Two-tracks strange decays at LHCb

Miguel Ramos Pernas

Universidade de Santiago de Compostela

miguel.ramos.pernas@cern.ch

First forum on kaon decays

Edinburgh, February 22, 2018

European Research Council

Established by the European Commission

Outline

- The LHCb detector
- Strange decays at LHCb
- OBC Decays
 - $$\begin{split} K^0_S &\to \mu^+ \mu^- \\ K^0_S &\to \pi^0 \mu^+ \mu^- \end{split}$$

Semileptonic hyperon decays and $K^0_S
ightarrow \pi^+ \mu^- \bar{\nu}$

• Prospects for the upgrade

G Conclusions

For more about strange decays at LHCb see Francesco's talk.

Miguel Ramos Pernas

Two-tracks strange decays at LHCb

Miguel Ramos Pernas

Two-tracks strange decays at LHCb

The LHCb conditions for Run-I

- LHCb is optimized to study heavy flavour decays
- L0 trigger requires high p_T tracks (very inefficient to study strange decays)
- No dedicated trigger lines to study strange hadrons
- Trigger selections mainly based on topological inclusive lines and data triggered by the rest of the event (e.g. $K_S^0 \rightarrow \mu^+\mu^-$ analysis from 2011)
- Some HLT lines tuned to increase the efficiency for 2012

$K^0_S o \mu^+ \mu^-$

- Flavour-changing neutral current (FCNC) transition
- Dominated by long distance contributions through $K^0_{S/L} \to \gamma \gamma$
- SM prediction: $\mathcal{B}(K_S^0 \to \mu^+ \mu^-) = (5.18 \pm 1.50 \pm 0.02) \times 10^{-12}$ [Nucl. Phys. B366 (1991) 189] [JHEP 01 (2004) 009] [Phys. Rev. Lett. 119, 201802 (2017)]

Figure: (a): Long distance contribution. (b) Short distance contributions. [JHEP 01 (2004) 009]

$K^0_S ightarrow \mu^+ \mu^-$ in BSM

 $\mathcal{B}(K_S^0 \to \mu^+ \mu^-)$ helps to kill models with leptoquarks [arXiv:1712.01295], or supersymmetric contributions [arXiv:1711.11030], [arXiv:1712.04959].

Study of the interference between $K_L^0 \to \mu^+ \mu^-$ and $K_S^0 \to \mu^+ \mu^-$ allows to determine sign $(A_{L\gamma\gamma}^{\mu})$.

$$\mathcal{B}\left(K_{S}^{0} \to \mu^{+}\mu^{-}\right) = (5.18 \pm 1.50 \pm 0.02) \times 10^{-12}$$

$$\mathcal{B}\left(K_{L}^{0} \to \mu^{+}\mu^{-}\right) = \begin{cases} (6.85 \pm 0.80 \pm 0.06) \times 10^{-9} & \text{if } A_{L\gamma\gamma}^{\mu} > 0 \\ (8.11 \pm 1.49 \pm 0.13) \times 10^{-9} & \text{if } A_{L\gamma\gamma}^{\mu} < 0 \end{cases} \xrightarrow{A_{L\gamma\gamma}^{\mu} = \text{sign}\left(\frac{\mathcal{A}(K_{L}^{0} \to \gamma\gamma)}{\mathcal{A}(K_{L}^{0} \to (\pi^{0})^{*} \to \gamma\gamma)}\right) \end{cases}$$

$K^0_S ightarrow \mu^+ \mu^-$ backgrounds

- Very good resolution around the K_S^0 mass (~ 4MeV/c²).
- Low soft-QCD background level at LHCb.
- For the moment, the only significant contribution is $K_S^0 \rightarrow \pi^+\pi^-$ where the two pions are misidentified as muons.

- $K^0_L \to \mu^+ \mu^-$: effective branching fraction $\sim 2 \times 10^{-11}$, below the current sensitivity
- $\Lambda^0 \rightarrow p\pi^-$: removed with cuts in the Armenteros-Podolanski plane.
- $K^0 \to \pi^+ \mu^- \bar{\nu}$: no candidate survives the trigger selection. Even in the hypothesis $\varepsilon_{K^0 \to \pi^+ \mu^- \bar{\nu}}^{\text{trig}} = \varepsilon_{K^0_S \to \mu^+ \mu^-}^{\text{trig}}$, the expected yields are negligible.
- $\eta \rightarrow \mu^+ \mu^- \gamma$ and $\omega \rightarrow \pi^0 \mu^+ \mu^-$: prompt decays can be removed with a cut on the flight distance. Detached production from charm decays is negligible.

$K^0_S o \pi^+\pi^-$ as $K^0_S o \mu^+\mu^-$

- $K_S^0 \to \pi^+\pi^-$ is the most dangerous background to study $K_S^0 \to \mu^+\mu^-$ at LHCb.
- Background produced by doubly-misidentifying of the two pions.
- Two different sources: decays in flight and incorrect assignment of clusters in the muon chambers.

 $K^0_S
ightarrow \pi^+\pi^-$ as $K^0_S
ightarrow \mu^+\mu^-$

- $K_S^0 \to \pi^+\pi^-$ is the most dangerous background to study $K_S^0 \to \mu^+\mu^-$ at LHCb.
- Background produced by doubly-misidentifying of the two pions.
- Two different sources: decays in flight and incorrect assignment of clusters in the muon chambers.

$$K^0_S o \pi^+\pi^-$$
 as $K^0_S o \mu^+\mu^-$

- $K_S^0 \to \pi^+\pi^-$ is the most dangerous background to study $K_S^0 \to \mu^+\mu^-$ at LHCb.
- Background produced by doubly-misidentifying of the two pions.
- Two different sources: decays in flight and incorrect assignment of clusters in the muon chambers.

New muon identification algorithm for 2012 and beyond

- · Muon ID algorithms at LHCb were optimized for heavy flavour decays
- In 2012, an algorithm was designed to increase the efficiencies on strange decays

$K^0_S ightarrow \mu^+ \mu^-$ in Run-I

- Last analysis includes data in 2012 conditions: 2 fb $^{-1}$ at 8 TeV
- Follows the previous study from 2011 [JHEP 01 (2013) 090]
- Normalized to $K^0_S \to \pi^+\pi^-$
- Fit done in bins of two MVA discriminants for two different trigger selections (20 bins in total)
- Result from 2011 (as a posterior probability) is considered as a prior in the $\mathcal{B}(K_S^0 \to \mu^+ \mu^-)$

$K^0_S ightarrow \mu^+ \mu^-$ new limit

- Limit set from the $\mathcal{B}\left(K^0_S \to \mu^+ \mu^-\right)$ likelihood profile
- New world best limit:

 $\mathcal{B}\left(K^0_S \to \mu^+ \mu^-\right) < 0.8(1.0) \times 10^{-9} \text{ at } 90(95)\%$ of CL

• Factor of ~ 400 of improvement with respect to the best limit before LHCb [PLB44 (1973) 217], and ~ 10 with respect to the previous LHCb measurement [JHEP 01 (2013) 090]

$K^0_S ightarrow \mu^+ \mu^-$ in a nutshell

$$K^0_S o \pi^0 \mu^+ \mu^-$$

 $\mathcal{B}\left(K^0_L\to\pi^0\mu^+\mu^-\right)$ has a variation of ~ 1 order of magnitude in models with extra dimensions.

$$\begin{split} \mathcal{B}\left(K_L^0 \to \pi^0 l^+ l^-\right)_{\mathsf{SM}} &= \left(C_{\mathsf{dir}}^l \pm C_{\mathsf{int}}^l |\boldsymbol{a}_{S}| + C_{\mathsf{mix}}^l |\boldsymbol{a}_{S}|^2 + C_{\gamma\gamma}^l + C_{S}^l\right) \times 10^{-12} \end{split}$$

$$\begin{split} |a_S| &= 1.2 \pm 0.2 \text{ dominates the theoretical} \\ \text{uncertainty. Comes from the measurements} \\ \text{of } \mathcal{B} \left(K_S^0 \to \pi^0 l^+ l^- \right). \end{split}$$

Randall-Sundrum model

- Large uncertainties on $\mathcal{B}\left(K_S^0 \to \pi^0 \mu^+ \mu^-\right) = 2.9^{+1.5}_{-1.2} \times 10^{-9}$ (NA48) [Phys. Lett. B599 (2004) 197]
- · Current kaon experiments do not expect to improve such measurement
- Last year, a sensitivity study was done at LHCb

$K^0_S ightarrow \pi^0 \mu^+ \mu^-$ strategy

Low reconstruction efficiency of $\pi^0 \rightarrow \gamma \gamma$ at LHCb

• The K_{s}^{0} mass does not depend too much on the information from the π^0

[CERN-LHCb-PUB-2016-017]

Two different strategies adopted:

- FULL: Include the information from the π^0 , Run-I 3 fb⁻¹
- PARTIAL: Add a virtual particle with $p \sim 10 \text{ GeV/c}$ (provides the best $M_{\pi^0 \mu^+ \mu^-}$ resolution), Run-II 0.3 fb $^{-1}$

Clean and very promising decay

- $K^0_S \to \pi^+\pi^-$: both pions are misidentified as muons. No evidence is seen in the fit.
- $K^0 \rightarrow \mu^+ \mu^- \gamma \gamma$: in the K^0_L case, the effective branching fraction turns $\mathcal{O}(10^{-11})$. No measurement of the K^0_S mode has been done, expected to be $\sim 4.8 \times 10^{-11}$.
- $K_L^0 \to \pi^0 \pi^+ \pi^-$: No resonant structure is seen on data. Sensitivity does not change if this component is included.

• Main source of background is purely combinatorial.

$K^0_S ightarrow \pi^0 \mu^+ \mu^-$ analysis

- · Analysis done taking into account events triggered independently on the signal decay
- This ensures an almost trigger-unbiased sample
- · Uncertainty obtained from fits to pseudo-experiments
- Expected signal is calculated from the NA48 measurement [Phys. Lett. B599 (2004) 197]

$$N_{\rm sig} = \frac{\mathcal{B}(K^0_S \to \pi^0 \mu^+ \mu^-)}{\mathcal{B}(K^0_S \to \pi^+ \pi^-)} \frac{\epsilon_{K^0_S \to \pi^0 \mu^+ \mu^-}}{\epsilon_{K^0_S \to \pi^+ \pi^-}} N(K^0_S \to \pi^+ \pi^-) \frac{\mathcal{L}_{\rm fut}}{\mathcal{L}_{\rm curr}}$$

• Background yields are extrapolated for a desired luminosity and trigger efficiency

$K^0_S o \pi^0 \mu^+ \mu^-$ prospects

- The PARTIAL strategy seems the way to go
- Beating the NA48 measurement [Phys. Lett. B599 (2004) 197] is possible in the upgrade ${\cal L}_{eff}>5~{\rm fb}^{-1}$

Efficiency	$K_S^0 \rightarrow \mu^+ \mu^-$	$K_S^0 \rightarrow \pi^0 \mu^+ \mu^-$
LO	0.361 ± 0.004	0.344 ± 0.009
HLT1/L0	0.699 ± 0.007	0.705 ± 0.015
HLT1/L0 (old)	0.274 ± 0.006	0.299 ± 0.015
HLT2/HLT1	0.9898 ± 0.0017	0.983 ± 0.005
HLT2/HLT1 (old)	0.293 ± 0.013	0.26 ± 0.03
global	0.250 ± 0.004	0.238 ± 0.008
global (old)	0.0290 ± 0.0015	0.026 ± 0.003

green: trigger with new lines

red: trigger without new lines

- Big increase on the efficiencies: a factor ~ 2.4 for HLT1 and ~ 3.5 for HLT2
- Total efficiency increased by a factor ~ 10

Prospects on semileptonic hyperon decays

- Semileptonic hyperon decays can be probes of TeV scales complementary to kaons
- Vast room of improvement on many decays (specially the muonic modes $\delta B/B \sim [10, 100]\%$)
- Rare hyperon decays... still unexplored
- Possibilities to study
 - $\Lambda^0 \to p \mu^- \bar{\nu}$
 - $\Xi^- \rightarrow \Lambda^0 \mu^- \bar{\nu}$
- No dedicated trigger lines ($\mathcal{B} \sim 10^{-4}$)

$$\epsilon_S^{S\mu} = 0.003(40) \qquad \epsilon_T^{S\mu} = 0.017(34)$$

Nothing published so far, but some benchmarks have been set for Run-II

Miguel Ramos Pernas

Two-tracks strange decays at LHCb

Prospects on $K^0_S o \pi^+ \mu^- ar{
u}$

No measurement of $K_S^0 \rightarrow \pi^+ \mu^- \bar{\nu}$ at present!
$$\begin{split} \delta & \quad \text{CPT violation in mixing} \\ y & \quad \text{CPT violation in decay with } \Delta S = \Delta Q \\ x_- & \quad \Delta S \neq \Delta Q \text{ with CPT violation} \\ A_S & \quad \frac{\mathcal{B}(K^0_S \to \pi^- \mu^+ \nu_\mu) - \mathcal{B}(K^0_S \to \pi^+ \mu^- \bar{\nu}_\mu)}{\mathcal{B}(K^0_S \to \pi^- \mu^+ \nu_\mu) + \mathcal{B}(K^0_S \to \pi^+ \mu^- \bar{\nu}_\mu)} \end{split}$$

	Goal	Implications
V_{us} and $\Delta S = \Delta Q$	$\delta \mathcal{B} < 0.4\%$	Reduce error on V_{us}
СРТ	$A_S \sim 0.1\%$	Reduce uncertainty on $\mathcal{R}(x)$ and $\mathcal{R}(y)$, and push down $\mathcal{R}(\delta)$
LFU	$\delta \mathcal{B} \sim 0.5\%$	Competitive with K_L^0 measurements

Main issues at LHCb are:

- Irreducible background from $K_L^0 \to \pi^+ \mu^- \bar{\nu}$
- Also expect a huge background from $K^0_S \to \pi^+\pi^-$
- No dedicated trigger lines ($\mathcal{B} \sim 10^{-4}$)

The upgrade trigger benefits a lot the strange program

- Replacement of inclusive triggers (general) by exclusive (focused on each decay)
- Only the requested information from the event is saved
- Removal of p_T cuts at the trigger level allows to reach much higher efficiencies
- More efficient particle identification and reconstruction algorithms at low- p_T

Conclusions

- The LHCb has produced a large number of publications in two years on this topic
- Some studies using Run-II data currently ongoing
- The Run-II trigger allows to improve the efficiencies on $K^0_S \to \mu^+\mu^-$ and $K^0_S \to \pi^0\mu^+\mu^-$
- Benchmark set for the study of semileptonic hyperon decays as well as for $K^0_S \to \pi^+ \mu^- \bar{\nu}$
- A full software trigger will benefit a lot the study of strange decays at LHCb

BACKUP

Track types at LHCb

Trigger definitions

$K^0_S ightarrow \mu^+ \mu^-$ mass plots

[Eur. Phys. J. C (2017) 77: 678]

(First forum on kaon decays, Edinburgh, February 22, 2018)

$K^0_S ightarrow \pi^0 \mu^+ \mu^-$ mass plots FULL

[CERN-LHCb-PUB-2016-017]

$K^0_S ightarrow \pi^0 \mu^+ \mu^-$ mass plots PARTIAL

[CERN-LHCb-PUB-2016-017]