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Outline

- Review: old puzzles about cold black holes
- Low temperature quantum corrections to Kerr thermodynamics
- Questions about the calculation
- Rotating BTZ: T 3/2 from the full determinant, lessons for Kerr

First half based on [2310.00848] with Sheta, Strominger, Toldo

Second half based on [2409.14928] with Albert Law, Chiara Toldo

See also: interesting work [2409.16248] by [Kolanowski, Marolf, Rakic, Rangamani, Turiaci]
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Introduction and Motivation

There is a very simple list of black holes in 4d general relativity: (M,J,Q)

Today we think of this simplicity as due to complexity. Black holes are
simple like statistical ensembles are simple, not simple like hydrogen atoms

This analogy between the behavior of black holes and the laws of
thermodynamics turned out to be extremely powerful, but subtle.

[Preskill, Schwarz, Shapere, Trivedi, Wilczek ’91] noted that the statistical description
should break down when the specific heat becomes order one.

S(T, J) = S0 + 8π2J3/2T +O(T 2) , C = T
∂S

∂T
∼ 8π2J3/2T

The specific heat controls the size of thermodynamic fluctuations in
non-equilibrium processes.

So at temperatures T ∼ J−3/2 the emission of a single Hawking quantum
can lead to relatively large fluctuations in temperature.
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Above this temperature we trust the thermodynamic description of the
black hole. Hawking evaporation can be treated as a small effect.

Below this temperature we need a better approximation to the black hole
partition function to know what happens. At least two possibilities.

If the spectrum of the black hole had an energy gap Egap ∼ J−3/2 then we
wouldn’t expect to be able to apply thermodynamics below that
temperature anyway. You need a dense band of states to coarse grain.

Related: the tree level approximation predicts a huge ground state
degeneracy for Kerr, which is rare in the absence of symmetry.

Do quantum corrections lift the ground states?
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If the eS0 ground states get lifted and fill out a dense energy band above
the vacuum, then the thermodynamic description would extend to lower
temperatures.

The black hole is large, curvatures are small, but the leading-order
semiclassical analysis receives important quantum corrections either way.

We know that BH thermodynamics involves course graining. We don’t
know the exact density of states, we only have a smooth approximation to
it. Including more corrections will change the density of states.

Coarse approximation With subleading corrections
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The AdS/CFT dictionary relates the partition function ZQM (β) = Tre−βH

in quantum mechanics to the gravitational path integral in the Kerr throat

ZQM (β) = ZGrav(β)

ZGrav(β) means we integrate over metrics and matter fields in the throat,
subject to some boundary conditions fixed by the ensemble.

So we are trying to do the functional integral

ZGrav(β) =

ˆ
[Dg]e−S[g] , with g → ḡ(β) at the boundary

and the only way we know how to treat this integral is via saddle point.

Saddle point means solution to the Einstein equation subject to the
boundary condition, and the solution is NHEK (near-horizon extreme Kerr)

ds2 = J(1+cos2 θ)(− sinh2 ηdt2+dη2+dθ2)+
4J sin2 θ

1 + cos2 θ
(dϕ+[cosh η−1]dt)2
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At zero temperature this computation reproduces the extremal Kerr entropy

ZGrav ∼ e2πJ ∼ eS0

The first correction comes from integrating over fluctuations about the
saddle. Write g = ḡNHEK + h and expand the action to quadratic order

Z ∼ e2πJ
ˆ

[Dh]e−
´
h(x)Dh(x)

where

hαβD
αβ,µν
NHEKhµν = − 1

16π
hαβ

(
1

4
ḡαµḡβν□̄− 1

8
ḡαβ ḡµν□̄+

1

2
R̄αµβν

)
hµν

D is a 2nd-order linear differential operator, an infinite dimensional matrix.
ˆ

[Dh]e−
´
h(x)Dh(x) ∼ 1

[detD]1/2

There is some universal information in this 1-loop correction [Sen, many others].
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But there can be a subtlety if D has zero modes
ˆ ∞

−∞
e−0x2

dx = ∞

And it turns out that D actually has infinitely many zero modes

h(n) ∼ (1 + cos2 θ)einτ
(sinh η)n−2

(1 + cosh η)n
(
dη2 + 2i sinh ηdηdτ − sinh2 ηdτ2

)
Perfectly explicit and normalizable. So the path integral is IR divergent.

Treated quantum mechanically, this mode dramatically alters the low
temperature thermo. Recent history starting with [Maldacena, Stanford, Yang]

In the framework of log corrections and eigenvalue perturbation theory:
Reissner-Nordstrom: [Larsen; Iliesiu, Murthy, Turiaci; Banerjee, Saha]. Kerr: [Kapec, Sheta,

Strominger, Toldo; Rakic, Rangamani, Turiaci]. More general cases: [Maulik, Pando Zayas, Ray, Zhang]
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The idea is still to take the scaling limit to isolate the NHEK region, but
we keep the subleading term and treat temperature as a small parameter

ḡ = gNHEK + Tδg

The metric perturbation induces a perturbation in the kinetic operator

D → D + δD

Using perturbation theory to compute the change in eigenvalues

δλn =

ˆ
d4x

√
ḡhnδDhn =

3nT

64
√
J

The eigenvalues are lifted because

h(n) = Lξ(n)gNHEK h(n) ̸= Lζgnot-NHEK

So the finite temperature lifts the eigenvalues and regulates the partition
function. Computing the determinant gives

δ logZ ∼ log
∞∏
n=2

1

nT
∼ 3

2
log T
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So Z[T ] is becoming small at low temperatures, not exponentially large:
the ground state degeneracy has been lifted.

Z[T ] ∼ T 3/2eS0 as T → 0

Instead the states fill out a dense energy band above the vacuum

We expect the eigenvalue spacing in this region of the spectrum to be
roughly e−S0 ∼ e−1/GN which is non-perturbatively small.
Thermodynamics still applies.
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Recap

For many questions, the leading approximation to the black hole density of
states, as computed using the Euclidean black hole saddle, is sufficient.

ZAF (β, µ,Ω) =

ˆ
[Dg] e−IEH−IGH−Ict︸ ︷︷ ︸

Asymptotically flat metrics with
(β,µ,Ω) boundary conditions at i0

∼ 1√
det−∇2

exp [−Ion-shell]

Because the exponential term is so large, the tree level calculation typically
dominates the thermodynamics.

We view the determinant as a small correction which in most circumstances
does not change the qualitative behavior of the thermodynamic system.

Recent observation: the gas of gravitons at low temperatures in a black
hole background becomes important even when curvatures are small.
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[Preskill, Schwarz, Shapere, Trivedi, Wilczek ’91] identified this problem, but did not resolve
it because they could not calculate the one loop correction to ZAF (β).

In the meantime we learned that for low temperatures and certain black
brane observables, we can replace ZAF (β) with a throat path integral

Zthroat(β, µ,Ω) =

ˆ
[Dg] e−IEH−IGH−Ict︸ ︷︷ ︸

Asymptotically AdSd+1 metrics with
(β,µ,Ω) boundary conditions at ∂AdS

That is basically the AdS/CFT duality, but it is subtle for AdS2. Sen found

Zthroat(β = ∞, Q, J) =

ˆ
[Dg] e−IEH−IGH−Ict︸ ︷︷ ︸

Asymptotically AdS2 metrics with
(β,Q,J) boundary conditions at ∂AdS

∼ ∞× eS0+c logS0

We interpret the infinity as an infrared divergence due to an unsupressed
Goldstone mode. We regulate it by turning on an irrelevant deformation.
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Questions and concerns

So the quantity that we actually compute is a regularized partition function
in the deformed “not-NHEK” throat.

Zreg(β,Q, J) =

ˆ
[Dg] e−IEH−IGH−Ict︸ ︷︷ ︸

Asymptotically “not-NHEK” metrics

∼ T 3/2eS0+c logS0

But this calculation involves several subtle assumptions.

The whole effect comes from an integral over diffeomorphisms with
non-compact support, which depends delicately on boundary conditions.

There can be ambiguities in connecting the far region to the throat.

Modes which are (non)normalizable in the throat might not complete to
(non)normalizable modes in the full asymptotically flat geometry.

Example: the source and response terms for the gauge field flip.
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Climbing out of the throat

Could the large diffeomorphisms in AdS2/NHEK extend to diffeomorphisms
with compact support in the full Kerr geometry?

Or can we show that they complete to physical non-zero modes in Kerr
which simply reduce to diffeomorphisms in the throat region?

Given these apparent subtleties, one would like to reproduce the T 3/2

behavior using the full asymptotically flat geometry and verify that the
contribution of the zero modes to the throat calculation is physical.

Seems hard: we cannot even perform the full not-NHEK path integral, only
the piece responsible for the T 3/2 behavior.

The calculation in near-extremal Kerr is more complicated.
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The DHS formula

How are we going to get a discrete factor like
∏ 1

nT without the throat?

Clue: even when the spectrum of −∇2 is continuous, the spectrum of
resonances is often discrete. Resonances replace eigenfunctions.

There is an interesting formula due to [Denef, Hartnoll, Sachdev ’09] which expresses
the Euclidean determinant in terms of the Lorentzian quasinormal modes

1√
det(−∇2)

=
∏
k,l∈Z

∏
zl

(
ω|k|,l + izl

)−1/2

Here the zl are the quasinormal modes of the field whose determinant we
are calculating. The ωk,l are the Matsubara frequencies

ωk,l =
2πk

β
− iΩl

These frequencies are required for periodicity on the Euclidean section.
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The derivations of this formula are indirect. They assume certain analytic
properties of the determinant (which may not hold for Kerr).

Every time it has been used to recompute a determinant it always agreed,
modulo some important subtleties for spinning fields crucial for the T 3/2.

We derived this formula for the BTZ black hole without assumptions using
techniques from spectral theory (Krein-Friedel-Lloyd spectral density)

So the DHS formula has a chance of producing a discrete product that we
encounter in the throat.

But it does not obviously simplify the problem since we cannot analytically
compute the full quasinormal mode spectrum for black holes in D > 3.

However, there is a particular branch of quasinormal modes whose
frequencies can be computed analytically and which are closely related to
the existence of the throat in the near-extremal Kerr geometry.
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These “lightly-damped” modes have real parts that accumulate at the
superradiant bound and small imaginary parts spaced evenly in units of TH

ω = mΩH − 2πiTH(n+ 1/2)

The imaginary parts are small precisely because waves with ω = mΩH

penetrate and spend a long time in the throat region.

This is the spectral signature of the conformal symmetry of NHEK.

Cartoon: Manipulate the DHS formula to separate out the contribution of
the throat region, discarding the rest of the terms that don’t really have
anything to do with extremality

Z(β,Ω) =

 ∏
throat piece

 ∏
All other QNM

 ∼ T 3/2

 ∏
All other QNM

 ???

The second incalculable term will correspond to a nonuniversal contribution
which does not have a singular limit as T → 0 since it is not really sensitive
to the geometry near the throat.
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I will discuss this calculation for near-extremal BTZ. In this case, we know:

- the quasinormal mode spectrum exactly [Datta, David ’11]

- the 1-loop Euclidean determinant [Maloney, Witten ’07; Giombi, Maloney, Yin ’08]

- the relevant limit of the corresponding CFT2 character which
reproduces the T 3/2 behavior [Ghosh, Maxfield, Turiaci ’19]

The DHS formula has already been applied in this case [Datta, David ’11; Castro,

Keeler, Szepietowski ’17] although the low temperature limit was not investigated.

We want to take the low temperature limit of the determinant in
quasinormal variables to see what aspects of the spectrum are responsible
for the scaling. Are they also there in Kerr?

It turns out to be crucial that certain QNMs for spinning fields do not
continue to regular Euclidean solutions with low Matsubara frequencies
[Datta, David ’11; Castro, Keeler, Szepietowski ’17; Grewal, Law, Parmentier ’22].

Their exclusion from the DHS product formula plays the same role as the
exact SL(2,R) symmetry in the extremal throat. Should be true in Kerr.
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The full BTZ determinant

[Maloney, Witten ’07; Giombi, Maloney, Yin ’08] calculated the graviton 1-loop determinant
in the full BTZ geometry.

The calculation makes use of the fact that the Euclidean BTZ geometry is
the modular transform of the thermal AdS3 geometry: τ → −1/τ .

The thermal AdS determinant is simply the identity character in CFT2

Zgraviton
TAdS3

(τ, τ̄) = χ1(τ)χ1(τ̄) , χ1(τ) =
(1− q)q

1−c
24

η(τ)

This was argued indirectly in [Maloney, Witten ’07], verified in [Giombi, Maloney, Yin ’08]

using heat kernel techniques and the method of images (thermal AdS and
BTZ are Z quotients of H3).

[Ghosh, Maxfield, Turiaci ’19] took the low-T limit of the modular transform of this
character and got a T 3/2.
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In terms of the left and right temperatures of BTZ
2

T
=

1

TL
+

1

TR
, Ω =

TR − TL

TR + TL

the limit is
TL → 0 , TR → ∞ .

If you only want to see the T 3/2, there is a faster derivation. Ignoring the
tree-level piece

ZBTZ ∼
∞∏
n=2

1

1− qn

∞∏
n=2

1

1− q̄n
q = e−(2π)2TL , q̄ = e−(2π)2TR

That looks like the determinant we calculated in the throat. To see that
expand q ∼ 1− (2π)2TL

ZBTZ ∼
∞∏
n=2

1

nTL

∞∏
n=2

1

1− q̄n
∼ T 3/2 ×

∏
other

[· · · ]

We want to understand how to account for this structure using QNMs.
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Graviton determinant from QNM

The graviton determinant in a locally AdS3 geometry can be expressed as
the ratio of two determinants

Zgrav =
det
(
−∇2

(1) + 2
)1/2

det
(
−∇2

(2) − 2
)1/2

The determinant on the bottom is for a field with s = 2,∆ = 2 while the
one on top is s = 1,∆ = 3.

First, the naive application of the DHS formula. The (s,∆) QNM spectrum

ω∆,s,L,∓
nl = l−2πiTL (2n+∆∓ s) ω∆,s,R,∓

nl = −l−2πiTR (2n+∆± s)

A spin-s field has two independent degrees of freedom, so there are 4
branches instead of two for the scalar.
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We are going to apply DHS to the numerator and the denominator.

ω∆,s,L,∓
nl = l−2πiTL (2n+∆∓ s) ω∆,s,R,∓

nl = −l−2πiTR (2n+∆± s)

There are huge cancellations because the QNM of the two fields are related

ω2,2,L,+
nl = ω3,1,L,+

nl , ω2,2,R,−
nl = ω3,1,R,−

nl , ∀n = 0, 1, · · · , l ∈ Z

and

ω2,2,L,−
n+1,l = ω3,1,L,−

n,l , ω2,2,R,+
n+1,l = ω3,1,R,+

n,l , ∀n = 0, 1, · · · , l ∈ Z .

The two branches that contribute are actually totally undamped modes

ω2,2,L,−
n=0,l = ℓ , ω2,2,R,+

n=0,l = −ℓ .
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Excluded modes

Plugging into DHS, we get a formula that is not quite right

logZnaive =

∞∑
p=1

1

p

(
1 +

∞∑
nL=1

qnLp
L +

∞∑
nR=1

qnRp
R

)

We don’t want the constant term, and the sums should start at n = 2.

What happened? The DHS formula assumed that the Euclidean
continuation of a QNM wavefunction with Matsubara frequency is a regular
Euclidean eigenvector with zero eigenvalue.

This is always true for scalar fields. It is not always true for spinning fields.
The (L,−) and (R,+) modes with n < s− |k| are not normalizable [Datta,

David ’11; Castro, Keeler, Szepietowski ’17; Grewal, Law, Parmentier ’22]

So we have to exclude them from the DHS product, they cannot contribute
to the determinant.
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Following the usual steps we find we have to subtract the contribution

logZsing. =

∞∑
p=1

1

p

(
1 + qpL + qpR

)

The naive determinant was

logZnaive =

∞∑
p=1

1

p

(
1 +

∞∑
nL=1

qnLp
L +

∞∑
nR=1

qnRp
R

)

So we lose the constant term, and the sums start at n = 2. That gives the
expected determinant (modular transform of the CFT character).

Lessons so far:
- Only a tiny subset of the graviton QNM are needed to calculate the

determinant due to cancellations with ghosts (probably true for Kerr)
- The only graviton QNM that contribute are totally undamped ω = ±ℓ

- The exclusion of certain modes for spinning fields is crucial for T 3/2
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Which QNM contribute the T 3/2?

We had four branches of QNM for the graviton

ω∆,s,L,∓
nl = l−2πiTL (2n+∆∓ s) ω∆,s,R,∓

nl = −l−2πiTR (2n+∆± s)

Almost none of them contribute to the determinant for any temperature.

ω2,2,L,−
n=0,l = ℓ , ω2,2,R,+

n=0,l = −ℓ .

The ones that do have no imaginary part. You can check that it is actually
the “right branch” that is responsible for the T 3/2.

logZL =
1

2

∑
p

1

p

1 + qpR
1− qpR

logZR =
1

2

∑
p

1

p

1 + qpL
1− qpL

Since we know which modes account for the scaling, we can look for a
shortcut in the product representation.
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The naive product form of DHS using the undamped right moving modes is

(Zright)
2 =

∏
k,l∈Z

1

2π|k|T − ilΩH − il
=
∏
k,l∈Z

1

2π|k| 2TLTR
TL+TR

− 2ilTR
TL+TR

We are actually supposed to exclude k = 0,±1 from this product so

Zright =
∏
k>1

∏
l∈Z

1

2πk 2TLTR
TL+TR

− 2ilTR
TL+TR

Infinite constants of the form
∏

l∈Z
1
A where A is independent of l, can be

absorbed into field redefinitions/local counterterms. So we have

Zright =
∏
k>1

∏
l∈Z

1

2πkTL − il

The low-T limit of this product exhibits T 3/2 scaling. To see this explicitly
we separate off the l = 0 term so that the product becomes

Zright =

[∏
k>1

1

2πkTL

][∏
k>1

∏
l>0

1

l2 + (2πkTL)2

]
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Wrapping up

We derived the low temperature behavior of the black hole partition
function using a throat calculation

ZBH ∼ T 3/2eS0

The result resolved some old questions about cold black holes, but the
source of the effect was subtle.

In particular, the spectrum of fluctuations in the throat is very different
from the spectrum of fluctuations in the full black hole geometry.

We derived the T 3/2 behavior from the full near-extremal BTZ geometry
using the DHS formula, focusing on the aspects of the QNM spectrum
responsible for the scaling.

Along the way we derived the spectral density for the BTZ black hole,
which allowed for an explicit derivation of the DHS formula without
assumptions.
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