Rare decays vs. BSM

Ben Gripaios

Cambridge

February 2018

Focus on just 1 particular scenario ...

Focus on just 1 particular scenario . . .

- ... which illustrates the general picture:
 - flavourful BSM unlikely to be around the corner (LHC, FC, ...)
 - 2. but if it is, we are likely to learn a lot!
 - potential signals/constraints everywhere (inc. rare K-decays)

Experiment: B to K anomalies

Theory: leptoquarks in composite higgs models

BMG & Coradeschi, in progress

BMG, Marco Nardecchia & Sophie Renner, 1412.1791

BMG. 0910.1789

RECEIVED: October 20, 2009
REVISED: January 11, 2010
ACCEPTED: January 21, 2010
PUBLISHED: February 10, 2010

Composite leptoquarks at the LHC

Ben Gripaios

CERN PH-TH, Geneva 23, 1211 Switzerland

There are also interesting possibilities for the observation of leptoquark-mediated rare processes, including $B \to K \mu \overline{\mu}$, $\mu \to e \gamma$, $\tau \to \mu \gamma$, and $\mu - e$ conversion in nuclei, where my estimates for the leptoquark couplings, which may be considered as rough theoretical lower bounds, lie close to experimental upper bounds, either actual or envisaged.

2 remarks:

- a theory of everything
- a theory of nothing

6 motivations ...

1. \exists a light scale/scalar, $H \dots$

1. \exists a light scale/scalar, $H \dots$

... suggesting compositeness c.f. *,He, α , $\pi^{\pm,0}$

...but on what scale?

Earth-Sun, eV, MeV, GeV

For *H* EWPT, LHC, and FCNC all suggest some tuning; we'll take $m_{\rho} \sim 10 \, TeV$)

2. the composite sector yields fermion masses ...

2. the composite sector yields fermion masses . . .

... a bilinear coupling to SM fermions, *Hqu*, is at best marginal:

$$\mathscr{L} \sim \frac{Hqu}{\Lambda^{d-1}} + \frac{qqqq}{\Lambda^2}$$

$$m_t + \text{FCNC} \implies d \lesssim 1.2 - 1.3$$

$$d \rightarrow 1 \implies d[H^{\dagger}H] \rightarrow 2 \text{ (cf. TC: } d \sim 2-3)$$

Strassler, 0309122

Luty & Okui, 0409274

Rattazzi, Rychkov & Vichi, 0807.0004

Rychkov & Vichi, 0905.2211

2. the composite sector yields fermion masses . . .

... a linear coupling to SM fermions, $\overline{Q}q$, can be relevant and flavour problems can be decoupled!

$$\mathscr{L} \sim g_{\rho}HQU + m_{\rho}(\overline{Q}Q + \overline{U}U) + \varepsilon^{q}g_{\rho}\overline{Q}q + \varepsilon^{u}g_{\rho}\overline{U}u$$

$$\begin{split} (Y_u)_{ij} &\sim g_\rho \epsilon_i^q \epsilon_j^u \,, \qquad (Y_d)_{ij} \sim g_\rho \epsilon_i^q \epsilon_j^d \,, \\ g_\rho v \epsilon_i^q \epsilon_i^u &\sim m_i^u \,, \qquad g_\rho v \epsilon_i^q \epsilon_i^d \sim m_i^d \,, \\ \frac{\epsilon_1^q}{\epsilon_2^q} &\sim \lambda \,, \qquad \frac{\epsilon_2^q}{\epsilon_3^q} \sim \lambda^2 \,, \qquad \frac{\epsilon_1^q}{\epsilon_3^q} \sim \lambda^3 \,, \end{split}$$

a.k.a partial compositeness

Kaplan the Elder, 91

3. partial compositeness \implies composite coloured fermions

cf.
$$\mathscr{L}\subset arepsilon^q g_{
ho}\overline{\mathbb{Q}}q$$

strong dynamics charged under $SU(2) \times U(1)$ and SU(3): GUT?

4. composite coloured fermions \implies composite coloured scalars

$$SU(3)xSU(2)xU(1): (3,2,1/6)\otimes (3,2,1/6)\subset (\overline{3},3,1/3)$$

a. k. a. leptoquarks/diquarks

BMG, 0910.1789

Giudice, BMG, & Sundrum, 1105.3161

5. LQs can be light (e.g. PNGBs); if so give peculiarly large effects in e.g. $B \to K\mu\mu$, $K \to \pi\nu_{\tau}\nu_{\tau}$

6. Unification

- SM: unifies just about
- ▶ SUSY = $SM + \tilde{h}_{u,d}$ unifies perfectly
- ► Composite $H = SM t_R, t_R^c$ unifies perfectly
- PNGB H comes in GUT rep: +LQ!

LQs can be light (e.g. PNGBs); if so give peculiarly large effects in e.g. $B \to K\mu\mu$, $K \to \pi\nu_{\tau}\nu_{\tau}$

Predictions ...

Can we fit the $B \rightarrow K \mu \mu$ (and all other FCNC) data?

BMG, Marco Nardecchia & Sophie Renner, 1412.1791

Need the right light LQ state Need the right LQ couplings

Quark sector:

- 10 parameters: $g_{\rho}, \varepsilon_{i}^{q,u,d}$
- 9 quark masses and mixings fix all but g_{ρ} and ε_{3}^{q} :

$$(Y_u)_{ij} \sim g_\rho \epsilon_i^q \epsilon_j^u , \qquad (Y_d)_{ij} \sim g_\rho \epsilon_i^q \epsilon_j^d .$$

$$\begin{split} g_{\rho}v\epsilon_{i}^{q}\epsilon_{i}^{u}\sim m_{i}^{u}, & g_{\rho}v\epsilon_{i}^{q}\epsilon_{i}^{d}\sim m_{i}^{d} \\ \frac{\epsilon_{1}^{q}}{\epsilon_{2}^{q}}\sim \lambda, & \frac{\epsilon_{2}^{q}}{\epsilon_{3}^{q}}\sim \lambda^{2}, & \frac{\epsilon_{1}^{q}}{\epsilon_{3}^{q}}\sim \lambda^{3}, \end{split}$$

Lepton sector:

6 parameters: $\varepsilon_i^{l,e}$ Assume $\varepsilon_i^l \sim \varepsilon_i^e$ to minimise $\mu \to e \gamma$ 3 charged lepton masses fix all 6

Leptoquark couplings:

Let $c_{ij} \sim O(1)$ parameterise our ignorance of strong dynamics $\lambda_{ij} = g_{\rho}c_{ij}\epsilon_i^{\ell}\epsilon_j^{q}$,

$\lambda_{ij}/(c_{ij}g_{ ho}^{1/2}\epsilon_3^q)$	j = 1	j = 2	j = 3
i = 1	1.92×10^{-5}	8.53×10^{-5}	1.67×10^{-3}
i = 2	2.80×10^{-4}	1.24×10^{-3}	2.43×10^{-2}
i = 3	1.16×10^{-3}	5.16×10^{-3}	0.101

LQ effects fixed by $g_{\rho} \lesssim 4\pi, \varepsilon_3^q < 1$, and $M \sim \text{TeV}$.

$$R_K$$
:

$$\operatorname{Re}(c_{22}^*c_{23}) \in [1.42, 2.98] \left(\frac{4\pi}{g_{\rho}}\right) \left(\frac{1}{\epsilon_3^q}\right)^2 \left(\frac{M}{\text{TeV}}\right)^2 \quad (\text{at } 1\sigma).$$

Decay	$(ij)(kl)^{\ast}$	$ \lambda_{ij}\lambda_{kl}^* /\left(\frac{M}{\mathrm{TeV}}\right)^2$	$ c_{ij}c_{kl}^* \left(\frac{g_{\rho}}{4\pi}\right) \left(\epsilon_3^q\right)^2 / \left(\frac{M}{\text{TeV}}\right)^2$
$K_S \rightarrow e^+e^-$	(12)(11)*	< 1.0	$< 4.9 \times 10^{7}$
$K_L \rightarrow e^+ e^-$	$(12)(11)^*$	$<2.7\times10^{-3}$	$< 1.3 \times 10^5$
$\dagger K_S \to \mu^+ \mu^-$	$(22)(21)^*$	$<5.1\times10^{-3}$	$< 1.2 \times 10^{3}$
$K_L \to \mu^+ \mu^-$	$(22)(21)^*$	$<3.6\times10^{-5}$	< 8.3
$K^+ \rightarrow \pi^+ e^+ e^-$	$(11)(12)^*$	$<6.7\times10^{-4}$	$< 3.3 \times 10^4$
$K_L \rightarrow \pi^0 e^+ e^-$	$(11)(12)^*$	$<1.6\times10^{-4}$	$< 7.8 \times 10^{3}$
$K^+ o \pi^+ \mu^+ \mu^-$	$(21)(22)^*$	$<5.3\times10^{-3}$	$< 1.2 \times 10^3$
$K_L o \pi^0 u \bar{ u}$	$(31)(32)^*$	$<3.2\times10^{-3}$	< 42.5
† $B_d \to \mu^+ \mu^-$	$(21)(23)^*$	$<3.9\times10^{-3}$	< 46.0
$B_d \to \tau^+ \tau^-$	$(31)(33)^*$	< 0.67	$< 4.6 \times 10^{2}$
$\dagger \ B^+ \to \pi^+ e^+ e^-$	$(11)(13)^*$	$< 2.8 \times 10^{-4}$	$< 6.9 \times 10^2$
$\uparrow B^+ \to \pi^+ \mu^+ \mu^-$	$(21)(23)^*$	$<2.3\times10^{-4}$	< 2.7

Opportunities in $B \to Kvv$ (Belle II), $K_L \to \mu\mu$, $K \to \pi vv$ (NA62), $\mu \to e\gamma$ (MEG), $B \to \pi\mu\mu$, Δm_{B_s} , . . .

General summary:

- 1. flavourful BSM unlikely to be around the corner (LHC, FC, ...)
- 2. but if it is, we are likely to learn a lot!
- 3. look everywhere!