

An experiment to measure BR($K_L \rightarrow \pi^0 v \bar{v}$) at the CERN SPS

First Forum on Rare Kaon Decays University of Edinburgh, 22 February 2018

Matthew Moulson – INFN Frascati For the KLEVER project

$K \rightarrow \pi v \bar{v}$ in the Standard Model

FCNC processes dominated by Z-penguin and box amplitudes:

Extremely rare decays with rates very precisely predicted in SM:

- Hard GIM mechanism + pattern of CKM suppression $(V_{ts}^* V_{td})$
- No long-distance contributions from amplitudes with intermediate photons
- Hadronic matrix element obtained from $BR(K_{e3})$ via isospin rotation

	SM predicted rates Buras et al, JHEP 1511*	Experimental status
$K^+ \rightarrow \pi^+ \nu \overline{\nu}$	BR = (8.4 ± 1.0) × 10 ⁻¹¹	BR = (17.3 $^{+11.5}_{-10.5}$) × 10 ⁻¹¹ Stopped <i>K</i> ⁺ , 7 events observed BNL 787/949, PRD79 (2009)
$K_L \rightarrow \pi^0 v \overline{v}$	BR = (3.4 ± 0.6) × 10 ⁻¹¹	BR < 2600 × 10⁻¹¹ 90%CL KEK 391a, PRD81 (2010)

* Tree-level determinations of CKM matrix elements

$K \rightarrow \pi v \bar{v}$ and the unitarity triangle

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (NA62)

3

Dominant uncertainties for SM BRs are from CKM matrix elements

$$BR(K^{+} \to \pi^{+} v \bar{v}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2.8} \cdot \left[\frac{\gamma}{73.2^{\circ}}\right]^{0.74}$$
Buras et al.,

$$JHEP \ 1511$$

$$BR(K_{L} \to \pi^{0} v \bar{v}) = (3.36 \pm 0.05) \times 10^{-11} \cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}}\right]^{2} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2} \cdot \left[\frac{\sin \gamma}{\sin 73.2^{\circ}}\right]^{2}$$

Intrinsic theory uncertainties ~ few percent

Measuring both K^+ and K_L BRs can determine the unitarity triangle independently from *B* inputs

1.5

excluded area has CL >

 $\overline{\eta}$

$K \rightarrow \pi v \overline{v}$ and new physics

New physics affects BRs differently for K^+ and K_L channels Measurements of both can discriminate among NP scenarios

• Models with CKM-like flavor structure

-Models with MFV

- Models with new flavorviolating interactions in which either LH or RH couplings dominate
 - -*Z*/*Z*′ models with pure LH/RH couplings
 - -Littlest Higgs with *T* parity
- Models without above constraints

-Randall-Sundrum

The NA62 experiment at the SPS

NA62

NA62 status and timeline

- **2014-2015** Pilot/commissioning runs
 - **2016** Commissioning + 1st physics run SM sensitivity reached: BR ~ $O(10^{-10})$
 - **2017** Physics run Will improve on current knowledge of BR($K^+ \rightarrow \pi^+ \nu \nu$)
 - **2018** 31 weeks of data taking, starting 9 April

2019-2020 LS2 (Long Shutdown 2)

- Assuming running is as smooth as in 2017, by the end of 2018 NA62 will reach a sensitivity of 20-30 SM $K^+ \rightarrow \pi^+ vv$ events
- Results from full 2016 data set will be presented in spring 2018
- Processing of 2017 data in progress

Fixed target runs at the SPS

2021 (Run 3): • Continue data taking for $K^+ \rightarrow \pi^+ v v$ O(100) SM events – measure BR to 10%

• Searches for hidden particles in beam-dump mode Dark photons, ALPs, heavy neutrinos, scalars...

2026 (Run 4): Turn focus to measurement of BR($K_L \rightarrow \pi^0 vv$) $\rightarrow K_LEVER$

$K_L \rightarrow \pi^0 v \bar{v}$: Experimental issues

Essential signature: 2γ with unbalanced p_{\perp} + nothing else!

All other K_L decays have $\ge 2 \text{ extra } \gamma \text{s or } \ge 2 \text{ tracks to veto}$ Exception: $K_L \rightarrow \gamma \gamma$, but not a big problem since $p_\perp = 0$

K_L momentum generally is not known $M(\gamma\gamma) = m(\pi^0)$ is the only sharp kinematic constraint

Generally used to reconstruct vertex position

Main backgrounds:

veto $\gamma_1 d$ $R_1 \gamma_2$ R_2 R_2 R_2

$$m_{\pi^0}^2 = 2E_1 E_2 \left(1 - \cos\theta\right)$$

$$R_1 \approx R_2 \equiv R = \frac{d\sqrt{E_1 E_2}}{m_{\pi^0}}$$

Mode	BR	Methods to suppress/reject
$K_L ightarrow \pi^0 \pi^0$	8.64 × 10 ⁻⁴	γ vetoes, π^0 vertex, p_{\perp}
$K_L \rightarrow \pi^0 \pi^0 \pi^0$	19.52%	γ vetoes, π^0 vertex, p_\perp
$K_L \rightarrow \pi e \nu(\gamma)$	40.55%	Charged particle vetoes, π ID, γ vetoes
$\Lambda \to \pi^0 n$		Beamline length, p_{\perp}
$n + gas \rightarrow X\pi^0$		High vacuum decay region

Primary beam: 30 GeV p100 kW = 1.2 × 10¹⁴ p/6 s

Neutral beam (16°) $\langle p(K_L) \rangle = 2.1 \text{ GeV}$ 50% of K_L have 0.7-2.4 GeV 8 µsr "pencil" beam

Preliminary results, all 2015 data:
 SES = 1.2 × 10⁻⁹

Expected bkg = 0.9 ± 0.2 events Signal box not yet unblinded Background still under study

- Expect to reach SM sensitivity by 2021
- Strong intention to upgrade to O(100) event sensitivity over long term, but no official Step 2 proposal yet

Interesting features:

- High-energy experiment: Complementary approach to KOTO
- Photons from K_L decays boosted forward
 - Makes photon vetoing easier veto coverage only out to 100 mrad
- Roughly same vacuum tank layout and fiducial volume as NA62
- Possible to re-use LKr calorimeter, NA62 experimental infrastructure?

An experiment to measure $K_L \rightarrow \pi^0 v \bar{v}$

Main detector/veto systems:

- **UV/AFC** Upstream veto/active final collimator
- LAV1-26 Large-angle vetoes (26 stations)
 - LKr NA48 liquid krypton calorimeter
- **IRC/SAC** Small-angle vetoes
 - **CPV** Charged particle veto

Required intensity for $K_L \rightarrow \pi^0 v \bar{v}$

Assumptions:

- BR($K_L \to \pi^0 v \bar{v}$) = 3.4 × 10⁻¹¹
- Acceptance for decays occurring in $FV \sim 10\%$

Beam parameters:

- 400 GeV p on 400 mm Be target
- Production at **2.4 mrad** to optimize $(K_L \text{ in FV})/n$

Probability for decay inside FV ~2%

 $3 \times 10^{13} K_L$ decay in FV for 100 signal evts

 $2.8 \times 10^{-5} K_L$ in beam/pot

Feasibility of intensity upgrade

13

$2 \times 10^{13} p/16.8 s = 6 \times increase in intensity relative to NA62$

Tight neutral beam collimation

Longer K_L lifetime $(\tau_L/\tau_+ \sim 5)$

Max. intensity from SPS to North Area (TT20): 4 × 10¹³ ppp Must be divided among users: T2 + T4 + T6

2×10^{13} ppp not currently available on any North Area target

Target area and transfer lines will require upgrades

- Minimization of consequences of beam loss
- Additional shielding against continuous small losses
- Study issues of equipment survival, e.g., TAX motors
- Ventilation, zone segmentation, etc.

Detailed solutions and meaningful cost estimates are under study by the CERN Accelerator & Technology Sector

We are collaborating through the Physics Beyond Colliders Conventional Beam Working Group to better define available intensity & related issues

Neutral beamline layout (2.4 mrad)

Neutral beam simulation

Detector layout for $K_L \rightarrow \pi^0 v \bar{v}$

Vacuum tank layout and FV similar to NA62

90-m distance from FV to LKr significantly helps background rejection

- Most $K_L \rightarrow \pi^0 \pi^0$ decays with lost photons occur just upstream of the LKr
- " π^0 s" from mispaired γ s are mainly reconstructed downstream of FV

Suitability of LKr calorimeter

17

Study and confirm LKr performance with NA62 data

- Photon detection efficiency
- Two-cluster separation

Explore possibilities to improve time resolution with faster readout

In parallel with efforts by NA62

• Signal π^0 candidates all have $E_{\gamma\gamma} > 20 \text{ GeV}$

 $\sigma_t = 2.5 \text{ ns}/\sqrt{E} \text{ (GeV)} \rightarrow 500 \text{ ps or better}$

- Needs improvement SAC may have ~100 MHz accidental rate
- Simulating readout upgrades to estimate effect on time resolution: Shorter shaping time, faster FADCs

Evaluate long-term reliability of LKr (2018 \rightarrow 2030):

- Identify support systems needing replacement or upgrade
- Effect of dead cells, prospects for repair

Shashlyk-based alternatives to LKr

Fine-sampling shashlyk based on PANDA forward EM calorimeter produced at Protvino

0.275 mm Pb + 1.5 mm scintillator

 $\sigma_E / \sqrt{E} \sim 3\% / \sqrt{E} \text{ (GeV)}$ $\sigma_t \sim 72 \text{ ps} / \sqrt{E} \text{ (GeV)}$ $\sigma_x \sim 13 \text{ mm} / \sqrt{E} \text{ (GeV)}$

PANDA, KOPIO prototypes

New for KLEVER: Longitudinal shower information from spy tiles

- PID information: identification of μ , π , *n* interactions
- Shower depth information: improved time resolution for EM showers

Thicker spy tiles (5-20 mm) with independent WLS fiber readout

Simulation studies in progress (e.g., to choose spy tile thickness)

Vetoes for upstream *K*_L decays

- 25 m of vacuum upstream of final collimator No obstruction for γs from decays with 80 m < z < 105 m
- Upstream veto (UV):

Outer ring: Shashlyk calorimeter, lead/scintillator in 1:5 ratio 10 cm < r < 1 m \rightarrow 1/3 of total rate

Active final collimator (AFC):

Inner ring: LYSO collar counter, 80 cm deep, shaped crystals 4.2 cm < r < 10 cm $\rightarrow 2/3$ of total rate

Large-angle photon vetoes

26 new large-angle photon veto stations (LAV)

- 5 sizes, sensitive radius 0.9 to 1.6 m, at intervals of 4 to 6 m
- Hermetic coverage out to 100 mrad for E_{ν} down to ~100 MeV
- Baseline technology: Lead/scintillator tile with WLS readout Based on design of CKM VVS Assumed efficiency based on E949 and CKM VVS experience

Small-angle photon vetoes

Small-angle photon veto systems (IRC, SAC)

- Reject high-energy γ s from $K_L \rightarrow \pi^0 \pi^0$ escaping through beam hole
- Must be insensitive as possible to 3 GHz of beam neutrons

Beam comp.	Rate (MHz)	Req. 1 – ε
γ, <i>E</i> > 5 GeV	230	10 ⁻²
γ, E > 30 GeV	20	10-4
n	3000	-

Baseline solution:

• Tungsten/silicon-pad sampling calorimeter with crystal metal absorber

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at CERN – M. Moulson – RKF 2018 – Edinburgh, 22 Feb 2018

Efficient y conversion with crystals

Coherent effects in crystals enhance pair-conversion probability

Use coherent effects to obtain a converter with large effective λ_{int}/X_0 :

- **1. Beam photon converter in dump collimator** Effective at converting beam γ s while relatively transparent to K_L
- 2. Absorber material for small-angle calorimeter (SAC) Must be insensitive as possible to \sim GHz of beam neutrons while efficiently vetoing high-energy γ s from K_L decays

Beam test of $\gamma \rightarrow e^+e^-$ in crystals

AXIAL group is collaborating with KLEVER on test beam measurement of pair-production enhancement in crystals

Tagged photon test beam setup:

- 3. Measure pair conversion vs. E_{γ} , θ_{inc} for 5 < E_{γ} < 150 GeV
- 4. Obtain information to assist MC development for beam photon converter and SAC

- Nearly all detectors and DAQ system available for use from AXIAL
- 1 week of beam H2 beam time in August 2018

Charged particle rejection

Most dangerous mode: K_{e3}

- BR = 40%
- Easy to mistake $e \leftrightarrow \gamma$ in LKr
- Acceptance $\pi^0 v v / K_{e3} = 30$
- → Need 10⁻⁹ suppression!

Charged particle veto (CPV)

• Scintillating tiles, just upstream of LKr

Calorimetric ID for μ and π

- Shower profile in LKr
- Re-use NA62 hadronic calorimeters MUV1/2 (not shown), downstream of LKr

$K_L \rightarrow \pi^0 \pi^0$ rejection

 $K_L \rightarrow \pi^0 \pi^0$ simulated with fast MC (5 yr equivalent statistics)

- Accept only events with 2 γ s in LKr and no hits in AFC, LAV, IRC/SAC
- Distinguish between even/odd pairs and events with fused clusters
- 1. Require $z_{rec}(m_{\gamma\gamma} = m_{\pi 0})$ in fiducial volume (105 m < z < 155 m)

2. Require $r_{\rm min}$ > 35 cm on LKr and $p_{\perp}(\pi^0)$ > 0.12 GeV

22 $\pi^0 \pi^0$ evts/year About 50% with 1 γ with 100 < θ < 400 mrad, E < 50 MeV

$K_L \rightarrow \pi^0 v \bar{v}$ acceptance

Cut stage	Cut eff.	Cuml. eff.
$K_L \rightarrow \pi^0 v \bar{v}$ evts with 2γ on LKr	2.0%	2.0%
$z_{ m rec}(m_{\gamma\gamma}=m_{\pi0})$ in FV	31%	0.62%
$r_{\rm min}$ > 35 cm on LKr	42%	0.26%
$p_{\perp}(\pi^0) > 0.12 \text{ GeV}$	78%	0.20%

Alternatively:

- 2.2% K_L decay in FV
- 27% $\pi^0 v \bar{v}$ with 2 γ on LKr

With:

- 10¹⁹ pot/year
- 2.8 × 10⁻⁵ K_L /pot

• BR =
$$3.4 \times 10^{-11}$$

• $\varepsilon_{\text{total}} = 0.20\%$

19.4 $\pi^0 v \bar{v}$ evts/year

excluding transmission losses from γ converter

$K_L \rightarrow \pi^0 v \bar{v}$ sensitivity summary

27

Channel	Simulated statistics	Events found	Expected in 5 yrs*
$K_L \rightarrow \pi^0 v \overline{v}$	100k yr	1.94M	97
$K_L \rightarrow \pi^0 \pi^0$	5 yr	111	111
$K_L \rightarrow \pi^0 \pi^0 \pi^0$ All bkg evts from cluster fusion Upstream decays not yet included	1 yr	3	15
$K_L \rightarrow \gamma \gamma$ p_\perp cut very effective	3 yr	0	0
$K_L \rightarrow$ charged	though	nt to be redu	cible

*Must subtract 35% for K_L losses in dump γ converter

~ 60 SM $K_L \rightarrow \pi^0 v \bar{v}$ in 5 years with $S/B \sim 1$

Background study incomplete!

 π^0 from interactions of halo neutrons on residual gas, detector materials Radiative K_L decays, K_S /hyperon decays

Background from $\Lambda \rightarrow n\pi^0$

 Λ and *K* produced in similar numbers: O(10¹⁵) Λ in beam in 5 years Small but significant fraction of Λ decay in fiducial volume

 $c\tau_{\Lambda}$ = 7.89 cm, but Λ is forward produced: hard momentum spectrum

 $\Lambda \rightarrow n\pi^0$ (BR = 35.8%) can mimic signal decay

 p_{\perp} cut partially effective: $p^{*}(\Lambda \rightarrow n\pi^{0}) = 105 \text{ MeV}$

Neutral beam at 8 mrad

Implications of changing production angle: $\theta = 2.4 \rightarrow 8 \text{ mrad}$

- 3× decrease in K_L production, mainly for high-energy K_L
- $K_L \rightarrow \pi^0 v v$ acceptance and *S*/*B* ratio $\pi^0 v v / \pi^0 \pi^0$ not significantly affected

Neutral beam at 8 mrad

Implications of changing production angle and moving FV downstream:

- $3 \times$ decrease in K_L production No net change in acceptance for K_{I}
- 15× decrease in Λ production • 1000× decrease in Λ acceptance
- 2× decrease in S/B ratio from $K_L \rightarrow \pi^0 \pi^0$

Advantages to moving to larger angle:

7x decrease in neutron flux ٠ Much less demanding rates on SAC Possible to use thinner absorber in beam?

Next steps:

Finish optimization studies

Better quantify Λ rejection from p_{\perp} cut

New 8.0 mrad beamline design with increased solid angle • to compensate for decreased K_L production

gie			
<i>θ</i> :	2.4 mrad	\rightarrow	8 mrad
<i>z</i> FV min:	105 m	\rightarrow	130 m
z FV max:	155 m	\rightarrow	170 m

Neutral beamline layout (8 mrad)

Increase solid angle to compensate for decreased K_L production $\Delta \theta = 0.3 \rightarrow 0.4$ mrad gives 1.8× increase in beam flux

Additional ideas to pursue

Add a tracking system for charged particles?

Advantages

- Expand physics scope of experiment: $K_L \rightarrow \pi^0 \ell^+ \ell^-, K_L \rightarrow \ell^+ \ell^- \ell^+ \ell^-$, etc.
- Facilitate calibration and efficiency measurements

Issues

- Potential complications for $K_L \rightarrow \pi^0 v v$
 - Simulate impact of material budget on photon veto efficiency
 - Evaluate impact of magnet on photon veto coverage

Add a preshower detector in front of LKr?

Advantages

- Redundancy for rejection for $K_L \rightarrow \pi^0 \pi^0$
 - 20-30% reduction in background overall
 - Most background is from even pairs
- Partial event reconstruction for calibration channels
- Sensitivity for exotics searches $K_L \rightarrow \pi^0 X, X \rightarrow \gamma \gamma$ with displaced vertex

Issues

- Require at least 1 conversion for signal events → cost in signal?
 - 0.5X₀ converter → 50% of pairs have at least 1 conversion
- Same complications as for adding tracking
 - As close as possible to main calorimeter, like CPV

Preshower background rejection

Preshower vertex z_{pre} vs. LKr vertex z_{rec}

Even pairs (2 γ from same π^0)

 $z_{\rm rec}$ reconstructed by imposing $M(\gamma\gamma) = m_{\pi 0}$

- $K_L \rightarrow \pi^0 \pi^0$, 1 year equivalent
- No cuts on FV, p_{\perp} , r_{\min}

Odd pairs (2 γ s from different π^0)

Status and timeline

Project timeline – target dates:

2017-2018	 Project consolidation and proposal Beam test of crystal pair enhancement Consolidate design
2019-2021	Detector R&D
2021-2025	Detector constructionPossible K12 beam test if compatible with NA62
2024-2026	Installation during LS3
2026-	Data taking beginning Run 4

- Most groups participating in NA62 have expressed interest in KLEVER
 We are actively seeking new collaborators!
- KLEVER is represented in the CERN Physics Beyond Colliders study
- An Expression of Interest to the CERN SPSC is in preparation and will also be submitted as input to the European Strategy for Particle Physics

Summary and outlook

35

Flavor will play an important role in identifying new physics, even if new physics is found at the LHC

- $K \rightarrow \pi v \bar{v}$ is a uniquely sensitive indirect probe for high mass scales
- Need precision measurements of both K^+ and K_L decays

Preliminary design studies indicate that an experiment to measure BR($K_L \rightarrow \pi^0 v \bar{v}$) can be performed at the SPS in Run 4 (2026-2029)

- Many issues still to be addressed!
- Expected sensitivity: ~ 60 SM events with S/B ~ 1
- Comparable in precision to KOTO Step 2, with complementary technique (high vs. low energy) and different systematics

$K_L \rightarrow \pi^0 v \bar{v}$ is a difficult measurement

• 2 efforts are justified to ensure precision measurement of the BR!

An Expression of Interest to the CERN SPSC is in preparation

- Many aspects of the experiment still need to be better defined
- The time to get involved in KLEVER is now!

Matthew Moulson – Frascati For the KLEVER project

$K \rightarrow \pi v \overline{v}$ and new physics

General agreement of flavor observables with SM \rightarrow invocation of MFV

- Long before recent flavor results from LHC
- But NP may simply occur at a higher mass scale
 - Null results from direct searches at LHC so far

Indirect probes to explore high mass scales become very interesting!

$K \rightarrow \pi v \bar{v}$ is uniquely sensitive to high mass scales

Tree-level flavor changing *Z*' LH+RH couplings

- Some fine-tuning around constraint from ε_K
- $K \rightarrow \pi v \bar{v}$ sensitive to mass scales up to 2000 TeV
 - Up to tens of TeV even if LH couplings only
- Order of magnitude higher than for *B* decays

$K \rightarrow \pi v \bar{v}$ and large-scale SUSY

Possible to choose *Zsd* couplings such that gluino *Z* penguin simultaneously enhances ε'/ε and BR($K_L \rightarrow \pi^0 vv$)

BR($K_L \rightarrow \pi^0 v v$) up to 1 × 10¹⁰ possible with experimental bounds on ε'/ε satisfied

$K \rightarrow \pi v \overline{v}$ and other kaon observables **K**

What about constraints from Re ε'/ε , ε_K , Δm_K , $K_L \rightarrow \mu \mu$?

Particular interest in constraints from Re ε'/ε

- 2015 result demonstrates Re ε'/ε is accessible to lattice QCD
- Lattice QCD value 2.1σ lower than experimental value

Endo et al. PLB771 (2017)

General Z scenario with modified couplings, $\Lambda = 1$ TeV

 Because of interference between SM and NP amplitudes, if all constraints satisfied including "discrepancy" in Re ε'/ε:

 $BR(K \rightarrow \pi v v) \sim 0.5 SM BR$

- Particularly in simplified scenarios: LH, RH, LRS
- With moderate tuning (cancellation of interference terms to 10%), large values for BR($K \rightarrow \pi vv$) are possible

PDG average: NA48 + KTeV Re ε'/ε = (16.6 ± 2.3) × 10⁻⁴

RBC/UKQCD PRL115 (2015) Re $\varepsilon'/\varepsilon = 1.38(5.15_{st})(4.59_{sv}) \times 10^{-4}$

$K \rightarrow \pi v \overline{v}$ and other flavor observables **K**

Simplified Z, Z' model used as paradigm

Buras, Buttazzo, Knegjens, JHEP 1511

CMFV hypothesis:

Constraints from *B* and *K* observables

Constraints from *K* observables:

• ε_K , ΔM_K

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 vv$) at CERN – M. Moulson – RKF 2018 – Edinburgh, 22 Feb 2018

$K \rightarrow \pi v \overline{v}$ and other flavor observables **K**

New ideas relating $K \rightarrow \pi v v$ to *B*-sector LFU anomalies:

 $R_{K}, P_{5}': \mu/e \text{ LFU in } B \to K\ell\ell, B \to K^{*}\ell\ell$ $R_{D(*)}: \tau/(\mu, e) \text{ LFU in } B \to D^{(*)}\ell\nu$

Coherent explanation from NP coupled predominantly to 3rd generation LH quarks and leptons, e.g., mediated by vector leptoquark

- Di Luzio et al. PRD 96 (2017)
- Buttazzo et al. JHEP 1711

EFT studies suggest large effect for $K \rightarrow \pi v v$

• Bordone et al. EPJC77 (2017)

 $R_0 = \frac{1}{\Lambda^2} \frac{1}{\sqrt{2}G_F}$

$$\mathcal{B}(B \to D^{(*)}\tau\bar{\nu}) = \mathcal{B}(B \to D^{(*)}\tau\bar{\nu})_{\mathrm{SM}} \left| 1 + R_0 \left(1 - \theta_q e^{-i\phi_q} \right) \right|^2$$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = 2\mathcal{B}(K_L \to \pi^0 \nu_e \bar{\nu}_e)_{\rm SM} + \mathcal{B}(K_L \to \pi^0 \nu_\tau \bar{\nu}_\tau)_{\rm SM} \left| 1 - \frac{R_0 \,\theta_q^2 (1 - c_{13})}{(\alpha/\pi)(X_{\rm t}/s_{\rm w}^2)} \right|^2$$

Extra constraints for $K_L \rightarrow \pi^0 v \overline{v}$

<u>odo</u> **KOPIO 25 GeV Protons Brookhaven AGS** 200 ps Cancelled 2005 40 ns Primary: 26 GeV p 10¹⁴ *p*/7.2 s Kaons Neutral beam (43°) $\langle p(K_I) \rangle = 0.9 \text{ GeV}$ K_{I}^{0} 50% of K_L have 40 ns 1 11 0.5-1.2 GeV

Microbunched beam from AGS:

200 ps every 40 ns, 10^{-3} extinction

Flat beam to increase K_L flux

Solid angle 360 μ sr = 1 m wide!

Preradiator in front of calorimeter

Reconstruct angle of incidence for γ s

Sensitivity: 180 SM evts in ~4 yr

Advantages:

- $p(K_L)$ from time of flight
- Vertex position from preradiator
- Redundant constraints

Disadvantages:

- Difficult to veto low-energy γs
- Much lower K_L flux at high angle

$$K_L \rightarrow \pi^0 v \bar{v}$$
 at J-PARC

44

Current status:

- Reached 44 kW of slow-extracted beam power in 2017
- Preliminary results, all 2015 data: SES = 1.2 × 10⁻⁹ Expected bkg = 0.9 ± 0.2 events Signal box not yet unblinded Bkg estimate still under study
- With all 2015-2017 data, expected sensitivity below Grossman-Nir limit
- In 2018 beam power will increase to 50 kW
- Continuing program of upgrades to reduce background: New barrel veto (2016), both-end readout for CsI crystals (2018)
- Expect to reach SM sensitivity by 2021

 $K_I \rightarrow \pi^0 v \bar{v}$ at J-PARC

KOTO Step-2 upgrade:

- Increase beam power to >100 kW
- New neutral beamline at 5° $\langle p(K_L) \rangle = 5.2 \text{ GeV}$
- Increase FV from 2 m to 11 m Complete rebuild of detector
- Requires extension of hadron hall

45

Strong intention to upgrade to O(100) event sensitivity over long term:

- No official Step 2 proposal yet (plan outlined in 2006 KOTO proposal)
- Scaling from 2006 estimates: ~10 SM evts/yr per 100 kW beam power
- Exploring possibilities for machine & detector upgrades to further increase sensitivity
- Indicative timescale: data taking starting 2025?

High-intensity neutral beam issues

10¹⁹ pot/yr × 5 years \rightarrow 2 × 10¹³ ppp/16.8s = 6× increase relative to NA62

Feasibility/cost study a primary goal of our involvement in Conventional Beam WG

Preliminary analysis of critical issues by Secondary Beams & Areas group

Issue	Approach
Extraction losses	Good results on ZS losses and spill quality from SPS Losses & Activation WG (SLAWG) Slow extraction workshop, 9-11 November: https://indico.cern.ch/event/639766/
Beam loss on T4	Vertical by-pass to increase transmission to T10
Equipment protection	Possibly use SIS interlock to stop extraction during P0Survey reaction time
Ventilation in ECN3	Need to understand better current safety margin May need comprehensive ventilation system upgrade
ECN3 beam dump	Significantly improved for NA62 Need to understand better current safety margin
Background fluxes	Detailed simulations getting started

NA48 liquid krypton calorimeter

Quasi-homogeneous ionization calorimeter

- 13248 channels
- Readout towers 2×2 cm²
- Depth 127 cm = 27 X_0

NA48 performance:

$$\frac{\sigma_E}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.42\%$$
$$\sigma_x = \sigma_y = \frac{4.2 \text{ mm}}{\sqrt{E}} \oplus 0.06 \text{ mm}$$
$$\sigma_t = \frac{2.5 \text{ ns}}{\sqrt{E}}$$

New readout electronics for NA62:

- 14-bit 40 MHz FADCs
- Large buffers to handle 1 MHz L0 rate

The NA48 LKr as a photon veto

Method 1: $K^{\scriptscriptstyle +} ightarrow \pi^{\scriptscriptstyle +} \pi^0$

- Low-rate, *p* = 75 GeV run in 2004
- $K^+ \rightarrow \pi^+ \pi^0$ selected using kinematics only Tight topological and quality cuts E/p cut and muon veto for track ID
- π⁺ and lower energy γ are used to predict position of other γ

Method 2: Tagged γ

upstream of MNP33

Beam deflected 12 cm,

reconstruct e^- in LKr

• Test beam with e^- in 2006

25 GeV beam aimed at LKr

Bremsstrahlung on material

Vetoes for upstream *K*_L decays

Rejects $K_L \rightarrow \pi^0 \pi^0$ from upstream of final collimator (80 m < z < 105 m)

Upstream veto (UV):

- 10 cm < *r* < 1 m:
- Shashlyk calorimeter modules à la PANDA/KOPIO

As implemented in MC:

Active final collimator:

- 4.2 < *r* < 10 cm
- LYSO collar counter
- 80 cm long
- Internal collimating surfaces
- Intercepts halo particles from scattering on defining collimator or γ absorber
- Active detector \rightarrow better rejection for π^0 from *n* interactions

Residual background from upstream $K_L \rightarrow \pi^0 \pi^0$: 15 events/5 years

Large-angle photon vetoes

26 new LAV detectors providing hermetic coverage out to 100 mrad Need good detection efficiency at low energy $(1 - \varepsilon \sim 0.5\% \text{ at } 20 \text{ MeV})$

Baseline technology: CKM VVS Scintillating tile with WLS readout

Good efficiency assumptions based on E949 and CKM VVS experience

E949 barrel veto efficiencies Same construction as CKM

Tests for NA62 at Frascati BTF

Tests at JLAB for CKM: • $1 - \varepsilon \sim 3 \times 10^{-6}$ at 1200 MeV

Small-angle calorimeter

have $30 < E_{\gamma} < 250 \text{ GeV}$

Energy of photons from $K_L \rightarrow \pi^0 \pi^0$ on SAC after all cuts (5 years):

K_lever

- 2γ on LKr
- No γs on LAV or IRC
- Cuts on $z_{\rm FV}$, $r_{\rm min}$ (LKr), p_{\perp}

- Can tolerate 1% inefficiency for E_{γ} < 30 GeV
- Can be blind for $E_{\gamma} < 5 \text{ GeV}$

Small-angle calorimeter

52

Proof-of-concept simulation for baseline solution:

- W-Si pad calorimeter, 14 layers × 1 mm crystal absorber, θ_{inc} = 2 mrad
 - Depth = $14X_0$ for E_{γ} = 30 GeV, but only $4X_0$ for E_{γ} = 5 GeV
- Naïve simulation of pair-conversion enhancement with Geant4:
 - Increase overall density as function of E_{γ} , instead of X_0

E_{γ} (GeV)	$ ho / ho_0$	1 – <i>ɛ</i>
350 GeV	3.5	5 × 10 ^{−5}
30 GeV	3.5	1 × 10 ⁻⁴
10 GeV	1.5	4.5%
5 GeV	1.0	20%

Work in progress:

Photons

- Better simulation with X_0 for photons a function of E_{γ} and θ_{γ}
 - Benefit from effort by AXIAL collaborators to introduce into Geant4 detailed simulation of coherent effects in crystals
- Optimize transverse and longitudinal segmentation to increase γ/n separation

Neutrons

50-300 GeV

 $1 - \varepsilon = 20\%$

- E_{vis} thr. = 16 MeV chosen for E_{γ} = 30 GeV
- Inefficiency at small E_{γ} from punch through
- Need better treatment of coherent effects
- Need additional handles for γ/n separation

Charged particle veto

 $K_L \rightarrow \pi ev$ can emulate signal when both π and e deposit energy in LKr

- Fake π^0 vertexes from πe all reconstructed downstream of true decay
 - $-\pi^+$ deposits only a fraction of its energy
- *K*_{e3} decays with "π⁰" reconstructed in FV have z_{rec} < 200 m
 - All within the acceptance of the CPV

Using MC to add detail to design of CPV

Square scintillator tiles, 5-mm thick, supported on carbon fiber membrane

• 2 planes \rightarrow 3% X_0

Tile geometry: 4x4 cm² or 8x8 cm²

- Smaller tiles near beam line
- Cracks staggered between planes
- 4 chamfered corners (45°) for direct SiPM coupling

Charged particle rejection

 $K_L \rightarrow \pi ev$ can emulate signal when both π and e deposit energy in LKr

Use cluster RMS in LKr to identify and reject π interactions

• Geant4 confirmed by preliminary analysis of pp0 events in NA62 data:

$$\varepsilon_{\gamma} = 0.95$$

 $\varepsilon_{\pi} = 0.05$

If LKr replaced by shashlyk, longitudinal shower profile information also available

Ratio of hadronic/total energy effective to identify π showers

• Preliminary results based on Geant4:

$$\varepsilon_{\gamma} = 0.99$$

 $\varepsilon_{\pi} = 0.07$

Study of HAC (MUV1/2) response in NA62 data in progress

 Parameterization of response for inclusion in fast simulation

Crystal converter for the NA48 AKS

AKS used to define start of FV for $K_S \rightarrow \pi^0 \pi^0$ decays in NA48

Pair prod. enhancement vs E_{γ} and θ_{γ} Moore et al., NIMB 119, 149 (1996)

On-axis pair prod. enhancement for W and Ir

Kirsebom et al., NIMB 135, 248 (1998)

Pair-production enhancement from coherent interaction with crystal lattice was studied for AKS development

NA48 had use of high-quality crystals from MPI Stuttgart (mosaicity ~ 0.02 deg) These crystals appear no longer to be commercially available!

$$K_L \rightarrow \pi^0 \ell^+ \ell^-$$

$$K_L
ightarrow \pi^0 \ell^+ \ell^-$$
 vs $K
ightarrow \pi v v$:

 Somewhat larger theoretical uncertainties from long-distance physics

- SD CPV amplitude: γ/Z exchange
- LD CPC amplitude from 2y exchange
- LD indirect CPV amplitude: $K_L \rightarrow K_S$
- $K_L \rightarrow \pi^0 \ell^+ \ell^-$ can be used to explore helicity suppression in FCNC decays

Main background: $K_L \rightarrow \ell^+ \ell^- \gamma \gamma$

• Like $K_L \rightarrow \ell^+ \ell^- \gamma$ with hard bremsstrahlung

 $\begin{array}{ll} \mathsf{BR}(K_L \to e^+ e^- \gamma \gamma) = (6.0 \pm 0.3) \times 10^{-7} & E_{\gamma}^* > 5 \; \mathrm{MeV} \\ \mathsf{BR}(K_L \to \mu^+ \mu^- \gamma \gamma) = 10^{+8}_{-6} \times 10^{-9} & m_{\gamma\gamma} > 1 \; \mathrm{MeV} \end{array}$

 $K_L \rightarrow \pi^0 e^+ e^-$ channel is plagued by $K_L \rightarrow e^+ e^- \gamma \gamma$ background - Small acceptance because of tight cuts on Dalitz plot $K_L \rightarrow \pi^0 \mu^+ \mu^-$ channel may be more tractable

 $K_L \rightarrow \pi^0 \ell^+ \ell^-$ CPV amplitude constrains UT in same way as BR($K_L \rightarrow \pi^0 vv$)

