

Sense and Sensitivity

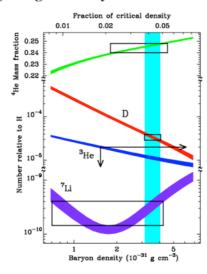
A Dark Matter Christmas Special Xin Ran Liu

On behalf of EdiDM

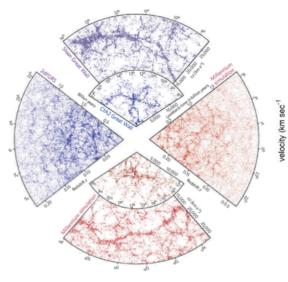
EdiDM An Introduction

Ellen Sirks (Mphys Student)

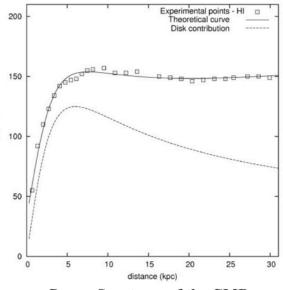
Louis Headley (Mphys Student)


Athoy Nilima (2nd Year PhD)

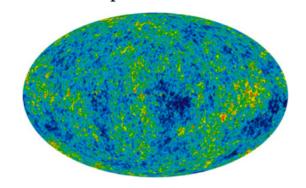
UoE Group Christmas Meeting

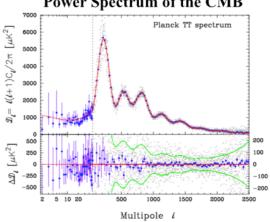


Why Dark Matter?


Big Bang Nucleosynthesis

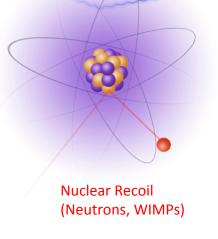
Large scale structure \rightarrow CDM


Galaxy Rotation Curves


Gravitation lensing

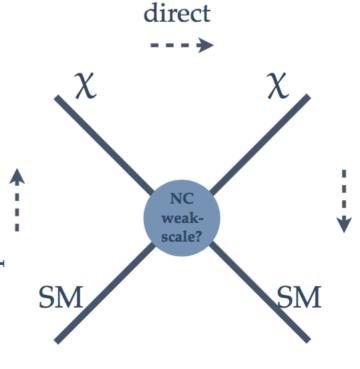
CMB + BAO: precision tests of Λ CDM

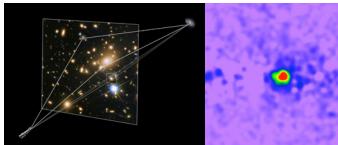
Power Spectrum of the CMB


15/12/17 **UoE Group Christmas Meeting**

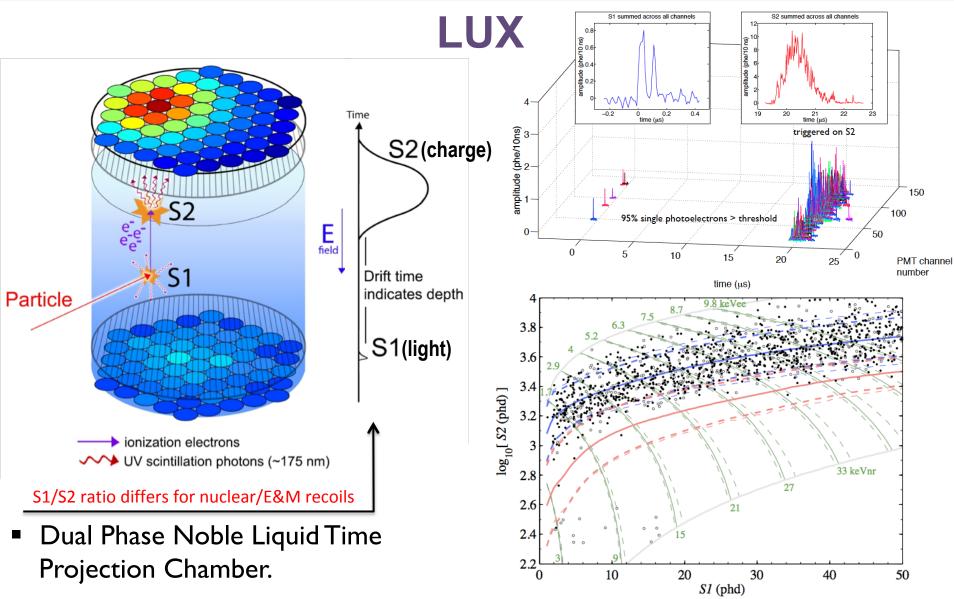
Dark Matter Interaction

Electron Recoil (Gammas)


Scattering with ordinary matter (LUX and others).


(LHC, early cosmos)

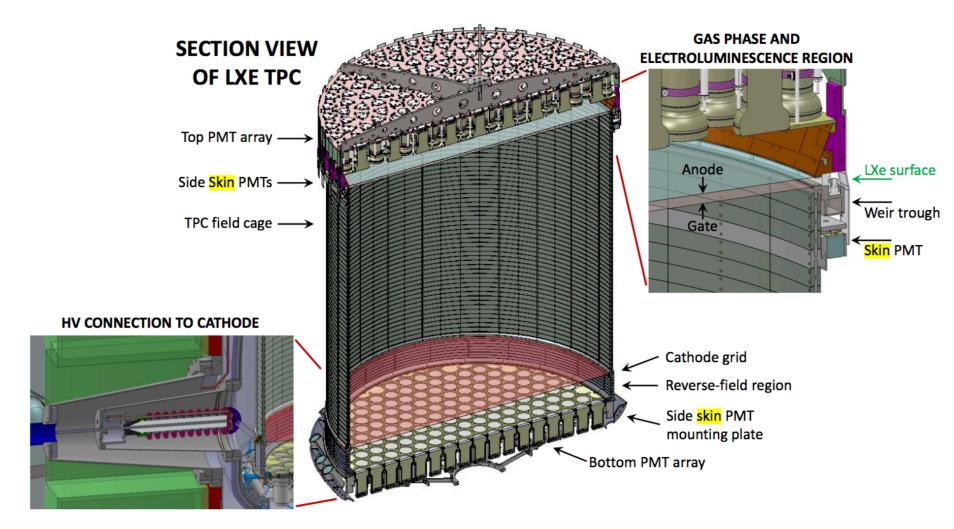
SUSY predictions



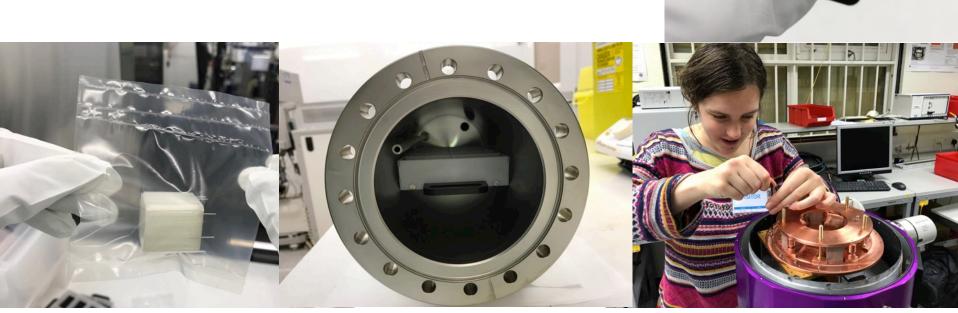
NASA (What the universe may have done/be doing)

LUX to LUX ZEPLIN (LZ)

- Improved radio-purity hence reduced backgrounds.
- ➤ Outer detector consisting of 17.5 tonnes of Gadolinium loaded scintillator.
- ➤ Instrumented "Skin" region optically separated from the TPC.


LZ

Total mass – 10 T WIMP Active Mass – 7 T WIMP Fiducial Mass – 5.6 T


LZ Detector

Commissioning of 1 Inch PMTs

- > Assembling an experimental setup for:
 - ❖ Pressure test of PMTs to withstand 5 bars
 - ❖ Cryostat test of PMTs to − 100 C.
- ➤ Development of data acquisition system and analysis software to process the resulting data.

Axions and ALPs Search

- Axion searches in LUX 2013 data completed and published.
- ➤ World-leading limits on the axionelectron coupling obtained.
- EdiDM is leading analysis of the full LUX data set.

PRL 118, 261301 (2017)

PHYSICAL REVIEW LETTERS

week ending

First Searches for Axions and Axionlike Particles with the LUX Experiment

D. S. Akerib, ^{1,2,3} S. Alsum, ⁴ C. Aquino, ⁵ H. M. Araújo, ⁶ X. Bai, ⁷ A. J. Bailey, ⁶ J. Balajthy, ⁸ P. Beltrame, ⁵ E. P. Bernard, ^{9,10} A. Bernstein, ¹¹ T. P. Biesiadzinski, ^{1,2,3} E. M. Boulton, ^{9,10} P. Brás, ¹² D. Byram, ^{13,14} S. B. Cahn, ¹⁰ M. C. Carmona-Benitez, ¹⁵ C. Chan, ¹⁶ A. A. Chiller, ¹³ C. Chiller, ¹³ A. Currie, ⁶ J. E. Cutter, ¹⁷ T. J. R. Davison, ⁵ A. Dobi, ¹⁸ J. E. Y. Dobson, ¹⁹ E. Druszkiewicz, ²⁰ B. N. Edwards, ¹⁰ C. H. Faham, ¹⁸ S. R. Fallon, ²¹ S. Fiorucci, ^{16,18} R. J. Gaitskell, ¹⁶ V. M. Gehman, ¹⁸ C. Ghag, ¹⁹ K. R. Gibson, ¹ M. G. D. Gilchriese, ¹⁸ C. R. Hall, ⁸ M. Hanhardt, ^{7,14} S. J. Haselschwardt, ²² S. A. Hertel, ²³ D. P. Hogan, ⁹ M. Horn, ^{14,9,10} D. Q. Huang, ¹⁶ C. M. Ignarra, ^{2,3} R. G. Jacobsen, ⁹ W. Ji, ^{1,2,3} K. Kamdin, ⁹ K. Kazkaz, ¹¹ D. Khaitan, ²⁰ R. Knoche, ⁸ N. A. Larsen, ¹⁰ C. Lee, ^{1,2,3} B. G. Lenardo, ^{17,11} K. T. Lesko, ¹⁸ A. Lindote, ¹² M. I. Lopes, ¹² A. Manalaysay, ¹⁷ R. L. Mannino, ²⁴ M. F. Marzioni, ^{5*} D. N. McKinsey, ^{9,18,10} D.-M. Mei, ¹³ J. Mock, ²¹ M. Moongweluwan, ²⁰ J. A. Morad, ¹⁷ A. St. J. Murphy, ⁵ C. Nehrkorn, ²² H. N. Nelson, ²² F. Neves, ¹² K. O'Sullivan, ^{9,18,10} K. C. Oliver-Mallory, ⁹ K. J. Palladino, ^{4,2,3} E. K. Pease, ^{9,10} L. Reichhart, ¹⁹ C. Rhyne, ¹⁶ S. Shaw, ¹⁹ T. A. Shutt, ^{1,2,3} C. Silva, ¹² M. Solmaz, ²² V. N. Solovov, ¹² P. Sorensen, ¹⁸ S. Stephenson, ¹⁷ T. J. Sumner, ⁶ M. Szydagis, ²¹ D. J. Taylor, ¹⁴ W. C. Taylor, ¹⁶ B. P. Tennyson, ¹⁰ P. A. Terman, ²⁴ D. R. Tiedt, ⁷ W. H. To, ^{1,2,3} M. Tripathi, ¹⁷ L. Tvrznikova, ^{9,10} S. Uvarov, ¹⁷ V. Velan, ⁹ J. R. Verbus, ¹⁶ R. C. Webb, ²⁴ J. T. White, ²⁴ T. J. Whitis, ^{1,2,3} M. S. Witherell, ¹⁸ F. L. H. Wolfs, ²⁰ J. Xu, ¹¹ K. Yazdani, ⁶ S. K. Young, ²¹ and C. Zhang ¹³

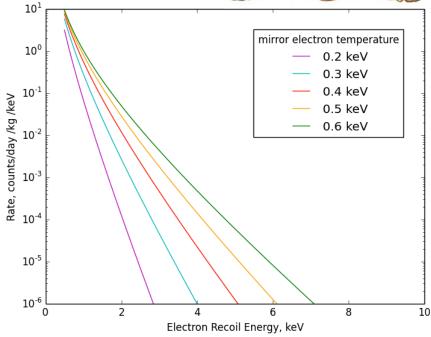
(LUX Collaboration)

2nuDEC Search

- New ER band search undertaken:2nuDEC of Xe-124.
- Search for a mono energetic line at 63.6 keV in the LUX ER spectrum.
- Ongoing finalisation of the analysis on LUX 2013 data.
- Publication in preparation.
- EdiDM is also contributing to the analysis on the full LUX data set.

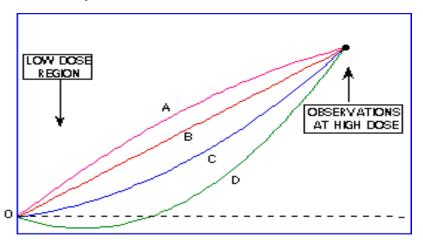
LZ-wise:

- Axion searches projections completed.
- 2nuDEC projections on to-do-list.



Mirror Mirror on the Wall...

- Mirror Dark Matter:
 - DM in hidden sector isomorphic to SM contains mirror partner of all SM particles.
 - Gauge symmetry only allows interaction via kinetic mixing term, governed by ε.
 - ❖ Mirror electrons scatter off atomic electrons in Xe giving ~keV ER signal in LUX.
- Analysis:
 - ❖ Construct signal model.
 - Simulate detector observables.
 - Compare signal + background to data.
- ➤ Goal:
 - Constrain ε.

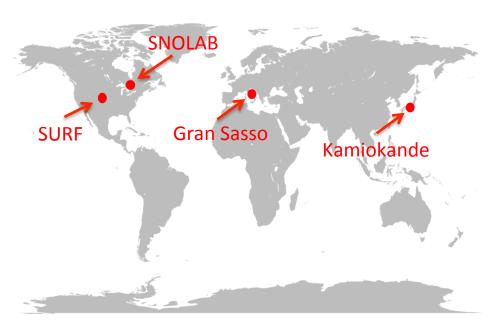


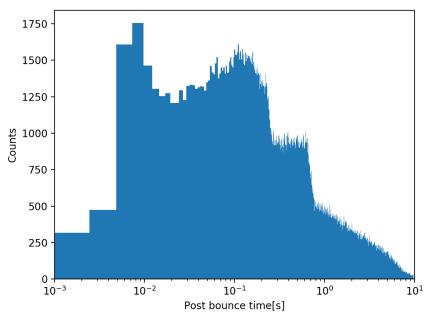

Mirror DM energy spectrum for $\varepsilon = 10^{-10}$

Low Background Studies for SELLR (Subsurface Experiment for Life in Low-Radiation)

- Experimental set-up in the old ZEPLIN-III castle within the Boulby mine.
- ➤ Did not make direct measurement of background radiation contribution.
- ➤ Geant4 simulation of gamma doses received by the samples.

➤ Significant dose contribution to the background sample.


Working on Electron-Recoil Background Models for LUX and LZ.


NCREASED CANCER RISK

Machine Learning for Locating Supernovae

> Produce simulated data.

Simulated probability density function of neutrino events from a supernova

- > Looking at Neutrino events from supernovae in four particle detectors.
- > Training regressions to predict the angular coordinates of supernovae events

