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COLOR MEMORY

Monica Pate, Ana-Maria Raclariu and Andrew Strominger

Abstract

A transient color flux across null infinity in classical Yang-Mills theory is considered. It is
shown that a pair of test ‘quarks’ initially in a color singlet generically acquire net color as a
result of the flux. A nonlinear formula is derived for the relative color rotation of the quarks.
For weak color flux the formula linearizes to the Fourier transform of the soft gluon theorem.

This color memory effect is the Yang-Mills analog of the gravitational memory effect.

MEASURING COLOR MEMORY IN A COLOR GLASS
CONDENSATE AT ELECTRON-ION COLLIDERS

Adam Ball', Monica Pate!, Ana-Maria Raclariu®, Andrew Strominger' and Raju

Venugopalan?

Abstract

The color memory effect is the non-abelian gauge theory analog of the gravitational
memory effect, in which the passage of color radiation induces a net relative SU(3) color

rotation of a pair of nearby quarks. It is proposed that this effect can be measured in

the Regge limit of deeply inelastic scattering at electron-ion colliders.

arXiv:1707.08016

arXiv:1805.12224




Double Copy: gluon — gravitational radiation in shockwave collisions

IR
QCD at high occupancy < perturbative QCD

Strong field semi-classical double copy BCJ double copy

Gravity at high occupancy <« perturbative gravity

Bern, Carrasco, Johannson,

Monteiro,0’Connell,White, arXlv:1410.0239 arXiv: 1004.0476
Goldberger, Ridgeway, arXiv:1611.03493



Road map of my talk

1) Why can we measure color memory?

A brief DIS primer. The BFKL equation in multi-Regge asymptotics.
Breakdown of the OPE, classical lumps, their guantum descendants.
Color memory in the Color Glass Condensate.

Precision measurements of the CGC at the Electron-lon Collider.

II) QCD-Gravity double copy in Regge asymptotics

2— N scattering, the Lipatov double copy and reggeization.
From amplitudes to shockwaves.

The Lipatov vertex and shockwave propagators.

Some consequences.



DIS and the QCD revolution
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The discovery of Bjorken scaling in DIS led to the parton model, a)

asymptotic freedom, and QCD, shattering existing paradigms...

Bjorken scaling

Bj in memorium:
https://indico.slac.stanford.edu/event/9148/timetable/
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Spacetime picture of wee partons in a hadron
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As the proton is boosted, “parton” fluctuations live longer -- released as Bremsstrahlung

Suppression in coupling compensated by large phase space for soft glue: ag Ln (i) ~1



time

Spacetime picture of a high energy hadron-hadron collision

Fast “valence” partons populate fragmentation regions at large rapidities — “leading particle” effect

Slow “wee” partons populate central rapidities (mostly gluons and sea-quark pairs)
—they create a Quark-Gluon-Plasma

QCD thermalization: Ab initio approaches and interdisciplinary connections
Jurgen Berges, Michal P. Heller, Aleksas Mazeliauskas, RV
Rev. Mod. Phys. 93, 035003 (2021)



BFKL: 2— N QCD amplitudes in Regge asymptotics

Compute multiparticle in multi-Regge kinematics of QCD:

Yo >yl Sy > >yl > uhg with k;, ~k

BFKL ladder is ordered in rapidity . Produced partons are wee in
longitudinal momentum(” " slow”) but hard in transverse momentum
—weak coupling Regge regime of QCD

RG description rapidity of evolution given by the BFKL Hamiltonian
Very rapid growth of the amplitude with energy

A(s,t) = s¥® with a(t) = ag + a' |t|  BFKL pomeron

BFKL: Balitsky-Fadin-Kuraev-Lipatov (1976-1978)



BFKL: Building blocks

Lipatov effective vertex:

p2 -k q3

C , ~ —qq, + + ( -
w(a1,q7) qy, T 42, T Plp p1-p2 Pk

Gauge covariant, satisfies kﬂ CcHt =0
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BFKL: Building blocks

Lipatov effective vertex: L
3 m
i - * 5% * = C.(q1,q2)
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q2
p2-k g m-k 4 "
Cu(g1,95) ~ —qy, + gy, + 11 ( — )—m ( - )
“( ' 2) 1 2 # P1 - P2 p1-k H P1 D2 p2 -k

Gauge covariant, satisfies kﬂ CcHt =0

Reggeized gluon:

l s lea(ti)(yi—l —Yi)
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Some features of the BFKL equation and its solution

Key to the construction of the BFKL ladder are multi-Regge asymptotics and dispersive techniques

Example: 2— 3 ampltude /38 vertex

/ / /
Building block is the 2 — 2 Born amplitude and three gluon vertex Ag‘igﬁﬁm_}gowl = g‘f‘z(ftI‘ngl
D1, Lo, o
ki e For 2— 3, pole contribution in k, can be expressed in terms of the 2 — 2 amplitude
01,6
kz C2
ad'BB'8 _ paa’cad’ BB c2 ‘ea pead’c
""""""""""" PigArsaer = A Gyt k2 FW? — - k2 k2 p1£o Tpots 77777 % kinematic factors

kiz C2
pz,ﬂmgmuez,ﬁ' The k; pole can be expressed similarly allowing one to reconstruct the full amplitude

Agﬁzﬂﬂy __reaarpbbe i (k) ky)e (0)

k2k2 140 P2€2
\ Lipatov vertex

This process is iterated to all orders to construct the BFKL ladder — the same procedure will apply in gravity...



2 = N + 2 amplitude in the Regge limit: the BFKL equation

BFKL Pomeron: compound color singlet state of two reggeized gluons

Tl 3tk —a The imaginary part of this 2 = N 4+ 2 amplitude simplifies greatly in Mellin space

ol e My(g®) = /ood( 5 ) Im A5%5" (s, 1) ( S )_E_l
E:: v\R AR (s t) R
d’k 1
with Muq®) = 2neNENE 1) [ O L )

where f|(k,q) satisfies the BFKL integral equation

21,/ / 2(,, _ 1.\2 2.  1.\2
(£ — (k) — a((q — &)%) fe(k,q) =1 — 2ach/ (2:32 k’géflk_’ Z)/)z ( , k(g k(ll _+kl~,c)2(q k) )



2 = N + 2 amplitude in the Regge limit: the BFKL equation

w (v, n)
ag N Solved as a simple eigenvalue equation as a function of Fourier

1.0 w"=4 as N¢ In(2)/m conjugate variables -conformal spin v and azimuthal variable n
~ 0.5 for ag =0.2

Performing the inverse Mellin transform, one obtains

6 w* — o0.5
o o(s)~s® =5
=1
:=2 a much faster growth than the Ln?(s) predicted by Froissart...
n=3
n=
n=5

-15
BFKL eigenvalues



2 = N + 2 amplitude in the Regge limit: the BFKL equation

w (v, n)

ag N

10 w =4 ag N In(2)/m

-15"
BFKL eigenvalues

~ 0.5 for ag =0.2

n=0
n=1
n=2
n=3
n=

n=5

This so-called LLx (leading log in x) result has been extended to
NLLx accuracy. Excellent review of state-of-the art:
Del Duca, Dixon, arXiv:2203.13026

After much sophisticated analysis, this gives

a(s)~ s%3 -inreasonable agreement with HERA data

Not the full story...
and only a preview to a richer, many-body picture



BFKL: infrared diffusion and gluon saturation

BFKL forward : = ;,\,{?uﬁ ;5&51";‘!,,,74 . For a fixed large Q2 there is an x,(Q?) such that
amplitude /i\ o 7 > £ below x, the OPE breaks down...
/ = A v . . . . . .
~ 9 / B il &ZJ Y ,/ significant nonperturbative corrections in the leading twist
T( /ﬁ’) K ;‘J FermTiiec= coefficient and anomalous dimension functions due to
BFkL. diffusion of gluons to small values of transverse momentum.
,‘P . A. H. Mueller, PLB 396 (1997) 251
’ “# NLLx BFKL does not cure infrared diffusion
/\Cﬁ LD B

Gluon saturation cures infrared diffusion



BFKL: infrared diffusion and gluon saturation

BFKL forward : o 7 ;,L,fg'ﬁ,ﬁ ;Aﬁ{%‘!wf’r n For a fixed large @ there is an x,(Q?) such that
amplitude /i\ -‘ 2 .y below x, the OPE breaks down...
| / = A vy . . . . . .
~ 9 / B il &ZJ Iy 71 significant nonperturbative corrections in the leading twist
7/( &) /( ;‘J FermTiiec= coefficient and anomalous dimension functions due to
BFkL. diffusion of gluons to small values of transverse momentum.
: . A. H. Mueller, PLB 396 (1997) 251
“# NLLx BFKL does not cure infrared diffusion
/\0”? LD B

Gluon saturation cures infrared diffusion

G A(z, Q%) B 1
2(N2 -1)7R%3Q%  as(Qs)

+ other higher twist cuts of O(1) when gluon occupancy N =

Classicalization when ag(Qs )< 1 for saturation scale Qs> Agcp



Boost

log (1/x) or log (s)

Maximal packing of gluons: Gluon saturation

/0? KT.\ /ﬁ\ Color screened wee partons
. R U live on surface of sphere of radius
. A A AW

2
' log (Q?) 1/k* ~1/k,~ 1/Qs (%, b)
Resolution

Emergent dynamics of semi-classical lumps that unitarize the cross-section
described by the saturation scale Qg(x,b).

Due to asymptotic freedom, the many-body strong field dynamics of these lumps
can be computed in weak coupling



Color Glass Condensate: classical EFT for Regge asymptotics

Born-Oppenheimer separation between

)
. . = o7
fast and slow light-front modes (Galilean EFT)
Fast hadron fast partons  (p)
Large x (P*) modes: static, strong (~1/g)
color sources p@ - S= small-x gluons (A[p])
< =S >/\/\/\/\
P

Small x (k* << P*) modes: fully dynamical

Dipol
gauge fields Af PO

‘Y*

fA+ [dA]5(A+)eiSA+ [A,p]— [ j-A }

Z[]] — /[dp]WA+ [p] { fA+ [dA](S(A—'_)eiSAJF [A,p]

W p+[p] : nonpert. gauge inv. weight functional defined at initial x, = A*/ P*
Sa+[A, pl: Yang-Mills action + gauge-inv. coupling of sources to fields (Wilson line)

CGC review: Gelis,lancu,Jalilian-Marian,RV:arXiv 1002.0333



Color Glass Condensate: classical EFT for Regge asymptotics

Born-Oppenheimer separation between ;
fast and slow light-front modes (Galilean EFT)

—
Fast hadron ;&A % fast partons  (p)
Large x (P*) modes: static, strong (~1/g)
color sources p@
- S= small-x gluons (A[p])
< > Dava%a%

Small x (k* << P*) modes: fully dynamical
gauge fields A Dipole

| Y *

Explicit construction for large nuclei (= large number of coherent sources of color charge at small x)

, )& d“ e )4 )b He
W+lp] = / [dp] exp (— / d*z 1 [/2/{?‘ — i _"A/ i D For A>>1, pf ~Q§ o AY3 >> Njycp
: ‘ weak coupling EFT for large parton densities!
Pomeron ‘
Odderon

configurations ) _
configurations McLerran,RV (1993)



General all-order formalism: Cutkosky’s rules in strong fields

e o o o connected vacuum graphs in 1¢3

2Im » V=, |
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Propagators on Schwinger-Keldysh contour +
5 Well-known example: Schwinger pair production
< in strong field QED

Simple understanding of "AGK cutting rules” of Reggeon Field Theory: - -
combinatorics of cut and uncut sub-graphs contributing to a given multiplicity =~ AGK: Abramovsy,Gribov,Kancheli

- Very general consequence of unitarity in strong fields
- Independent of language of Pomerons and Reggeons

Gelis,RV: hep-ph/0601209, hep-ph/0608117



MEMORY
EFreECT

Color memory in the CGC

Fouyier Vauum
TRAYSFORM TRANXTION

Static Yang-Mills shockwave wave A; =0 A; = ____1 Uo; Ut
solution in LC gauge Lg - P ey
Strominger,arXiv:1703.05448
x~ =0

Transverse dynamics can be mapped on

= -1, y—1_ -1
to celestial sphere at null infinity: (ru,z,z) = (Ar,A™ u,A7 z,A7°2)

1
Kick Qg suffered by dipole crossing shock Map: x* 2r, x” = N (utrzz),

is the color memory effect x! +ix?=2rz
ForA = oo

+ —_
Pate, Raclariu, Strominger, PRL (2017) r->o —» X" >0,x -0
Ball,Pate,Raclariu,Strominger,RV, Ann. Phys. 407 (2019) 15

The Wilson lines U = P exp ( |f dy' ——— (X ty ) ) are vertex operators on the celestial sphere

Satisfy a 2-D conformal Kac-Moody algebra V.P. Nair (1988)
He,Mitra,Strominger (2015)



Boosting memory in CGC EFT: RG hierarchy of many-body correlators

a 8 fields sources
= Olpl)y ——— =
ay O j/ 80 X$W5W7( ) Al AY AD P
1 l 529NL,(; OLO,
Rapidity — “time” “diffusion coefficient”: retarded Green function . X
in strong field background T increases

Rapidity v - oo

-60 L]
-40
-20
H H H o 14 vi=al o
Langevin diffusion of “wee” partons 20
40
in functional space of color fields co

-60 -40 -20 (@] 20 40 60

B-JIMWLK hierarchy of n-point Wilson line correlators <=l
Correlator of Light-like Wilson lines

56600000+
OAN NAOQ

Dumitru,Jalilian-Marian,Lappi,Schenke,RV
PLB706 (2011)219

Balitsky, hep-ph/9509348
Jalilian-Marian,Kovner, Leonidov, Weigert, hep-ph/9706377
lancu, Leonidov, McLerran, hep-ph/0011241



How memory evolves in inclusive DIS

C g4l ' ' " Initial Condition —— |
ke, Running Coupling ——
"5 12t Fixed Coupling ======- 1
X § 1.0
y :>; 08 | QS(X)
S o6} >
[}
O 04
Q- 3
Evolution of dipole correlators of Wilson A 1 e Squared
lines in shockwave background 02 07 1o 1 1 1o transverse mom.
% OéSN (1 —y1)? 1
Tr(V, V! Tr(V, V) — —Te(V, V) Te(V.V,)y
8Y< ( )> J_—ZJ_ (ZL_yJ_)2< (33 y) Nc (33 z) (Z y)>
Y =Ln(1/x)

Closed form expression for A >>1, Nc— oo: non-linear Balitsky-Kovchegov (BK) egn.

BFKL equation for dipoles is the “low density” linearized form of this equation! i £ H { “ ‘ ‘

“Fan multi-Pomeron” diagrams



Precision measurements of memory at the EIC

2.5 T T T T T T T
LO
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Multiparticle production in gravity: amplitudes to shockwave collisions

AL

A) In gravity, the dominant contribution
at large impact parameters is Eikonal scattering

B) Gravitational Lipatov vertex is dominant
radiative correction in Regge kinematics — smoothl 1 1

) ) g8 ... ) y Lu(d1,92) = icu(QDCIz)Cu(QD‘Iz) - iNu(QNCIz)Nu(CIl,CIQ)
matches to Weinberg in the ultrarelativistic soft limit ‘ '

Lipatov, PLB 116B (1982); JETP 82 (1982) Double copy of Double copy of QED
QCD Lipatov vertex  yyremsstrahlung vertex

C) Reggeization contributions suppressed except for b — R

2
w5 -t S —t
M = ( ims log (A2) + tlog (—t) log (A2 + + +

Eikonal phase \
graviton Regge trajectory

Resummation a la BFKL — but additional ladder and

. . Bartels,Lipatov,Sabio-Vera,arXiv:1208.3423
non-ladder In?(s) contributions g

Melville,Naculich,Schnitzer,White, arXiv:1306.6019



Lipatov vertex from shockwave collisions

We will now sketch how the Lipatov vertex is recovered in shockwave collisions

Aichelburg-Sex| shockwave metric

ds? = 2dztdx™ — 6;;dztdx? + f(z™,x) (d:z:_)z
2

with f(z7,z) = 2n2pH5(x_)pIé(f) = %qu(x_)/dzy InAlxz — y|pg(y)

Soln of Einstein’s eqns sourced by the EM tensor Ty, = 0,—0y—pd(z™)pu(x) = my y = fixed fory — o0

K*=8T G



Shockwave collisions: single shock background

Linearizing around the metric  guy = guv + K h;w
fixing light cone gauge h,, =0, find

hij(zt,z7,2) =V(z,z)hij(zt, 27 =25, x)

1 [°
with the gravitational Wilson line V(z™,x) = exp (—/ dz=g__(z7,x) 6+)

2 Ug=mpy Y = fixed fory - oo

K%=81G

Exactly analogous to the QCD case
withA_ - g__andT% - 4,

Melville,Nachulich,Schnitzer,White,
arXiv:1306.6019



Shockwave collisions: “dilute-dense” approximation

t
- A zt

Now consider the interaction of the “dilute” source p; with the dense py shockwave:
T,, =08, 0, pyd (x7) py(xX) +6,,0, .16 (x+) pr(x)

Solve for metric in region IV — forward lightcone

PeX)

1

8w =28uth, g&__ =2xkuyé(x"™) uy=my Y = fixed fory - oo
K*=8m G

We decompose the perturbation hy,, into a term linear in p; and one bi-linear in p; py (dilute-dilute limit)
Linearized Einstein’s equations in light-cone gauge (h, ,=0) take the form
- 27 7 2 1 2

+

77,1‘3' = hz'j — %513}1 where h = 6ijhij



Shockwave collisions in general relativity: geodesics
Unlike QCD case, sub-eikonal contributions T,;, T;; are required for consistency of equations of motion

These are not uniquely fixed by energy-momentum conservation, the dynamics of the sources is needed
to fix this. In the point particle approximation,

TH (z) = \;‘_ig A\ XHXY 6@ (z — X(\)

Solution of the corresponding null geodesic equations Xr 4 I“,ij”X" =0, g,,pX”Xp =0

Oipr (b)

in shockwave background givenby X— =), X =0t - k2ugp X" O(X") A

4,2 » 2
Xt = —f‘ézuH@(X‘)pH(b) + 5 ”HX—@(X—) (M)
Oy 2 O,

These geodesic solutions allow us to reconstruct the required components of the stress-energy tensor



Shockwave collisions in general relativity: Lipatov vertex

Solving egns of motion, taking the Fourier transform, and putting the graviton momenta on-shell, one obtains

Gravitational (2)(k) 2"?3NHIJL/d2Q2 Ty ( FH PL
radiational field k? +iek (27)? ’ ai 95

Gravitational Lipatov vertex

1 1
likewise for other components, recovering T',,,,(q,95) = §Cﬂ(q1,q2)C’V(q1, q,) — §Nu(q1,q2)Nl,(q1,q2)
3 2
Compare to gauge theory | a;(k) = g. — / d q220’( 2)pH TpL
radiation field k? +iek (2m) i g
. rab Is there a
- lfa chTcC,u(ql’ q2) ) Sr/w(ql’ q2)
CK relation?

H.Johansson, A.Sabio Vera, E.Serna Campillo, and M.Vaszquez-Mozo,
JHEP10,215(2013),arXiv:1307.3106 [hep-th]



Lipatov vertex from classical color-kinematic duality

Consider pert. solutions of Yang-Mills radiation field

‘j\ oi\bb% P
) ' ; . 3 B b v B Ty %,
in collision of colored charges c; (Wong equations) ol |:>
(a) (b)
B

Taking ultrarelativistic limit

| k Mi k.
(keeping sub-eikonal terms, beyond leading QCD Lipatov vertex term) . %w etz
and making replacements ; :
Co = Py

Goldberger, Ridgway, arXiv:1611.03493
. 1
Zfalazas y [iv2vs (qla q2, q3) = e

5 (177 (a1 = g3)™ +71" (@2 — )™ + 7" (93 — 2)™)
g — K
recovers our previous result for the radiation field in terms of the gravitational Lipatov vertex
Raj,RV, arXiv:2312.03507

We can also show that the soft limit of the gravitational Lipatov vertex
gives the ultrarelativistic limit of the Weinberg soft graviton emission vertex

This is consistent with the observation that the soft limit of the classical double copy recovers the
Weinberg emission vertex

PV. Athira,A. Manu, arXiv:1907.10021



RG description in gravity a la CGC EFT in QCD?

In QCD, the CGC describes a semi-classical lump of size 1/Qgthat perturbatively unitarizes cross-sections.
It corresponds to the non-trivial IR fixed point of an RG flow where the UV fixed point is BFKL

Can one obtain a similar RG picture in gravity in the shockwave framework? Reggeization must
of single ladders must break down at at low impact parameter (t ~ s). L

Instead, multiple scattering in the “dilute-dense” framework plays a central role
In a systematic treatment in this framework, we see that geodesic
focusing (a la Raychaudhuri) of wee partons must play a role P

2
00

Another key element in the RG description are shockwave propagators =—>—+37, EE ' o EE
- Again in GR, it may be important to keep non-eikonal contributions "
Raj, RV, arXiv:2406.10483 GR Wilson line

Qualitative ideas of a CGC- Black Hole correspondence as overoccupied gluon/graviton states

have been discussed by myself and Gia Dvali
Dvali, RV, arXiv:11989






Geodesic congruence: the geometry of quantum information

The Raychaudhuri equation
- key in Hawking-Penrose singularity theorems :

Volume change of geodesic convergence
0 = —szﬂji —l— KZZ'
1 . - .
= —592 — O'ijO'zJ + wijw” + KZ,,;'

1 1 1%

Bulk scalar Shear tensor Rotation tensor Includes Ricci curvature + stochastic graviton noise

H.-T. Cho and B.-L Hu, arxiv:2301.06325
M. Parikh, F. Wilczek, G. Zaharaide, PRL (2021)

Remarkably, the Raychaudhuri equation can be rephrased as the Bishop-Gromov upper bound on the “complexity

volume in D-1 dimensions® of gate complexity
—realizing Nielsen’s geometric picture in quantum information theory? A. R. Brown, arXiv:2112.05724

Pure speculation: Can this complexity picture provide further insight into the RG fixed point of BH formation?



2 = N + 2 amplitudes in trans-Planckian gravitation scattering:
from wee partons to Black Holes

HIGH-ENERGY SCATTERING IN QCD AND IN QUANTUM GRAVITY
AND TWO-DIMENSIONAL FIELD THEORIES

L.N. LIPATOV*

We construct effective actions describing high-energy processes in QCD and in quantum
gravity with intermediate particles (gluons and gravitons) having the multi-Regge kinematics.
The S-matrix for these effective scalar field models contains the results of the leading logarith-
mic approximation and is unitary. It can be expressed in terms of correlation functions for two

field theories acting in longitudinal and transverse two-dimensional subspaces.

Effective action and all-order gravitational eikonal
at planckian energies

AMATI,CIAFALONIVENEZIANO NPB403 (1993)707

Building on previous work by us and by Lipatov, we present an effective action approach to
the resummation of all semiclassical (i.e. O(#~')) contributions to the scattering phase arising in
high-energy gravitational collisions. By using an infrared-safe expression for Lipatov’s effective
action, we derive an eikonal form of the scattering matrix and check that the superstring
amplitude result is reproduced at first order in the expansion parameter R?/b?, where R, b are
the gravitational radius and the impact parameter, respectively. If rescattering of produced
gravitons is neglected, the longitudinal coordinate dependence can be explicitly factored out and
exhibits the characteristics of a shock-wave metric while the transverse dynamics is described by
a reduced two-dimensional effective action. Singular behaviours in the latter, signalling black

hole formation, can be looked for.

=

The World as a Hologram

LEONARD SUSSKIND

Wee partons, by contrast, are not subject to Lorentz contraction. This implies that in
the Feynman Bjorken model, the halo of wee partons eternally ”floats” above the horizon at
a distance of order 10~"3¢m as it transversley spreads. The remaining valence partons carry

the various currents which contract onto the horizon as in the Einstein Lorentz case.

By contrast, both the holographic theory and string theory require all partons to be
wee. No Lorentz contraction takes place and the entire structure of the string floats on
the stretched horizon. I have explained in previous articles how this behavior prevents the
accumulation of arbitrarily large quantities of information near the horizon of a black hole.
Thus we are led full circle back to Bekenstein’s principle that black holes bound the entropy

of a region of space to be proportional to its area.
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