

Searches for LF/LN violation and other new physics at NA62

Evgueni Goudzovski

(University of Birmingham)

Outline:

- 1) Introduction: K^{\pm} decay experiments at CERN
- 2) Overview of NA62 physics programme
- 3) Status of LF/LN conservation tests in 3-track K⁺ decays
- 4) First results on HNL production search in K⁺ decays
- 5) Summary

Rare kaon decay forum Edinburgh • 21 February 2018

Kaon programme at CERN

K[±] decay experiments at CERN

Experiment	NA48/2	NA62-R _K	NA62
	(K [±])	(K [±])	(K ⁺)
Data taking period	2003–2004	2007	2016–2018
Beam momentum, GeV/c	60	74	75
RMS momentum bite, GeV/c	2.2	1.4	0.8
Spectrometer thickness, X ₀	2.8%	2.8%	1.8%
Spectrometer P _T kick, MeV/c	120	265	270
M(K [±] $\rightarrow \pi^{\pm}\pi^{+}\pi^{-}$) resolution, MeV/c ²	1.7	1.2	0.8
K decays in fiducial volume	2×10 ¹¹	2×10 ¹⁰	≈10 ¹³
Main trigger	Multi-track;	Minimum bias;	Κ _{πνν} ;
	$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$	e±	lepton pairs
The NA62 experiment	NA48 detector		NA62 detector

- Arrow Main goal: collect up to 100 SM K⁺ $\rightarrow \pi^+ \nu \nu$ decays, $BR_{SM} = (8.4 \pm 1.0) \times 10^{-11}$. Buras et al., JHEP 1511 (2015) 033
- ★ Current K⁺ $\rightarrow \pi^+\nu\nu$ experimental status: BR = $(1.73^{+1.15}_{-1.05})\times 10^{-10}$ from 7 candidates with expected background of 2.6 observed by BNL-E949. PRL101 (2008) 191802

E. Goudzovski / Edinburgh, 21 Feb 2018

NA62 collaboration, JINST 12 (2017) P05025

The NA62 detector

- ✤ Expected single event sensitivity for K⁺ decays: BR~10⁻¹².
- ★ Measured kinematic rejection factors (limited by beam pileup & MCS tails): 6×10^{-4} for K⁺→ $\pi^{+}\pi^{0}$, 3×10^{-4} for K→ $\mu^{+}\nu$.
- ↔ Hermetic photon veto: measured $\pi^0 \rightarrow \gamma\gamma$ decay suppression = 1.2×10^{-7} .
- ✤ Particle ID (RICH+LKr+HAC+MUV): ~10⁻⁷ muon suppression.

E. Goudzovski / Edinburgh, 21 Feb 2018

Overview of the NA62 physics programme

NA62 physics programme

- ♦ NA62 Run 2016–2018: focused on the "golden mode" $K^+ \rightarrow \pi^+ \nu \nu$.
 - $\checkmark\,$ Trigger bandwidth for other physics is limited.
 - ✓ Several measurements at SES~10⁻¹²: K⁺→ π^+ A' (A'→invisible), π^0 → $\nu\nu$.
 - ✓ Sensitivities to most rare/forbidden decays are behind $K^+ \rightarrow \pi^+ \nu \nu$ but still often world-leading (down to ~10⁻¹¹).
 - \checkmark NA62 is designed for searches: precision measurements are difficult.
 - ✓ But a few leading measurements with downscaled control triggers are possible (e.g. $K^+ \rightarrow \pi^+ \gamma \gamma$).
- NA62 Run 2021–2023: programme is under discussion. [Physics Beyond Colliders workshops @ CERN: Sep 2016, Mar 2017, Nov 2017]
 - \checkmark Existing apparatus with improved trigger logic.
 - ✓ Further data collection for $K^+ \rightarrow \pi^+ \nu \nu$ and rare/forbidden decays.
 - \checkmark A more selective trigger foreseen for forbidden decays.
 - ✓ Beam dump with ~10¹⁸ POT (=3 months of dedicated data collection): hidden sector (decays of long-lived HNL, DP, ALP).

Rare decay analyses

With downscaled control triggers

(a personal selection)

- ★ Measurements of $K^+ \rightarrow e^+ v \gamma$ and $K^+ \rightarrow \mu^+ v \gamma$ decays. [BR~10⁻⁵; world data: ~1k events in each SD mode]
- ★ Measurements of K⁺→ $\pi^{+}\pi^{-}\mu^{+}\nu$ and K⁺→ $\pi^{0}\pi^{0}\mu^{+}\nu$ decays. [BR~10⁻⁵; world data = 7 events published in K⁺→ $\pi^{+}\pi^{-}\mu^{+}\nu$ mode] [NA48/2 analysis in progress; improved vertex resolution at NA62 is instrumental]
- ★ Measurement of the K⁺→π⁺γγ decay. [BR~10⁻⁶; world data: ~400 events in total]

Precision measurements with main triggers: large data sets

- ★ Measurement of R_K=BR(K⁺→e⁺v)/BR(K⁺→µ⁺v). [sub-percent precision]
 ["Extremely difficult": BR~10⁻⁵; world data: ~200k decays]
- ★ Measurements of $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ and $K^+ \rightarrow \pi^+ e^+ e^-$ decays. ["Very difficult": BR~10⁻⁷; world data: ~4k and ~18k events]
- ★ Measurement of the π⁰→e⁺e⁻ decay. ["Difficult": BR~10⁻⁸; world data: ~800 events]
- ★ Measurement of the K⁺→π⁺γe⁺e⁻ decay. ["Easier": BR~10⁻⁸; world data: ~100 events]

Forbidden decay analyses

Forbidden K⁺ decays with large datasets

- Goal: improve over most existing limits (mainly from BNL E865, E777).
- ♦ Search for the LNV decay $K^+ \rightarrow \pi^- \mu^+ \mu^+$ [BR<8.6×10⁻¹¹, NA48/2@CERN]
- ♦ Search for the LNV decay $K^+ \rightarrow \pi^- e^+ e^+$ [BR<6.4×10⁻¹⁰]
- ★ Searches for LNV/LFV decays K⁺→πµe, including π^{0} →µe. [BR($\pi^{-}\mu^{+}e^{+}$)<5.0×10⁻¹⁰; BR($\pi^{+}\mu^{-}e^{+}$)<5.2×10⁻¹⁰; BR($\pi^{+}\mu^{+}e^{-}$)<1.3×10⁻¹¹] [BR(π^{0} → $\mu^{\pm}e^{\mp}$)<3.6×10⁻¹⁰, kTeV@FNAL]
- ★ Searches for $K^+ \rightarrow \mu^- \nu e^+ e^+$ and $K^+ \rightarrow e^- \nu \mu^+ \mu^+$ decays. [BR($\mu^- \nu e^+ e^+$)<1.9×10⁻⁸: Geneva-Saclay, 1976]
- ★ Searches for $\Delta S = \Delta Q$ violating decays $K^+ \rightarrow \pi^+ \pi^+ e^- \nu$ and $K^+ \rightarrow \pi^+ \pi^+ \mu^- \nu$. [BR($\pi^+ \pi^+ e^- \nu$)<1.3×10⁻⁸; BR($\pi^+ \pi^+ \mu^- \nu$)<3.0×10⁻⁶: ~50 years old]

Approximate statistical reach with the 2016–17 data sample: (for searches not dominated by backgrounds)

- ✤ Di-muon stream: ~2×10¹² K⁺ decays; SES~10⁻¹¹;
 ✤ Decays to µe and ee pairs: ~5×10¹¹ K⁺ decays; SES~10⁻¹⁰;
- Other 3-track decays: -5×10^{10} K⁺ decays; SES~10⁻⁹.
- NA62 is competitive for most of the above decay modes.

Hidden sector searches in K⁺ decay

(Further discussion: talks by Karim Massri and Angela Romano)

- ★ Long-lived dark scalars: $K^+ \rightarrow \pi^+ X$, with $X \rightarrow e^+e^-$, $X \rightarrow \mu^+\mu^-$. [Bezrukov and Gorbunov, JHEP 05 (2010) 010]
- Short-lived dark photon, O(10 MeV) QCD axion: K⁺→π⁺X, X→e⁺e⁻. [Batell, Pospelov, Ritz, PRD80 (2009) 095024] [Alves and Weiner, arXiv:1710.03764]
- ★ Short-lived dark vector/scalars in $K^+ \rightarrow \mu^+ \nu X$ and $K^+ \rightarrow \pi^+ \pi^0 X$, with $X \rightarrow e^+ e^-$. [Barger et al., PRL 108 (2012) 081802]
- Long-lived heavy neutral lepton (HNL) production:
 K⁺→ℓ⁺N, possibly with by N→πℓ.
 [Asaka et al., PLB631 (2005) 151]
 [First NA62 results on HNL production: PLB778 (2018) 137]
- ★ Searches for K⁺→e⁺vX (X=invisible) and K⁺→e⁺vvv decays: an extension of the HNL production search (K⁺→e⁺N).

K⁺ $\rightarrow \pi$ *l*: FCNC and LNV decays

The 2016 data sample (~20% of total expected sample)

- Dedicated di-lepton trigger lines used.
- Clear FCNC signals observed; backgrounds to FCNC and LNV decays are small.
- * Main background source: $K^+ \rightarrow \pi^+ \pi^+ \pi^-$, mainly outside signal regions.
- Mass resolutions very close to the nominal ones.
- ✤ NB: the LNV signal regions are blinded.

Search for K⁺ $\rightarrow \pi \mu e$ decays

On-going analysis of a partial 2016–17 sample with 2.5×10¹¹ kaon decays:

- Every analysis is individual as the NA62 setup is not charge-symmetric (including PID with the RICH detector).
- ↔ Multiple background sources to be considered in the $\pi^-\mu^+e^+$ and $\pi^+\mu^+e^-$ channels.
- Background contributions from K_{3π}, K_{2πD},
 K_{µ3D}, K_{e4}, K_{µ4}, K_{πee}, K_{µvee} decays identified.

Searches for heavy neutral lepton production

Result based on the 2015 data: Phys. Lett. B778 (2018) 137

Heavy neutral leptons in vMSM

$K^+ \rightarrow \ell^+ N$ data samples

- Minimum bias data (1% intensity); 12k SPS spills (=5 days) in 2015.
- Numbers of K⁺ decays in fiducial volume: N_K=(3.01±0.11)×10⁸ in positron case; N_K=(1.06±0.12)×10⁸ in muon case.
- Beam tracker not available: kaon momentum is estimated as the beam average.
- HNL production signal: a spike above continuous missing mass spectrum.

$K^+ \rightarrow \ell^+ N$: resolution & acceptance

Selection for each HNL mass hypothesis (m_{HNL}) includes the "mass window" condition: |m-m_{HNL}|<1.5σ_m: background is proportional to mass resolution.
 Also, resolution is crucial to resolve possible HNL mass splitting [Baryogenesis: 2 quasi-degenerate mass states; Canetti et al., PRD87(2013)093006] 14

E. Goudzovski / Edinburgh, 21 Feb 2018

Statistical analysis

- Expected background (and stat.error) estimated from fits to the sidebands numbers of observed and expected events converted into signal CI.
- Background simulations used to certify the absence of peaking structures.
- ✤ Full MC background estimate would allow a measurement of K⁺→ℓ⁺vvv. 15
 E. Goudzovski / Edinburgh, 21 Feb 2018

HNL production search: results

NA62 collaboration, Phys. Lett. B778 (2018) 137

6

HNLs: prospects with full dataset

In comparison to the 2015 data set:

- Beam tracker (GTK) in operation:
 - ✓ a factor ~2 improved HNL mass resolution σ_m , therefore lower background and broader mass range is accessible;
 - ✓ a factor ~3 lower background in the $K^+ \rightarrow e^+ N$ mode ($K^+ \rightarrow \mu^+ \nu$, $\mu^+ \rightarrow e^+ \nu \nu$: muon decays in flight rejected geometrically);
 - \checkmark lower background from upstream decays in the $K^{\scriptscriptstyle +}{\rightarrow}\mu^{\scriptscriptstyle +}N$ mode.
- Much larger datasets:
 - ✓ In the K⁺→e⁺N mode, the main K⁺→ $\pi^+\nu\nu$ trigger can be used (with reduced signal acceptance: max calorimetric energy = 30 GeV): expect at least ~2×10⁶ K⁺→e⁺ ν events, i.e. a factor ~1000 improvement.
 - ✓ In the K⁺→ μ ⁺N mode, downscaled control trigger only (D=400): expect ~10⁹ K⁺→ μ ⁺ ν events, i.e. a factor ~100 improvement.

Expected sensitivities to |U_{{4}|² with 2016–18 data:

~10^-9 for $|U_{e4}|^2$, ~10⁻⁸ for $|U_{\mu4}|^2$

Large data sets already collected; analysis is in progress

Summary

- First NA62 physics run (2016–18) is in progress: a large data sample collected; more data to be collected in 2018.
- * A discovery experiment focused on $K_{\pi\nu\nu}$ measurement (SES~10⁻¹²): extreme beam intensity; sizeable trigger inefficiencies. Precision rare decay measurements are difficult; some are within reach.
- Searches for LF/LN violation in 3-track decays: analyses are in progress; aiming to reach 10⁻¹⁰...10⁻¹¹ sensitivities, improving over the world limits.
- ✤ A programme of hidden sector searches in kaon decays is starting.
- ❖ First result: HNL production in K⁺→ℓ⁺N decays. [PLB778 (2018) 137] Sub-10⁻⁶ limits reached, expect ~2 orders of magnitude improvement.