Searches for Lepton Number Violation and resonances in the $K^{\pm} \rightarrow \pi \mu \mu$ decays by NA48/2 at CERN

Karim Massri – CERN

(email: karim.massri@cern.ch)

Outline:

- The NA48/2 experiment
- Theoretical Motivations
- Search for LNV $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ decay Majorana neutrinos
- Search for resonances in $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ decays
- Prospects for the NA62 experiment

1st Forum on Rare Kaon Decays – Edinburgh, UK – 22/02/2018

Introduction – The NA48/NA62 experiments @ CERN

NA62 👰 The NA48/NA62 experiments @ CERN

<u>Main NA48/2 physics goal</u>: Search for direct CPV in $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ and $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ decays Main triggers: 3-track vertex, $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

World largest $K^{\pm} \rightarrow 3$ -tracks sample: Ideal environment for $K^{\pm} \rightarrow \pi \ell \ell$ studies

22/02/2018

The NA48/2 detector

Narrow momentum band K[±] beams: $P_K = 60 \text{ GeV/c}, \delta P_K / P_K \sim 4\% \text{ (rms)}$ Nominal K[±] decay rate: ~ 100 kHz Simultaneous K⁺/K⁻ beams

Principal sub-detectors:

- Spectrometer (4 DCHs) $\sigma_p/p = 1.02\% \oplus 0.044\%$ p(GeV) 4 views/DCH: redundancy \rightarrow efficiency
- Scintillator Hodoscope

Fast trigger, time measurement $\sigma_t \sim 150 \text{ ps}$

• LKr EM calorimeter

High-granularity, quasi-homogeneous $\sigma_{\rm E}/E = 3.2\%/\sqrt{E(\text{GeV})} \oplus 9\%/E(\text{GeV}) \oplus 0.42\%$ $\sigma_{\rm x} = \sigma_{\rm y} = 4.2\text{mm}/\sqrt{E(\text{GeV})} \oplus 0.6\text{mm} (1.5\text{mm} @ 10 \text{ GeV})$

22% of kaons decay in 114m-long vacuum tank upstream the detector

22/02/2018

CHARM

NuTeV

BAU

Majorana Neutrinos

Asaka-Shaposhnikov model (vMSM) [Asaka and Shaposhnikov, PLB 620 (2005) 17]: Dark Matter + Baryon Asymmetry of the Universe (BAU) + low mass of SM v can be explained by adding three sterile Majorana neutrinos N_i to the SM Gorbunov & Timiryasov, PLB 745 (2015) 29

• N_1 is the lightest $O(keV) \rightarrow Dark$ Matter candidate

• N_2 , N_3 are nearly degenerate (100 MeV to few GeV) to tune CPV-phases and extra-CKM sources of baryon asymmetry. N_2 , N_3 produce standard neutrino masses ⁵ through seesaw with a Yukawa coupling of ~ 10⁻⁸

 10^{-6}

 10^{-8}

Inflatons

Shaposhnikov-Tkachev model [Shaposhnikov and Tkachev, PLB 639 (2006) 414]: vMSM + a real scalar field (inflaton χ) with scale-invariant couplings Explains Universe homogeneity and isotropy on large scales/structures on smaller scales

The NA48/2 same-sign muons sample (LNV)

Basic principles of the searches:

- Fully reconstructed final states, 3-track vertex topology
- Similar topology to normalisation channel $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$
 - → First-order cancellation of systematic effects (trigger inefficiency, etc)

DCH1 DCH2 π \overline{B} \overline{p} mis-reconstruction

Search for Lepton Number Violation – Majorana neutrinos

- <u>Method</u>: exclusive search for the $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ decay
- <u>Main background</u>: $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ with $2 \pi^{\pm} \rightarrow \mu^{\pm}\nu$ decays (one within the Spectrometer)

22/02/2018

The same-sign muons sample (LNV)

• **Expected background:** Additional $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ MC sample (10¹⁰ events) dedicated to evaluation of number of expected $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ events in Signal Region

Upper Limit on BR($K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$)

$BR(K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}) < 8.6 \times 10^{-11} @ 90\% CL$

22/02/2018

NA62 🗛 The NA48/2 opposite-sign muons sample (LNC)

Basic principles of the searches:

- Fully reconstructed final states, 3-track vertex topology
- Similar topology to normalisation channel $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$
 - \rightarrow First-order cancellation of systematic effects (trigger inefficiency, etc)

Search for resonances in $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ decays

- <u>Method</u>: exclusive search for the decay chains $K^{\pm} \rightarrow \mu^{\pm} N_{A}(N_{A} \rightarrow \pi^{\pm} \mu^{\mp}), K^{\pm} \rightarrow \pi^{\pm} X(X \rightarrow \mu^{+} \mu^{-})$
- <u>Main background</u>: $\mathbf{K}^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ (**irreducible**) \rightarrow Limited sensitivity
- <u>Sensitivity</u>: UL on BR(K[±] $\rightarrow \mu^{\pm}N_{4}$)×BR(N₄ $\rightarrow \pi^{\pm}\mu^{\mp}$) UL on BR(K[±] $\rightarrow \pi^{\pm}X$)×BR(X $\rightarrow \mu^{+}\mu^{-}$) $\rightarrow \sim \frac{\sqrt{BR(K^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-})}}{\sqrt{N_{K}*Acceptance}}\sqrt{\frac{\sigma(M_{res})}{m_{K}-(m_{\pi}+2m_{\mu})}}$

NA62 The opposite-sign muons selection (LNC)

Basic principles:

- Based on selected $K^{\pm} \rightarrow \pi \mu \mu$ candidates. Variable step = $0.5\sigma(M_{res})$ and window = $\pm 2\sigma(M_{res})$
- For each M_{res} : Observed events in data (N_{obs}) vs Expected events from MC $(N_{exp}) \rightarrow UL(N_{sig})$
- Rolke-Lopez statistical treatment used in each mass hypothesis M_{res} to get UL(N_{sig})

Search for Lepton Number Violation/Majorana neutrinos [284 mass hypotheses M_{res} tested]

- 2 possibilities in building $M(\pi^{\mp}\mu^{\pm})$ [same-sign μ s]: closest invariant mass to M_{res} considered Search for resonances in $K^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ decays [267 hypotheses for $M(\pi^{\pm}\mu^{\mp})$, 280 for $M(\mu^{+}\mu^{-})$]
- The distributions of both invariant masses $M(\pi^{\pm}\mu^{\mp})$ and $M(\mu^{+}\mu^{-})$ are probed

 $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-} MC$ uses form factors extracted from the selected data sample to obtain best data/MC agreement

8 4 **5** 7

22/02/2018

Search for $K^{\pm} \rightarrow \mu^{\pm} N_4(N_4 \rightarrow \pi^{\mp} \mu^{\pm})$ decays

NA62

Search for $K^{\pm} \rightarrow \mu^{\pm} N_4(N_4 \rightarrow \pi^{\pm} \mu^{\mp})$ decays

NA6Z

Search for $K \rightarrow \pi^{\pm}X(X \rightarrow \mu^{+}\mu^{-})$ decays

NA6Z Limits on θ^2 from $K^{\pm} \rightarrow \pi^{\pm}X(X \rightarrow \mu^{+}\mu^{-})$

Karim Massri – First Forum on Rare Kaon Decays – Edinburgh, UK

Search for Lepton Number Violation – Majorana neutrinos

- <u>Main background</u>: $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ with $2 \pi^{\pm} \rightarrow \mu^{\pm}\nu$ decays (one within the Spectrometer)
- <u>Sensitivity:</u> UL on BR($K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$) UL on BR($K^{\pm} \rightarrow \mu^{\pm} N_{4}$)×BR($N_{4} \rightarrow \pi^{\mp} \mu^{\pm}$) $\rightarrow \frac{1}{N_{K} * Acceptance}$

Search for resonances in $K^\pm\!\rightarrow\!\pi^\pm\!\mu^+\!\mu^-$ decays

- <u>Main background</u>: $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ (**irreducible**) \rightarrow Limited sensitivity
- <u>Sensitivity</u>: UL on BR(K[±] $\rightarrow \mu^{\pm}N_{4}$)×BR(N₄ $\rightarrow \pi^{\pm}\mu^{\mp}$) UL on BR(K[±] $\rightarrow \pi^{\pm}X$)×BR(X $\rightarrow \mu^{+}\mu^{-}$) $\rightarrow \frac{\sqrt{BR(K^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-})}}{\sqrt{N_{K}*Acceptance}}\sqrt{\frac{\sigma(M_{res})}{m_{K}-(m_{\pi}+2m_{\mu})}}$

NA62 expectations (from C. Parkinson numbers):

•
$$N_{NA62}(K_{\pi\mu\mu}) \sim 7 \times N_{NA48/2}(K_{\pi\mu\mu})$$

- $\operatorname{Acc}_{\operatorname{NA62}}(\operatorname{K}_{\pi\mu\mu}) \sim 0.8 \times \operatorname{Acc}_{\operatorname{NA48/2}}(\operatorname{K}_{\pi\mu\mu}) \geq$
- $\sigma_{_{NA62}}(M_{_{\pi\mu\mu}}) \sim 0.5 \times \sigma_{_{NA48/2}}(M_{_{\pi\mu\mu}})$

$$SES_{NA62}(LNV) \sim 0.2 \times SES_{NA48/2}(LNV)$$
$$SES_{NA62}(LNC) \sim 0.3 \times SES_{NA48/2}(LNC)$$

Conclusions

The NA48/2 experiment at CERN was exposed to ~ 2×10^{11} K[±] decays in 2003-2004

- <u>NA48/2 results presented:</u> [Batley et al., PLB 769 (2017) 67]
 - Search for LNV $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ decay:
 - $BR(K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}) < 8.6 \times 10^{-11} @ 90\% CL$ [World Best Limit]
 - Factor of 10 improvement with respect to previous best limit $[1.1 \times 10^{-9} @ 90\% CL]$
 - Search for $K^{\pm} \rightarrow \mu^{\pm} N_4(N_4 \rightarrow \pi^{\mp} \mu^{\pm})$ decays [Majorana neutrinos]
 - Limits on BR products of the order of 10^{-10} for neutrino lifetimes < 100 ps
 - Search for $K^{\pm} \rightarrow \mu^{\pm} N_4^{}(N_4^{} \rightarrow \pi^{\pm} \mu^{\mp})$ decays [LNC heavy neutrinos]
 - Limits on BR products of the order of 10^{-9} for neutrino lifetimes < 100 ps
 - Search for $K \rightarrow \pi^{\pm}X(X \rightarrow \mu^{+}\mu^{-})$ decays [Inflatons, ...]
 - Limits on BR products of the order of 10^{-9} for resonance lifetimes < 100 ps

• Prospects for the new NA62 experiment (See next talk by C. Parkinson):

- NA62 will collect the world-largest K⁺ decay sample (~ 10^{13}) in 3 years of data taking
- Major beam and detector upgrades for $K^+ \rightarrow \pi^+ v \bar{v}$: improved performances
- Possible improvements to the present limits by a factor $\sim \times 3-5$

22/02/2018