

First forum on rare kaon decays (RKF2018)

Search for the hidden sector at NA62

Angela Romano(*), University of Birmingham

Edinburgh, 21 – 23 February, 2018

(*)NA62 Collaboration @ CERN SPS

The NA62 experiment

High precision fixed-target Kaon experiment at CERN SPS

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Lancaster, Louvain-la-Neuve, Mainz, Merced, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, SLAC, Sofia, TRIUMF, Turin, Vancouver (UBC)

The NA62 experiment

High precision fixed-target Kaon experiment at CERN SPS Highest energy proton beam delivered for fixed-target exp in the world

NA62 Beam line & detectors

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Lancaster, Louvain-la-Neuve, Mainz, Merced, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, SLAC, Sofia, TRIUMF, Turin, Vancouver (UBC)

- ➢ Secondary un-separated hadron (π⁺/K⁺/p) beam
- 800MHz beam rate @GTK (45MHz K⁺ component)
- ▶ K⁺: 75GeV/c (±1%), divergence < 100µrad</p>
- Kaon fiducial decay region ~60 m

Performances:

- > Excellent time resolution **O(100 ps)** to match beam/daugther particle info
- ► Kinematic rejection factors: ~10⁻⁴ for $K^+ \rightarrow \pi^+ \pi^0$, $K \rightarrow \mu^+ \nu$ bkg channels
- ▶ Particle ID: ~10⁻⁷ µ suppression for $15 < p(\pi^+) < 35 \text{ GeV/c}$
- → Hermetic photon veto: ~10⁻⁸ rejection of $\pi^{0} \rightarrow \gamma \gamma$ for E(π^{0})>40GeV

High-intensity setup, trigger system flexibility and detector performances make

NA62 particularly suitable to search for NP effects from different scenarios

Hidden Sector searches at NA62

Hidden Sector Motivations

If Dark Matter (DM) is a thermal relic from hot early universe, can hunt for it in particle-physics: search for non-gravitational interactions DM-SM

- A mediator of a hidden sector might exist, inducing DM-SM field (feeble) interactions;
- Many possible dynamics: vector (A' dark photon), neutrino (HNL), axial (ALP a), scalar ...

Various experimental hints for hidden sector at MeV-GeV, e.g. a_{μ} 3.5- σ discrepancy:

Feeble interaction: ultra-suppressed production rate, **very long-lived states.** E.g.: 1-GeV mass HNL, $\tau \sim 10^{-5}$ - 10^{-2} s, decay length ~ 10 -10000 Km at SPS energies, suppression at production 10^{-7} - 10^{-10}

Hidden Sector at NA62

Feeble interactions: ultra-suppressed production rate, very long-lived states

Why searching for hidden sector mediators at NA62?

High-intensity, high-energy proton beam

• To date the world best line to produce high intensity fluxes of beauty and charm hadrons and photons through the interactions of protons on a high-Z target is a 400 GeV/c proton beam line extracted from the CERN SPS

• Long fiducial decay volume

• The decays to SM particles can optimally be detected using an experiment with decay volume tens of meters long followed by a spectrometer with particle identification capabilities

The NA62 detector perfectly fits these requirements

NA62 "Kaon" Operation Mode

Schematic of North Area beamlines

TAX1-2 20m downstream Be target

K12 beam line layout (from T10 Be target to entrance of FV)

TAX1-2:

- two 1.6-m long, motorized, water-cooled, <u>copper collimators</u>
- select monochromatic <u>hadron beam $(K/\pi/p)$ </u> of 75 GeV/c momentum
- <u>dump remaining (40%) primary protons</u>

NA62 "Dump" Operation Mode

- Be target can be moved away
- Proton beam impinges on TAX1-2 (PoT)
- TAX1-2 can act as a beam "dump": 3.2 m of Cu + Fe, $\sim 22\lambda_I$
- Production of HNLs, Dark Photons, Dark Scalars and ALPs from charm, beauty and photons produced in the interaction of protons with the dump
- 10¹⁸ PoT/nominal year: 10¹² PoT/sec on spill, 100 days/year

NA62 kaon or proton "dump" modes are easily switchable in current setup

K, B, Bs, D, Ds → lepton HNL K, B, Bs, D, Ds → semi-leptonic modes

At SPS energies: $\sigma (pp \rightarrow s \text{ sbar } X) \sim 0.15$ $\sigma (pp \rightarrow c \text{ cbar } X) \sim 2 \ 10^{-3}$ $\sigma (pp \rightarrow b \text{ bbar } X) \sim 1.6 \ 10^{-7}$

Heavy neutrino couplings enter both in production and in decay (~ U^4 process)

Dark photons

At SPS energies: $\sigma (pp \rightarrow s \text{ sbar } X) \sim 0.15$ $\sigma (pp \rightarrow c \text{ cbar } X) \sim 2 \ 10^{-3}$ $\sigma (pp \rightarrow b \text{ bbar } X) \sim 1.6 \ 10^{-7}$

Photon produced in light meson resonances, bremsstrahlung, and QCD processes.
Search for massive particle mixing with the photon and decaying to visible final states (e⁺ e⁻, μ⁺μ⁻, etc.)

"Dump" mode

All beam-induced backgrounds are stopped but muons and neutrinos

A setup with long decay volume allows for probing low values of couplings (as the lifetime of hidden-sector particles ~ 1/coupling²)

NA62 Timeline – Run 2

NA62 Data taking in 2015-2018 (Run 2)

Accelerator schedule	2015	20	16	2017		2018		2019		2020		2021		2022		2023		2024
LHC		Run 2							L\$2			Run 3						
SPS																		NA stop
			J									-					-	

Data taking in 2016-2017 at 40-60% of nominal beam intensity:

- > focused on $\mathbf{K}_{\pi\nu\nu}$ measurement
- limited trigger bandwidth for other physics
- proof of principle for broad LFV/LNV decay programme (SES ~ 10⁻¹⁰-10⁻¹¹)
- reached ~10¹⁷ protons on target

Prospects for data taking in 2018 \rightarrow 7 months scheduled

- Keep same goal and beam intensity as in 2016/7;
- > Achieve several measurements at SES~10⁻¹²: K⁺ $\rightarrow \pi^+A'(A'\rightarrow invisible)$, $\pi^0 \rightarrow vv$.
- Improve trigger bandwidth for other physics (new HLT for "exotics" lines);
- Might reach ~10¹⁸ protons on target.

NA62 Timeline – Run 3

NA62 Data taking in 2021-2023 (Run 3)

A rich field to be explored with minimal upgrades to the present setup:

- 1. run for refining $K_{\pi\nu\nu}$ measurement
- 2. present K⁺ setup: unprecedented LFV/LNV sensitivities from K⁺/ π^0
- 3. run in "beam-dump" mode with NP searches for MeV-GeV mass hiddensector candidates: HNLs, Dark Photons, ALPs, etc.

Run 3 goal: integrate at least 10¹⁸ PoT in "dump" operation mode(*)

(*) "dump" data taking distributed in 3 years, without disruption for the kaon mode operation

NA62 Expected Sensitivities

DISCLAIMER: Following sensitivity plots show projections based on toy simulations. The validation with NA62 fully integrated MC is ongoing.

PER AD ALTA

Heavy Neutral Lepton (HNL)

NA62 sensitivity with ~10¹⁸ 400-GeV PoT running in "dump" mode

- Fully reconstructed 2-track final states
- All HNL decays, close and open channels
- Include trigger/acceptance/selection efficiency
- Assume zero-background
- Evaluate expected 90% C.L. exclusion plots

Dark Photon

NA62 sensitivity with ~10¹⁸ 400-GeV PoT running in "dump" mode

- Fully reconstructed 2-track final states
- Search for displaced, di-lepton decays of DP (A' \rightarrow ee,µµ)
- Include trigger/acceptance/selection efficiency
- Assume zero-background
- Evaluate expected 90% C.L. exclusion plots

Axion-like Particle (ALP)

NA62 sensitivity with **1.3 x 10¹⁶ (3.9 x 10¹⁷) 400-GeV PoT** corresponding to 1 day (1 month) of runs in "dump" mode

- study ALP production via Primakoff effect [JHEP 1602 (2016) 018] at target
- search for ALP \rightarrow $\gamma\gamma$ in NA62 fiducial volume, account for geometrical acceptance
- Assume zero-background, evaluate expected 90% C.L. exclusion contours

Preliminary studies in "Kaon" & "Dump" operation modes

DISCLAIMER:

The following material is under approval and should not be regarded/presented anywhere as "NA62 preliminary results" or "NA62 prospects" or similar.

Please consult published NA62 papers and official NA62 plots repository for NA62 results.

NA62 2016 Data

- Stable data dating at ~40% of nominal intensity
- Some exotic searches possible in parasitic mode with the main trigger for $K_{\pi\nu\nu}$
- > Search for HNL(v_h) in K⁺ → $\mu^+ v_h$, K⁺ → $e^+ v_h$ decays (E. Goudzovski)
- ▶ Search for π^{0} → invisible, NA62 sensitive at 10⁻⁸ or better
- Collected ~3×10¹⁶ protons-on-target

NA62: Search for $\pi^0 \rightarrow$ invisible

Search for $\pi^0 \rightarrow$ invisible, NA62 sensitive at 10⁻⁸ or better...

Kinematics (2015 Data):

- → Measured bkg rejection: 6×10^{-4} for K⁺→ $\pi^{+}\pi^{0}$
- ► Goal: O(10⁴) for $K^+ \rightarrow \pi^+ \pi^0$ and $K^+ \rightarrow \mu^+ \nu$

Photon Rejection (2015 Data):

- > Measured $\pi^0 \rightarrow \gamma \gamma$ decay suppression = 1.2×10^{-7} in K_{$\pi\nu\nu$} signal region
- > Goal: O(10⁸) π^{o} rejection for K⁺-> $\pi^{+}\pi^{0}$ bkg
- > $E(\pi^0) > 40 \text{GeV}$ for $P_{\pi^+} < 35 \text{ GeV/c}$

Dark Photon Searches @ NA62

- Search for A' produced via: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \gamma A'$, $A' \rightarrow \text{invisible}$
- Sensitivity to DP for $m(A') < m(\pi^0)$
- NA62 2016 data (40% nominal beam intensity)
- NA62 main trigger for $K^+ \rightarrow \pi^+ \nu \nu$
- Search for peaks in $M^2_{miss}(K^+ \rightarrow \pi^+ \pi^0) = (P_K P_{\pi} P_{\gamma})^2$

Dark Photon Searches @ NA62

- Search for A' produced via: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \gamma A'$, $A' \rightarrow \text{invisible}$
- NA62 2016 data (40% nominal beam intensity)
- DP mass range: $50 \text{ MeV/c}^2 < m(A') < 90 \text{ MeV/c}^2$

Preliminary results using ~1.5 x 10¹⁰ K⁺ decays [~4% of 2016 NA62 data] Expect improvement over the world data Improvement on BR(π^{o} →invisible) over current limit of 2.7×10⁻⁷ also possible

Search for resonances in $K^+ \rightarrow \pi^+ X (X \rightarrow \mu^+ \mu^-)$ decay

Light inflaton model:

- Inflaton **X** is a new scalar
- 3 parameters in the model, 2 free
- Inflaton production: B and K decays are governed by the same parameters
- Inflaton decays to SM particles

Experimental limits:

Region accessible in K⁺ $\rightarrow \pi^+X, X \rightarrow \mu^+\mu^-$: $\theta^2 \sim 4^*10^{-7} \text{ (m}\sim 270\text{-}300 \text{ MeV)}$

Low energy SUSY models :

- •Sgoldstinos **P** (pseudoscalar) and **S** (scalar) are superpartners of goldstino
- •No strict limits on the mass and lifetime
- •Sgoldstino production: K and \sum decays are
- driven by the same coupling constants
- P and S can be light and decay to SM particles

Experimental limits:

NA62 PROSPECTS:

- O(10¹²) K decays in 2016-2017
- Displaced vertex approach
- Acceptance up to O(10%)
- Almost background free for long-lived particles

Conclusions

- ✓ NA62 is officially approved to run until LS2 with the main goal of measuring the Br(K⁺→ $\pi^+\nu\nu$) with 10% accuracy;
- ✓ Before LS2 (2018) many searches in the hidden sector will be performed using the kaon beam (new limits on dark photon investigated);
- ✓ The list of hidden sector searches presented is not exhaustive;
- ✓ Preliminary studies with data taken in kaon and proton beam "dump" modes show that **background can be kept under control**;
- ✓ After LS2 (2021-2023) there is a window of opportunity to run NA62 in beam-dump mode to search for hidden sector mediators from charm and beauty decays and pave the way for the next generation experiments (SHiP/LBNF);

✓ Further improvements in the setup are currently under study.

First forum on rare kaon decays (RKF2018)

Spares

Angela Romano(*), University of Birmingham

Edinburgh, 21 – 23 February, 2018

(*)NA62 Collaboration @ CERN SPS

Dark Photon

Search for an invisible vector boson from π^{o} decays

- One of the possible extensions of the SM aimed at explaining the abundance of dark matter in our universe predicts a new U(1) gauge-symmetry sector, with a vector mediator field A' named "dark photon."
- would (feebly) interact with the SM photon through a "kinetic mixing" lagrangian

$$\mathcal{L} = \epsilon A^{\prime \mu \nu} F_{\mu \nu}$$

- where Fµv represents the e.m. field and is a small parameter
- Lagrangian might be accompanied by further interactions, both with SM matter fields and with a secluded, hidden sector of possible dark-matter candidate fields.
- If these are lighter than the A', the dark photon would decay mostly "invisibly", so that a missing-energy signature might reveal its presence.

[6] L. Okun, Sov.Phys.JETP 56 (1982) 502;
[7] B. Holdom, Phys.Lett. B166 (1986) 196.

NA62: Study of Long-lived A' \rightarrow µµ

- NA62 2016 Data, sub-sample ~10¹⁵ PoT
- Event Selection:
 - Track quality & Geometrical acceptance in forward detectors (up to LKr,MUV3)
 - Vertex quality (2-track distance < 1cm) and position in FV (105 m < Zvtx < 165 m)
- Impact parameter of $P_{tot} = P_{\mu} + P_{\mu}$ to beam line used to define the signal region (A' produced at Be target)

NA62: Study of Long-lived A' $\rightarrow \mu\mu$

- NA62 2016 Data, sub-sample ~10¹⁵ PoT
- Add further Veto conditions:
 - Energy deposited in LKr calo < 2 GeV
 - No activity in SAV(forward)/LAV(large) angle calo
 - No activity in CHANTI (upstream charge counter)
- Impact parameter of $\mathbf{P}_{tot} = \mathbf{P}_{\mu} + \mathbf{P}_{\mu}$ to beam line used to define the signal region (A' produced at Be target)

No events selected in the signal region (even with standard K⁺ beam)

Exploiting extreme photon-veto capability and high resolution tracking while sustaining a high-rate makes the DP analysis synergic with and parasitic to the $K^+ \rightarrow \pi^+ vv$ measurement

Dark scalars: $B \rightarrow K S, K \rightarrow \pi S$

At SPS energies: $\sigma (pp \rightarrow s \text{ sbar } X) \sim 0.15$ $\sigma (pp \rightarrow c \text{ cbar } X) \sim 2 \ 10^{-3}$ $\sigma (pp \rightarrow b \text{ bbar } X) \sim 1.6 \ 10^{-7}$

Dark Scalar & Dark Photon

NA62 sensitivity with $\sim 10^{18} 400$ -GeV PoT running in "dump" mode

- Dark scalar plot:
 - assume all 2-track fully reconstructed final states
- Dark photon plot:
 - assume di-muon final state only
 - missing the inclusion of two dominant production processes (QED,QCD)
- Assume zero-background

Dark Scalar:

Heavy Neutral Lepton

Assume 2 × 10¹⁸ 400-GeV PoT:

- search for displaced, leptonic decays HNL $\rightarrow \pi e, \pi \mu$
- include trigger/acceptance/selection efficiency
- assume zero-background
- evaluate expected 90%-CL exclusion plot

Heavy Neutrino Searches

- vMSM = SM + 3 right-handed HNLs [Asaka et al., PLB 631 (2005) 151]
- Masses: m₁~10 keV; m_{2,3}~1 GeV
- HNLs observable via production and decay
- Production searches are model-independent
- NA62 searches for HNL produced in $K^+ \rightarrow \mu^+ \nu_h$ and $K^+ \rightarrow e^+ \nu_h$

HNL Global Limits

NA48/2: Dark Photon exclusion

Phys. Lett. B746 (2015) 178

- Improvement on the existing limits in the m_A, range 9–70 MeV/c².
- Most stringent limits are at low m_{A'} (kinematic suppression is weak).
- Sensitivity limited by irreducible π⁰_D background: upper limit on ε² scales as ~(1/N_K)^{1/2}, modest improvement with larger data samples.
- If DP couples to quarks and decays mainly to SM fermions, it is ruled out as the explanation for the anomalous (g-2)_u.
- Sensitivity to smaller ε² with displaced vertex analysis: to be investigated.

Axion-like particle (ALP) production in NA62

TAX1-2: movable copper + iron made collimators of $\sim 22\lambda_{I}$ total thickness

~ 80m before fiducial volume

- K⁺ from Be target, large fraction of SPS protons continuously 'dumped'
- long-lived, weakly-interacting particles produced along with nominal beam directly/decay
- possibility to dump entire beam by closing TAX (~ 10¹² p/sec) and removing Be target
 - Copper TAX \rightarrow coherent Z² enhancement with charge
- collected ~ 2.5 x 10¹⁵ PoT in beam "dump" mode at the end of 2016 run

Pseudo-scalar ALP (a) created by photon fusion (Primakoff effect);

ALP lifetime dependence on its mass and coupling with photon: t ~ $1/(g_{a\gamma}^2 m_a^3)$

10 too early decay 10^{-3} The projected limits fold as input: 1. the differential cross-section for production_ 10-' 1.3 x 10¹⁶ POT (~1 day) 2. coincidence and acceptance in EM calo g_{ay} [GeV 10⁻⁵ 3.9 x 10¹⁷ POT (~1 month 3. probability to decay within the FV 10⁻⁶ too late decay Expected limits on the mass and coupling 10-7 \leftrightarrow POT, E_{beam} assuming (*)1 day/(**)1 month **∕7** 10⁻⁸ 10^{-2} of data taking in "dump" mode m_a [GeV]

- Challenging:
 - photon is not tracked, know only E1, E2, d in Ecal and need to impose mass or decay point to discriminate;
- Mitigation:
 - only extend beyond existing limits at small I_d: decay in absorber:

$$\sim \exp(-I_{\rm abs}/I_d)$$
, $I_d = \gamma \beta \tau \sim \frac{E_a}{m} \frac{64\pi}{m^3 g^2}$

- yields the **ALPs** in reach **highly boosted** $E_a = E(\gamma 1) + E(\gamma 2)$
- their barycenter enclose a (computable) non-zero angle θ
- compare charged sample in side-band, **deduce expected background** in signal region optimization of signal efficiency for (g,m) in full MC on the way