm
® soft radiation cancels against virtual corrections Weinberg]
® collinear radiation is regular [Akhoury, Saotome, Sterman]



Wave packets complicate kinematics significantly. We can avoid talking about
them by detecting several particles x oft the beam axis

daﬁl 7ﬁ2 —>.’L‘—|—X

® the initial state has an infinite norm
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We can then further get rid of of the energies ot the final particles by
measuring energy fluxes. The simplest thing to try 1s

away f]_‘()m the beam. [LO mqnifesﬂy IR ﬁnite] [Herrmann,Kologlu,Moult "24]

[Kologlu,Parra-Martinez, wip]
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As Gys = oo we expect that
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(E(1)) ~ const

0.2 0.4 0.6 0.8 #.0

due to particle/ BH production.
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In the two-point energy correlator (&(n;)&(n,)) IR divergencies cancel in the
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The unnormalized off-beam energy correlators are IR finite, computable,
and kinematically simple in 4d. We checked explicitly at one loop, general
arguments suggest that it s true all-loop, but it 1s not yet a theorem.

They obey positivity, analyticity, dispersion relations, permutation symmetry
(crossing).
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thank youl



Let us see how the usual total cross-section problem is solved
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This problem does not arise for the normalized states. Consider the 't
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thanks to non-trivial interference this now leads to a finite result
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very similar to what happens for jets in QCD.



GN is the UV budget

The solution is to smear the amplitude

Ty(s) = /Oqo dqi(q) T(s,t = —¢°) ‘
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[Caron-Huot,Mazac,Rastelli,Simmons-Duffin '21]

In this way, we can get the following (schematic) equation for graviton scattering
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discontinuity of the amplitude
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