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1. Seeing the Unseen at Colliders

(First, a few comments on the Triumph of the Standard Model at Accelerators)

• High energy accelerators offer the most direct window to short-lived quantum processes.

• The strategy of probing matter at short distances has resulted in the identification/discovery
of the gauge and matter fields of the Standard Model

• Accelerator programs, however complex and costly, remain experiments following
scientific canon. They are capable of design, replication and variation in response to the
demands of nature and the imagination.

• I will review a little of how quantum field theory is applied in accelerator experiments,
and how jets emerge in final states and what they tell us.
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We can sum it up with a picture worth a thousand words:

From SU(3) color through the Higgs into SU(2)L × U(1).

Every observed final state is the result of a quantum-mechanical set of stories, and so
far the stories supplied by the Standard Model, built on an unbroken SU(3) color gauge
theory (very much like the original Yang-Mills Lagrangian) and a spontaneously-broken
SU(2)L × U(1), account for all observations at accelerators.
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And recently, Z + H → bb̄ as revealed in boosted dijet decays:
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• This could be the “end of the story”, except:

– Cosmological observations strongly suggest that there are other sources of gravitation
in the universe: Dark Matter; Dark Energy, and (optionally) the mystery of flavor.

– The mass of the Higgs particle in the Standard Model in isolation is unstable to
overwhelming quantum corrections. So, what to expect?

– This distress with the “hierarchy problem” of the Standard Model may be compared
to 17th Century objections to action at a distance in Newtonian gravity. It comes
from profound intuition, but does not immediately suggest a resolution.

– Putting all this aside, as the progress of science put gravitational action at a distance
aside until 1915, the success is extraordinary. And resolutions of the Standard Model’s
puzzles, and even of Dark Matter, may in the fulness of time come from theories with
many or most of the Standard Model’s properties, or generalization inspired by it..

– Let’s return to how we got to this stage, how we learned to recount the stories
that lead to the Standard Model’s successes, and the role of particle jets in these
developments.
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THE PARTICLE CONTENT OF THE STANDARD MODEL:
OBSERVED AND THE INFERRED

The six quarks in the upper left-hand corner are not seen in isolation, although five have
lifetimes long enough to be “seen”. The original three were inferred as an alphabet for
bound states in the “quark model (Gell Mann & Zweig) from the mid-1960s.
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• The Standard Model developed through the latter half of the Twentieth Century in par-
allel with modern field-theoretic ideas of flow: couplings within theories (renormalization
group) and between theories (Wilsonian).

• A primary theme of Twenty-first Century physics is strongly coupled theories with emer-
gent degrees of freedom. This is part and parcel of the contemporary understanding of
the strong interactions.

• The historic picture of strong interactions: nucleons, nuclei bound by meson exchange,
with multiple excitations evolved into:

• THE QUARK MODEL, with (mostly) qqq′ baryons and qq̄′ mesons.

• QUANTUM CHROMODYNAMICS a part of the Standard Model, is in some ways the
exemplary QFT, still not fully understood, but illustrating the fundamental realization
that quantum field theories are protean: manifesting themselves differently on different
length scales, yet experimentally accessible at all scales.
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• To make a long story short: Quantum Chromodynamics (QCD) reconciled the irrecon-
cilable. Here was the problem.

1. Quarks and gluons explain spectroscopy, but aren’t seen directly – confinement.

2. In highly (“deep”) inelastic, electron-proton scattering, the inclusive cross section
was found to well-approximated by lowest-order elastic scattering of point-like (spin-
1/2) particles (=“partons” = quarks here) a result called “scaling”:

dσe+p(Q, p · q)
dQ2

|inclusive ∝ F
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
dσfree

e+spin 1
2

dQ2
|elastic

!!"#

$!%#

$!%&#

XP

Photon exchange

!"#$

%"&$

"&'$

()

*'+(),#

)

e

g

• If the “spin-1
2

is a quark, how can a confined quark scatter freely?
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• This paradoxical combination of confined bound states at long distances and nearly free
behavior at short distances was explained by asymptotic freedom: In QCD, the force
between quarks behaves at short distances like

F (r) ∼ αs(r)

r2
, αs(r

2) =
4π

ln
(

1
r2λ2

)

where Λ ∼ 0.2 GeV. For distances much less than 1/(0.2GeV ) ∼ 10−8cm the force
weakens. These are distances that began to be probed in deep inelastic scattering
experiments at SLAC in the 1970s.

• The short explanation of DIS: Over the times ct ≤ h̄/GeV it takes the electron to scatter
from a quark-parton, the quark really does seem free. Later, the quark is eventually
confined, but by then it’s too late to change the probability for an event that has already
happened.

• The function F (x) is interpreted as the probability to find quark of momentum xP in a
target of total momentum P – a parton distribution.
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• To explore further, SLAC used the quantum mechanical credo: anything that can happen,
will.

• Quarks have electric charge, so if they are there to be produced, they will be. This
can happen when colliding electron-positron pairs annihilate to a virtual photon, which
ungratefully decays to just anything with charge

3.0 STUDY OF QCD IN HADRON PRODUCTION 

3.1 Testing the QCD Differential Cross Section 

3.2 The Strong Interaction Coupling Constant 

3.3 Quark and Gluon Fragmentation 

3.4 Characteristics of the Final State Hadrons 

4.0 ELECTROWEAK INTERACTIONS 

4.1 Bhabha Scattering 

4.2 Muon and Tau Pair Production 

4.3 Charge Asymmetry 

4.4 Interpretation of Leptonic Data 

4.5 Electroweak Reactions of Quarks 

4.6 B Meson Lifetime Limit 

4.7 Production of Leptons in Hadronic Events 

4.8 Search for Structure in the Fermions 

4.9 Search for Symmetry Breaking Scalars. 

1.0 SIMPLE ELECTRON POSITRON INTERACTION 

At high energies, the dominant processes electron positron 

collisions are particularly simple. Most of the interactions which 

we measure are fermion pair production, calculable using the 

Feynman diagram below. 

f 
The electron and positron annihilate forming a virtual photon which 

has a mass equal to the center of mass energy. This photon may 

then decay into any pair of charged fermions that is energetically 

allowed. The processes of this sort which have been observed at 

PETRA are 

370 

j
EM

• But of course because of confinements its not that. But more generally, we believe that
a virtual photon decays through a local operator: jem(x) .

• This enables translating measurements into correlation functions . . . In fact, the cross
section for electron-positron annihilation probes the vacuum with an electromagnetic
current.
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• On the one hand, all final states are familiar hadrons, with nothing special about them
to tell the tale of QCD, |N〉 = |pions, protons . . .〉,

σe+e−→ hadrons(Q) ∝ ∑

N
|〈0|jµem(0)|N〉|2 δ4(Q− pN)

• On the other hand,
∑
N |N〉〈N | = 1, and using translation invariance this gives

σe+e−→ hadrons(Q) ∝
∫
d4x e−iQ·x 〈0|jµem(0) jµem(x)|0〉

• We are probing the vacuum at short distances, imposed by the Fourier transform as
Q→∞. The currents are only a distance 1/Q apart.

• Asymptotic freedom suggests a “free” result: QCD at lowest order (“quark-parton
model”) at cm. energy Q and angle θ

σtote+e−→hadrons =
4πα2

EM

3Q2
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• This works for σtot to quite a good approximation (with calculable corrections)

51. Plots of cross sections and related quantities 5

σ and R in e+e− Collisions
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Figure 51.5: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2015. Corrections
by P. Janot (CERN) and M. Schmitt (Northwestern U.))

Green line is 
parton model

• So the “free” theory again describes the inclusive sum over confined (nonperturbative)
bound states – another “paradox”.
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• Is there an imprint on these states of their origin? Yes. What to look for? The spin of
the quarks is imprinted in their angular distribution:

dσ(Q)

d cos θ
=

πα2
EM

2Q2

(
1 + cos2 θ

)

• It’s not quarks, but can look for a back to back flow of energy by finding an axis that
maximizes the projection of particle momenta (“thrust”) measuring a “jet-like” structure

dσe+e−→ hadrons(Q)

dT
∝ ∑

N
|〈0|jµem(0)|N〉|2 δ4(Q− pN) δ


T − 1

Q
maxn̂

∑

i∈N
|~pi · n̂|




b

¡Q

• When the particles all line up T → 1 (neglecting masses). So what happens?
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• Here’s what was found (from a little later, at LEP):
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Figure 1: (a) Fit of equation (6) to the corrected data corresponding to the thrust bin
0.70 < T < 0.75; it has χ2/d.o.f.=79/90. The fitted region is −0.92 < cos θTh < 0.92. The
contributions from the longitudinal and transverse cross-sections are shown separately. (b)
The residuals from the fit.
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• For e+e−:

Y

X
Z

200. cm.

Cent re of screen i s ( 0.0000, 0.0000, 0.0000)

50 GeV20105

Run:event 4093: 1000 Date 930527 Time 20716

Ebeam45.658 Evis 99.9 Emiss -8.6 Vtx ( -0.07, 0.06, -0.80)

Bz=4.350 Thrust=0.9873 Aplan=0.0017 Oblat=0.0248 Spher=0.0073

Ct rk(N= 39 Sump= 73.3) Ecal (N= 25 SumE= 32.6) Hcal (N=22 SumE= 22.6)

Muon(N= 0) Sec Vtx(N= 3) Fdet (N= 0 SumE= 0.0)

• Thrust is peaked near unity and follow the 1 + cos2 θ distribution – reflecting the pro-
duction of spin 1

2
particles – back-to-back. All this despite confinement. Quarks have

been replaced by “jets” of hadrons. What could be better? But what’s going on? How
can we understand persistence of short-distance structure into the final state, evolving
over many many orders of magnitude in time? This is the goal of the rest of the talk.
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2. From Short to Long Distances in Quantum Field Theory:
What we can’t compute, and what we can

• At the short distances accessible to accelerators, we can expand around the free field
theory. The transitions between states are the stories that provide predictions.

• Perturbation theory really just follows from Schrödinger equation for mixing of
free particle states (more on this later),

ih̄
∂

∂t
|ψ(t) >=

(
H(0) + V

)
|ψ(t) >

Usually with free-state “IN” boundary condition :

|ψ(t = −∞) >= |m0 >= |pIN
1 , p

IN
2 〉

• Notation : Vji = 〈mj|V |mi〉 (vertices)

• Theories differ in their list of particles and their (hermitian) V s.
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For QCD, the Lagrange density

From the Lagrangian to Feynman graphs

• Here is QCD Lagrangian with all colour indices shown.29

LQCD =  i(i�
µ@µ �m) i � 1

4F
µ⌫
a F a

µ⌫ � gs  i�
a
ij j �

µAa
µ

Fµ⌫
a = @µA⌫

a � @⌫Aµ
a � 2gs fabcA

µ
b A

⌫
c

We have introduced here a second colour index a = (1, . . . , 8) to

label the gluon fields and the corresponding SU(3) generators.

• If we multiply-out the field tensor contraction Fµ⌫
a F a

µ⌫, we see all

the elements of a QCD Feynman diagram in the Lagrangian:

 ̄i(i�
µ@µ �m) i quark propagator

(@µA⌫
a � @⌫Aµ

a)(@µAa
⌫ � @⌫Aa

µ) gluon propagator

gs  ̄i�
a
ij j�

µAa
µ quark-gluon vertex

gs (@µA⌫
a � @⌫Aµ

a)fabcA
b
µAc

⌫ 3-gluon vertex

g2
s fabcA

µ
b A⌫

c fadeA
d
µAe

⌫ 4-gluon vertex

29Summation over repeated indices is implied, irrespective of their position (upper or lower); the colour indices
are just placed wherever the Lorentz indices leaves room for them.

6–4

And vertices
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• Solutions to the Schrödinger equation are sums of ordered
time integrals. “Old-fashioned perturbation theory.”

〈mn|m0〉 =
∑

τ orders

∫∞
−∞ dτn . . .

∫ τ2−∞ dτ1

× ∏

loops i

∫ d3`i

(2π)3
∏

lines j

1

2Ej
× ∏

vertices a
iVa→a+1

× exp


 i

∑

statesm




∑

j inm
E(~pj)


 (τm − τm−1)




• Perturbative QFT in a nutshell: integrals are divergent in QFT
from:
τi→ τj and τi→∞.
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• Coinciding times in . . .

〈mn|m0〉 =
∑

τ orders

∫∞
−∞ dτn . . .

∫ τ2−∞ dτ1

× ∏

loops i

∫ d3`i

(2π)3
∏

lines j

1

2Ej
× ∏

vertices a
iVa→a+1

× exp


 i

∑

statesm




∑

j inm
E(~pj)


 (τm − τm−1)


 .

• The “Ultraviolet=UV” problem from τi → τj is solved by renormalization, and results
in scaling each term in V by an appropriate coupling constant g(µ), with

(τi − τj)min = 1/µ.

In 4 dimensions only Yang-Mills theories have the property of asymptotic freedom,
g(µ) ∼ 1/ ln(µ).

• The couplings of the Standard Model are either asymptotically free, or are small enough
to not change much over experimentally-accessible energies.

• This makes an expansion in powers of αs(µ) = g2(µ)/4π plausible, at least in principle.
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• Large times in . . .

〈mn|m0〉 =
∑

τ orders

∫∞
−∞ dτn . . .

∫ τ2−∞ dτ1

× ∏

loops i

∫ d3`i

(2π)3
∏

lines j

1

2Ej
× ∏

vertices a
iVa→a+1

× exp


 i

∑

statesm




∑

j inm
E(~pj)


 (τm − τm−1)




• Divergences from τi→∞ are “Infrared=IR”. In some sense,
their “solution” is jets.
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Each term in this expansion corresponds to a “time-ordered” diagram

Here the vertices are ordered. Sums of orderings give (topologically equivalent) “Feyn-
man diagrams”, which exhibit the Lorentz invariance of the manifestly.

20



• Once we do the expansion using renormalization, the form of an “ideal cross section”
would be

• one with only a single kinematic scale, to which we can set µ:

Q2 σ̂SD(Q2, µ2, αs(µ)) =
∑

n
cn(Q2/µ2) αs

n(µ) +O



1

Qp




=
∑

n
cn(1) αs

n(Q) +O



1

Qp




• The key is to find quantities that are observable, and for which the coefficients are
well-behaved, and do not depend on scales µ for which the coupling is too large.

• Such quantities are commonly called “infrared safe”

• For proton accelerators or hadronic final states, the problem is that there are rather few
examples.
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• What is the problem?

• Mass-shell enhancements in perturbation theory

• Solutions to the Schrödinger equation are sums of ordered time integrals. “Old-fashioned
perturbation theory.”

〈mn|m0〉 =
∑

τ orders

∫∞
−∞ dτn . . .

∫ τ2−∞ dτ1

× ∏

loops i

∫ d3`i

(2π)3
∏

lines j

1

2Ej
× ∏

vertices a
iVa→a+1

× exp


 i

∑

statesm




∑

j inm
E(~pj)


 (τm − τm−1)




• Time integrals extend to infinity, but usually oscillations damp them and answers are
finite. Long-time, “infrared” divergences (logs) come about when phases vanish and the
t integrals diverge.
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• When does this happen? Here’s the phase:

exp


 i

∑

statesm




∑

j inm
E(~pj)


 (τm − τm−1)


 =

exp


 i

∑

verticesm




∑

j inm
E(~pj) − ∑

j inm−1
E(~pj)


 τm




• Divergences for τi →∞ requires two things:

i) (RHS) the phase must vanish ↔ “degenerate states”

∑

j ∈m
E(~pj) =

∑

j ∈m+1
E(~pj) , and

ii) (LHS) the phase must be stationary:

∂

∂`iµ
[ phase ] =

∑

statesm

∑

j inm
(±βµj )(τm+1 − τm) = 0

where the βjs are normal 4-velocities:

βj = ±∂Ej/∂`i .
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• Condition of stationary phase:

∑

statesm

∑

j inm
(±βµj )(τm+1 − τm) = 0

• βµ∆τ = xµ is a classical translation. For IR divergences, there must be free, classical
propagation as t→∞. Easy to satisfy if all the βj’s are equal.

• Whenever fast partons (quarks or gluons) emerge from the same point in space-time,

they will rescatter strongly with collinear partons.

But note, all these states describe the same energy flow.
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• Let’s illustrate the role of classical propagation.

• Example: degenerate states that cannot give long-time divergences:

!"#

$%%&'()**

#

#

• This makes identifying enhancements a lot simpler!
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• RESULT: For particles emerging from a local scattering, (only) collinear or soft lines can
give long-time behavior and enhancement. Example:

!"!##!$!
%&'()*

"
$

!!"!##!$!
%+,&-.()*

"/0

122!34'))

122!34'))

• This generalizes to any order, and any field theory, but gauge theories alone have soft
(k→ 0) divergences.

• These are what we can’t compute (as physical processes).
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• But for e+e− annihilation, if we include all the states that can result from these collinear
rescatterings, the τ → ∞ divergences are guaranteed to cancel, because the total
probability for something to happen has to be one (unitarity).

• If we calculate detailed final states (how many quarks, how many gluons) we get totally
unphysical answers, but if we sum over all possibilities so as to preserve energy flow,
perturbation theory can give good answers.

• For example, you can use the optical theorem to show that the total cross section is IR
safe (Appelquist, Georgi (1975))

• Once again, a sufficiently inclusive process that is nonperturbative at long distances can
be described by the lowest order in the perturbative coupling, with calculable corrections.
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• The same applies jet cross sections (GS (1975), GS & Weinberg (1977)), if they are designed
to respect the flow of energy

• These are what we can compute.

(technically, all these singularities can be derived from rotationally non-invariant – but still hermitian –

truncations of the QFT hamiltonian. see Soft-Collinear Effective Theory.)

b

¡Q

• The smaller (larger) the “resolutions” ε and δ, the more (less) sensitivity to long times.
We follow the story only to times like 1/Qδ.

ENERGY FLOW IS THE ORGANIZING PRINCIPLE OF THE CLASSICAL STORIES

28



3. A Brief Biolgraphy of Particle Jets

• Prehistory: the 1950’s – 1960’s

• First observations of high-energy collisions in cosmic ray ‘jets’

• Particle jets in cosmic rays . . .

“The average transverse momentum resulting from our measurements is pT=0.5 BeV/c
for pions . . . Table 1 gives a summary of jet events observed to date . . . ” (B. Edwards et

al, Phil. Mag. 3, 237 (1957))

• The era of high energy physics and the discovery of the Standard Model

Once asymptotic freedom explained scaling (Feynman, Bjorken)

σincl
e proton


Q, x =

Q2

2p · q


→ σexcl

e parton(Q)× Fproton(x) , (1)

• this is when the question arose: what happens to partons in the final state?
(Feynman, Bjorken & Paschos, Drell, Levy & Yan, 1969)

Do “the hadrons ‘remember’ the directions along which the bare constituents were
emitted? . . . “the observation of such ‘jets’ in colliding beam processes would be most
spectacular.” (Bjorken & Brodsky, 1969) Or does confinement forbid a it?
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• 1975 -1980: the first quark and gluon jets

• As we’ve seen: in electron-positron annihilation to hadrons, the angular distribution for
energy flow follows the lowest-order (“Born”) cross section for the creation of spin-1/2
pairs of quarks and antiquarks (As first seen by Hanson et al, at SLAC in 1975)

• Jets are “rare” because the high momentum transfer scattering of partons is rare (but
calculable), but in e+e− annihilation to hadrons the “rarity” is in the likelihood of anni-
hilation. Once that takes places, jets are nearly always produced.

• And then (Ellis, Gaillard, Ross (1976) Ellis, Karliner (1979)): hints of three gluons in Upsilon
decay, and then unequivocal gluon jets at Petra (1979) (S.L. Wu (1984))

8.2. JETS AND OTHER OBSERVABLES 173

Figure 8.17: Discovery of quark jets at SPEAR (SLAC). Observed sphericity (see p. 170)
distributions for data, jet model (solid curves) and phase-space model (dashed curves) for
ECM = 3GeV (LHS) and 7.4GeV (RHS). Source: [42, 38, p. 1611].

(a) (b)

Figure 8.18: The first three-jet event seen by TASSO (a) and the distribution N�1dN/dO
as a function of oblateness, measured at MARK-J (b). In both figures of (b) the solid
curves are the predictions based on the qq̄g model and the dashed curve is based on the
standard qq̄ model. Source: [44, p. 832].

(On the right, O is oblateness, which measures the spread of energy in a plane.)

• confirmed color as a dynamical variable.
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• Jets at hadron colliders . . .

• 80’s: direct and indirect ‘sightings’ of scattered parton jets at Fermilab and the ISR,
often in the context of single-particle spectra. Overall, however, an unsettled period until
the SPS large angular coverage makes possible (UA2) ‘lego plots’ in terms of energy flow,
and leads to the unequivocal observation of high-pT jet pairs that represent scattered
partons.

13 May 2004 Joseph Kroll         University of Pennsylvania 41 

UA2: 1st Evidence of Jets 79 µb-1 of data 

Largest ΣET event 

ΣET concentrated in 
back to back regions 
not isotropic 

Unroll calorimeter: “Lego Plot” 

φ.
θ (η) 

A “small” experiment: 54 Authors 

UA2 Collaboration, M. Banner et al., 
Phys. Lett. 118B (1982) p. 203 
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• 1990’s – 2005: The great Standard Model machines: HERA, the Tevatron Run I, and
LEP I and II provided jet cross sections over multiple orders of magnitude. The scattered
quark appears.

• And for DIS:

 Q**2 = 21475   y = 0.55   M = 198 
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• And now . . . a new era of jets at the anticipated limits of the SM, ushered in by Tevatron
Run II, on to the LHC: 2 → 7 → 8 → 13 TeV .

• Events at the scale δx ∼ h̄
1 TeV

∼ 2× 10−19 meters . . . observed about 10 meters away.
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“REVIEW OF PARTICLE PROPERTIES” FIGURE: TEV JETS AND BEYOND

51. Plots of cross sections and related quantities 1

51. PLOTS OF CROSS SECTIONS AND RELATED QUANTITIES

(For neutrino plots, see review article ”Neutrino Cross Section Measurements” by G.P. Zeller in this edition of RPP)
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Figure 51.1: Inclusive differential jet cross sections, in the central rapidity region, plotted as a function of the jet transverse momentum.
Results earlier than from the Tevatron Run 2 used transverse energy rather than transverse momentum and pseudo-rapidity η rather than
rapidity y, but pT and y are used for all results shown here for simplicity. The error bars plotted are in most cases the experimental stat. and
syst. errors added in quadrature. The CDF and D0 measurements use jet sizes of 0.7 (JetClu for CDF Run 1, and Midpoint and kT for CDF
Run 2, a cone algorithm for D0 in Run 1 and the Midpoint algorithm in Run 2). The ATLAS results are plotted for the antikT algorithm for
R=0.4, while the CMS results also use antikT, but with R=0.5. NLO QCD predictions in general provide a good description of the Tevatron
and LHC data; the Tevatron jet data in fact are crucial components of global PDF fits, and the LHC data are starting to be used as well.
Comparisons with the older cross sections are more difficult due to the nature of the jet algorithms used. ATLAS:Phys. Rev. D86, 014022
(2012), Eur. Phys. J C73, 2509 (2013); CMS: Phys. Rev. D84, 052011 (2011); CDF: Phys. Rev. D75, 092006 (2007), Phys. Rev. D64,
032001 (2001), Phys. Rev. Lett. 70, 1376 (1993); D0: Phys. Rev. D64, 032003 (2001); UA2: Phys. Lett. B257, 232 (1991); UA1: Phys.
Lett. 172, 461 (1986); R807: Phys. Lett. B123, 133 (1983). (Courtesy of J. Huston, Michigan State University, 2013.)
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A NEW AGE OF JET IDENTIFICATION INSPIRED BY THE LHC

THE NEED TO DEAL WITH VERY COMPLEX FINAL STATES
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Figure 3: The jet pT dependence of (a) the average reconstructed track multiplicity for uncorrected data and detector-
level simulation, (b) the average reconstructed track multiplicity for the detector-level simulation and the average
charged-particle multiplicity for the particle-level simulation, (c) the average charged-particle multiplicity for the
unfolded data and the particle-level simulation, and (d) the average charged-particle multiplicity divided by the
average reconstructed track multiplicity in simulation. Three charged-particle and track pT thresholds are used in
each case: 0.5 GeV, 2 GeV, and 5 GeV. Pythia 8 with the CT10 PDF and the AU2 tune are used for the simulation.
For the data, only statistical uncertainties are included in the error bars (which are smaller than the markers for most
bins).

Correction Factors: Fake and ine�ciency factors are derived from simulation to account for the frac-
tion of events that pass either the detector-level or particle-level fiducial selection (pT > 50 GeV
|⌘| < 2.1, and plead

T /p
sublead
T < 1.5), but not both. These factors are derived in bins of jet pT and

charged particle multiplicity, separately for the more forward and more central jets. They are gen-
erally between 0.9 and 1.0 except in the first jet-pT interval (50 < pT < 100 GeV), where threshold

8

Which requires numerical sophtication and computing power (Cacciari, Salam, Soyez, 2006)
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Figure 1: Left: the Voronoi diagram (black lines) of ten points in a plane, numbered 1...10. Superimposed, in
red, is the Delaunay triangulation. Right: CPU time taken to cluster N particles for various jet-finders. FastJet

is available at http://www.lpthe.jussieu.fr/~salam/fastjet.

This already reduces the problem to one of complexity N2: for each particle we can find its
nearest neighbour by scanning through all O (N) other particles [O (

N2
)

operations]; calculating
the diGi

, diB requires O (N) operations; scanning through the diGi
, diB to find the minimal value

dmin takes O (N) operations [to be repeated N times]; and after a merging or removal, updating
the nearest neighbour information will require O (N) operations [to be repeated N times].

We note, though, that three steps of this algorithm — initial nearest neighbour identification,
finding dmin at each iteration, and updating the nearest neighbour information at each iteration
— bear close resemblance to problems studied in the computer science literature and for which
efficient solutions are known. An example is the use of a structure known as a Voronoi diagram9

or its dual, a Delaunay triangulation (see fig. 1), to find the nearest neighbour of each element of
an ensemble of vertices in a plane (specified by the ηi and φi of the particles). It can be shown

that such a structure can be built with O (N ln N) operations (see e.g. 10), and updated with

O (ln N) operations 11 (to be repeated N times). More details, concerning also other steps in

the algorithm, are given in8. The final result is that both the geometrical and minimum-finding
aspects of the kt jet-finder can be related to known problems whose solutions require O (N ln N)
operations.

The FastJet algorithm has been implemented in the C++ code FastJet. The building and
the updating of the Voronoi diagram have been performed using the publicly available Computa-
tional Geometry Algorithms Library (CGAL) 12, in particular its triangulation components 13.
The resulting running time for the clustering of N particles is displayed in fig. 1. It can be seen
to be faster than all other codes currently used, both of cone or kt type. Analyses of events
with extremely high multiplicity, like heavy ion collisions at the LHC, are now feasible, their
clustering taking only about 1 second, rather than 1 day of CPU time.

The speed of FastJet does more, however, than just making analyses with a few hundred
particles faster, or those with a few thousand possible. In fact, it allows one to do new things.
One example is the possibility of calculating the area of each jet by adding to the event a
large number of extremely soft ‘ghost’ particles, and counting how many get clustered into
any given jet. This approach is of course computationally heavy, and would be unfeasible –
or at least extremely impractical – with a slower jet-finder. Fig. 2 shows the result of this
procedure on a LHC event made of one hard and many soft jets. Estimating jet areas is of
course not interesting by itself, but as an intermediate step towards performing an event-by-
event subtraction of underlying event/minimum bias energy from the hard jets. This work is

presently in progress 14.

Acknowledgements. I wish to thank Gavin Salam for the ongoing entertaining collaboration
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4. The Theory of Jets at Colliders

• What we do: For e+e− collisions, we compute jet cross sections directly in perturbative
QCD as though the final state consisted of quarks and gluons

• Because they depend only on (relatively) short distances (lack of pinches!)

• In this case, we simply compute the cross section in perturbative QFT, with partons in
the final state. It seemed strange at first, knowing that quarks and gluons are confined.
The theory gives a prediction, and the theory will tell us when this prediction is not
self-consistent. What we get . . .

• For two-jet cross sections, the “thrust”, coefficients of αs/π, (αs/π)2 and (αs/π)3:
Gehrmann De Ridder et al., 0711.4711
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contributions to the thrust distribution as defined in Eq. (3.6) and weighted by (1−T ). The dotted

line in the C coefficient indicates the distribution prior to correction of the soft large-angle radiation

terms (see erratum at the end of the paper).
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phase space restrictions on large values of (1 − T ) are relaxed. In the intermediate region,

0.04 < (1 − T ) < 0.33, we observe that the perturbative coefficients are roughly in the

ratio, A : B : C ∼ 1 : 30 : 800. Setting αs ∼ 0.12 and using Eq. (3.7), this indicates

corrections which are of relative magnitude LO : NLO : NNLO ∼ 1 : 0.53 : 0.27, such that

the NNLO corrections increase the NLO prediction by another 18%.

5.2 Heavy jet mass

The definition of the heavy jet mass given in section 2(b) is the larger invariant mass of

the two hemispheres formed by separating the event by a plane normal to the thrust axis.

The perturbative coefficients for the heavy jet mass distribution weighted by ρ are shown

in Fig. 2. At lowest order, the heavy jet mass and the (1 − T ) distribution are identical,

so that A does not extend past ρ = 0.33. At higher orders, the distribution extends to

larger values, with a small negative NNLO contribution around 0.33. In the intermediate

region, 0.02 < ρ < 0.33, the perturbative coefficients are roughly A : B : C ∼ 1 : 20 : 400

indicating corrections of approximately LO : NLO : NNLO ∼ 1 : 0.34 : 0.13, translating into

a 10% enhancement of NNLO over NLO. Comparing Fig. 1(b) with 2(b) and Fig. 1(c) with

2(c) we see clearly the rather different behaviour of the higher order corrections to these

– 11 –
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• Machines with hadrons involve the scattering of “pre-existing” quarks and gluons from
hadrons, whose interactions extend back to nucleosythesis, requiring:

Factorization: Following the New Stories into the Final State

The essence of predictions for Std. Model and proposed theories:

Q2σphys(Q,m, f) = σ̂(Q/µ, αs(µ), f) ⊗ fLD(µ,m) + O



1

Qp




µ = factorization scale; m= IR scale (m may be perturbative)

This is a “first this and then that” multiplication of probabilities – the essence of fac-
torization. It requires a “sufficiently” inclusive cross section, much as in the calculation
of jets in e+e− annihilation.

• Newly-minted jets and possible “new physics” are in σ̂; fLD “universal”
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• Again, a factorized cross section:

Q2σphys(Q,m, f) = σ̂(Q/µ, αs(µ), f) ⊗ fLD(µ,m) + O



1

Qp




• What we do:

– Compute σ and fLD in an IR-regulated variant of QCD, where we can prove the
factorization explicitly, then extract σ̂, assuming it is the same in true QCD as in its
IR-regulated version.

– We compare the formula with unknown physical parton distributions to a suite of
data and do a “global fit” for the f(x, µ) for different quarks and the gluon.

• What we get: absolute predictions for the creation of jets and heavy particles from QCD,
and for new degrees of freedom in BSM hypotheses.

– The process is a “bootstrap”, resulting in feedback between parton distributions,
predictions and measurements.
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The range of these predictions is greatly extended by Evolution & Resummation: If we
have factorization, we can automatically extrapolate from one energy scale to another.

– Whenever there is factorization, there is evolution

0 = µ
d

dµ
lnσphys(Q,m)

µ
d ln f

dµ
= −P (αs(µ)) = −µd ln σ̂

dµ

– We can calculate P because we can calculate σ̂.
(Dokshitzer, Gribov, LIpatov, Altarelli, Parisi)

– Wherever there is evolution there is resummation,

σphys(Q,m) = σphys(q,m) ⊗ exp





∫ Q
q

dµ′

µ′
P (αs(µ

′))





– For example: σphys ≡ F̃2(Q
2, N) =

∫1
0 dx xN−1F (Q2, x), a moment in ep deep-

inelastic scattering.
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– & then we know P̃ (N,αs) = γN = γ
(1)
N (αs/π) + . . .,

and we get

F̃2(N,µ) = F̃2(N,µ0) exp


 −1

2

∫ µ2

µ20

dµ′2

µ′2
γ(N,αs(µ

′))




– and with αs(µ) = 4π/b0 ln(µ2/Λ2
QCD), this is

F̃2(N,Q) = F̃2q/H(N,Q0)



ln(Q2/Λ2

QCD)

ln(Q2
0/Λ

2
QCD)




−2γ
(1)
N /b0

It works really well. Approximate scaling at moderate x,

pronounced evolution for smaller x:
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For hadron-hadron scattering

– General relation for hadron-hadron scattering for a hard, inclusive process with mo-
mentum transfer M to produce final state F +X:

dσH1H2(p1, p2,M) =
∑

a,b

∫ 1

0
dξa dξb dσ̂ab→F+X (ξap1, ξbp2,M, µ)

×φa/H1
(ξa, µ)φb/H2

(ξb, µ),

– “Factorization proofs: justifying the “universality” of the parton distributions. At
the bottom, this is just the observation that the long-distance, classical pictures
associated with outgoing jets cannot interfere with those associated with the incoming
hadrons, or with each other. Thus we can organize them separately into probability-
like functions.

It gets a little complicated in gauge theories (and of course, QCD is a gauge thoery)
because of classical long range forces, but at the end these are mutually Lorentz
contracted, and don’t spoil the factorization if the cross section is inclusive enough.
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An enormous amount of (well spent) time has been put into these calculations, often at
the boundary of contemporary mathematics.

Just for example (Anastasiou, Duhr, Dulat, Fulan, Gehrmann, Herzog and Mistlberger (1403.4616,

Phys. Lett.)) part of σ̂ for inclusive H production . . . (taking µ = MH , a small part of it is)

2

hadronic centre-of-mass energy, respectively. We work in
an effective theory where the top quark has been inte-
grated out, and the Higgs boson couples directly to the
gluons via the effective operator

Leff = − 1

4v
C(µ2)H Ga

µν Gµν
a , (2)

where v " 246 GeV is the vacuum expectation value of
the Higgs field and C(µ2) is the Wilson coefficient, given
as a perturbative expansion in the MS-renormalized
strong coupling constant αs ≡ αs(µ

2) evaluated at the
scale µ2. Up to three loops, we have [11]

C(µ2) = − αs

3 π

{
1 +

11

4

αs

π
(3)
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(αs

π
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) ]
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π
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[
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41472

+ NF

(
−110779
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40291

20736

)

+ N2
F

(
− 1

18
L2

t +
77

1728
Lt − 6865

31104

) ]
+ O(α4

s)

}
,

with Lt = log(µ2/m2
t ) and NF the number of active light

flavours.
The partonic cross-section itself admits the perturba-

tive expansion

σ̂ij(m
2
H , ŝ) =

π C(µ2)2

v2 V 2

∞∑

k=0

(αs

π

)k

η
(k)
ij (z) , (4)

with z ≡ m2
H/ŝ and V = N2 − 1, where N denotes the

number of colours. The coefficients η
(k)
ij (z) are known

explicitly through NNLO in perturbative QCD [13].
If all the partons emitted in the final state are soft,

we can approximate the partonic cross-sections by their
threshold expansion,

η
(k)
ij (z) = δig δjg η̂(k)(z) + O(1 − z)0 . (5)

Note that the first term in the threshold expansion,
the so-called soft-virtual term, only receives contribu-
tions from the gluon-gluon initial state. Soft-virtual

terms are linear combinations of a δ function and plus-
distributions,

∫ 1

0

dz

[
g(z)

1 − z

]

+

f(z) ≡
∫ 1

0

dz
g(z)

1 − z
[f(z) − f(1)] . (6)

Through NNLO, we have [13, 14]

η̂(0)(z) = δ(1 − z) , (7)

η̂(1)(z) = 2 CA ζ2 δ(1 − z) + 4 CA

[
log(1 − z)

1 − z

]

+

, (8)

η̂(2)(z) = δ(1 − z)
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+
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+

8 C2
A .

In this expression ζn denotes the Riemann zeta function,
CA = N and CF = V/(2N). For simplicity renormaliza-
tion and factorisation scales are set equal to the Higgs
mass, µR = µF = mH .

The main result of this Letter is the next term in the
perturbative expansion, N3LO, of the cross-section for
the threshold production of a Higgs boson. All ingredi-
ents necessary to compute η̂(3)(z) have recently become
available. Each of these contributions is individually di-
vergent. Adding up all the contributions, and including
the counter-terms necessary to remove the ultraviolet and
infrared divergences, all the poles in the dimensional reg-
ulator ε cancel, leaving a finite remainder in the Laurent
expansion, which, for µR = µF = mH , is given by,

η̂(3)(z) = δ(1 − z)
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)
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the Higgs field and C(µ2) is the Wilson coefficient, given
as a perturbative expansion in the MS-renormalized
strong coupling constant αs ≡ αs(µ

2) evaluated at the
scale µ2. Up to three loops, we have [11]

C(µ2) = − αs

3 π

{
1 +

11

4

αs

π
(3)

+
(αs

π

)2
[

19

16
Lt +

2777

288
+ NF

(
1

3
Lt − 67

96

) ]

+
(αs

π

)3
[

897943

9216
ζ3 +

209

64
L2

t +
1733

288
Lt − 2892659

41472

+ NF

(
−110779

13824
ζ3 +

23

32
L2

t +
55

54
Lt +

40291

20736

)

+ N2
F

(
− 1

18
L2

t +
77

1728
Lt − 6865

31104

) ]
+ O(α4

s)

}
,

with Lt = log(µ2/m2
t ) and NF the number of active light

flavours.
The partonic cross-section itself admits the perturba-

tive expansion

σ̂ij(m
2
H , ŝ) =

π C(µ2)2

v2 V 2

∞∑

k=0

(αs

π

)k

η
(k)
ij (z) , (4)

with z ≡ m2
H/ŝ and V = N2 − 1, where N denotes the

number of colours. The coefficients η
(k)
ij (z) are known

explicitly through NNLO in perturbative QCD [13].
If all the partons emitted in the final state are soft,

we can approximate the partonic cross-sections by their
threshold expansion,

η
(k)
ij (z) = δig δjg η̂(k)(z) + O(1 − z)0 . (5)

Note that the first term in the threshold expansion,
the so-called soft-virtual term, only receives contribu-
tions from the gluon-gluon initial state. Soft-virtual

terms are linear combinations of a δ function and plus-
distributions,

∫ 1

0

dz

[
g(z)

1 − z

]

+

f(z) ≡
∫ 1

0

dz
g(z)

1 − z
[f(z) − f(1)] . (6)

Through NNLO, we have [13, 14]

η̂(0)(z) = δ(1 − z) , (7)

η̂(1)(z) = 2 CA ζ2 δ(1 − z) + 4 CA

[
log(1 − z)

1 − z

]

+

, (8)

η̂(2)(z) = δ(1 − z)

{
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)
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)]}

+
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1
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+
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)
(9)
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(
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+
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− 10 ζ2
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9
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2

3
CA NF − 11

3
C2

A

)

+

[
log3(1 − z)

1 − z

]

+

8 C2
A .

In this expression ζn denotes the Riemann zeta function,
CA = N and CF = V/(2N). For simplicity renormaliza-
tion and factorisation scales are set equal to the Higgs
mass, µR = µF = mH .

The main result of this Letter is the next term in the
perturbative expansion, N3LO, of the cross-section for
the threshold production of a Higgs boson. All ingredi-
ents necessary to compute η̂(3)(z) have recently become
available. Each of these contributions is individually di-
vergent. Adding up all the contributions, and including
the counter-terms necessary to remove the ultraviolet and
infrared divergences, all the poles in the dimensional reg-
ulator ϵ cancel, leaving a finite remainder in the Laurent
expansion, which, for µR = µF = mH , is given by,

η̂(3)(z) = δ(1 − z)
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Equation (10) is the main result of this Letter. While the
terms proportional to plus-distributions were previously
known [4], we complete the computation of η̂(3)(z) by the
term proportional to δ(1−z), which includes in particular
all the three-loop virtual corrections.

Before discussing some of the numerical implications of
Eq. (10), we have to make a comment about the validity
of the threshold approximation. As we will see shortly,
the plus-distribution terms show a complicated pattern of
strong cancellations at LHC energies; the formally most
singular terms cancel against sums of less singular ones.
Therefore, exploiting the formal singularity hierarchy of
the terms in the partonic cross-section does not guaran-
tee a fast-converging expansion for the hadronic cross-
section. Furthermore, the definition of threshold correc-
tions in the integral of Eq. (1) is ambiguous, because the
limit of the partonic cross-section at threshold is not af-
fected if we multiply the integrand by a function g such
that limz→1 g(z) = 1,

∫
dx1 dx2 [fi(x1) fj(x2)zg(z)] lim

z→1

[
σ̂ij(s, z)

zg(z)

]
. (11)

It is obvious that Eq. (11) has the same formal accuracy
in the threshold expansion, provided that limz→1 g(z) =
1. As we will see in the following, this ambiguity has a
substantial numerical implication, and thus presents an
obstacle for obtaining precise predictions. We note how-
ever that by including in the future further corrections in

the threshold expansion, this ambiguity will be reduced.
Bearing this warning in mind, we present some of the

numerical implications of our result for g(z) = 1. For
N = 3 and NF = 5, the coefficients of the distributions
in Eq. (10) take the numerical values

η̂(3)(z) ≃ δ(1 − z) 1124.308887 . . . (→ 5.1%)

+

[
1

1 − z

]

+

1466.478272 . . . (→ −5.85%)

−
[
log(1 − z)

1 − z

]

+

6062.086738 . . . (→ −22.88%)

+

[
log2(1 − z)

1 − z

]

+

7116.015302 . . . (→ −52.45%)

−
[
log3(1 − z)

1 − z

]

+

1824.362531 . . . (→ −39.90%)

−
[
log4(1 − z)

1 − z

]

+

230 (→ 20.01%)

+

[
log5(1 − z)

1 − z

]

+

216 . (→ 93.72%)

In parentheses we indicate the correction that each
term induces to the hadronic cross-section normalized to
the leading order cross-section at a center of mass en-
ergy of 14 TeV. The ratio is evaluated with the MSTW
NNLO [15] parton densities and αs at scales µR = µF =
mH in the numerator and denominator. We also fac-
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Computing jet cross sections

• Factorized jet cross sections look like this: (Amati, Petronzio, Veneziano; Ellis, Machachek,

Efremov, Radyushkin; Politzer, Ross: Libby, GS (1979); Bodwin; Collins Soper, GS (1985,1988))

dσ(A+B → {pi}) (2)

=
∫
dxadxb fa/A(xa, µF ) fb/B(xb, µF )

× C


xapA, xbpB,

Q

µF
,
pi · pj
pk · pl



ab→c1...cNjets+X

×d


Njets∏

i=1
Jci(pi, µF )




• Parton distributions, short distance “coefficients” and functions of the jet momenta tell
a story of autonomous correlated on-shell propagations punctuated by a single short-
distance interaction.

Correlated and “autonomous” dynamics. The data confront calculations . . .
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Inclusive jet and dijet cross sections

look at the production of jets of hadrons with large transverse energy in

inclusive jet events pp ! j + X

exclusive dijet events pp ! 2j

cross sections measured as a function of the jet pT , rapidity y and dijet invariant mass mjj in
double differential form

(CMS-PAS-SMP-12-012) (ATLAS-CONF-2012-021)

Inclusive jet cross section

Motivation for NNLO

experimental uncertainties at high-pT smaller than theoretical ! need pQCD predictions to
NNLO accuracy

collider jet data can be used to constrain parton distribution functions

size of NNLO correction important for precise determination of PDF’s

inclusion of jet data in NNLO parton distribution fits requires NNLO corrections to jet cross
sections

↵s determination from hadronic jet observables limited by theoretical uncertainty due to scale
choice
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• We have seen that enhancement of particle correlations is built into QFT, and mutual
autonomy is a feature of classical pictures. Different jets follow different paths.

• The same factorization → evolution step applies to our jets, and they “evolve”

J(scale µ2) ∼ J(scale µ1) exp



∫ µ2
µ1

dµ′

µ′
∫
dx P (x, αs(µ

′))




• Each term in the exponent corresponds to the potential emission of a new “subjet”,
which factors from the remaining jet and evolves nearly autonomously into the final
state, branching further subjets along the way.

• This is exploited systematically to build event generators (PYTHIA, Herwig . . . ), which
simulate the details of events by probabilistic steps specified in detail by the calculable
“spitting functions” P (x, αs).
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Herwig: The Evolution of a Monte Carlo Event Generator

Introduction

A Monte Carlo Event

t

t̄ b̄

W −

b
W +

νℓℓ+

Hadrons

H
ad

ro
n
s

Hadrons

Hadrons

H
ad

ro
n
s

Hadronization
p, p̄

p, p̄

Peter Richardson Herwig: The Evolution of a Monte Carlo Event GeneratorHere’s a representation of an Event generated by Herwig. Although it looks like an
amplitude, each step is probabilistic, and given by splitting functions as above.
(P. Richardson, 2015)

• Which brings us full circle. To model “real” final states, the step has to be made
between perturbative jets given by gluons and quarks, and hadrons. Modern event
generators exploit the calculable momentum and quantum number distributions provided
by perturbation theory to make the final step: hadronization, shown here between final-
state partons that are “close enough” in phase space.
It is close to here that the tide of our theory reaches its current high water mark.
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Conclusions

Accelerators have confirmed the fundamental degrees of freedom in the gauge theories of
the Standard Model directly, relying on methods of infrared safety, factorization and evolu-
tion to complement and motivate the extraordinary technology.

QCD, however, transforms its degrees of freedom on length scales beyond nucleon scales.
For the most part observations are designed for identifying partonic states, in an effort to
detect and reject QCD backgrounds.

The history of QCD jets and the evolution of partons into hadrons is there for the reading
if only we can learn the language.
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Appendix: Factorization in gauge theories

• Think of classical fields seen by scattered charges.

• (B) Autonomy for jets in gauge theories:
classical field seen by scattered charges (“jet”)

x < βc t3

x frame x0 frame
(everything else) (jet)

� ⌘ x0
3 + �ct0

• Why a classical picture isn’t so far-fetched . . .

The correspondence principle is the key to IR divergences.

An accelerated charge must produce classical radiation,
and an infinite numbers of soft gluons are required to
make a classical field.

18

x frame x′ frame
(everything else) (jet)

∆ ≡ x′3 + βct′

• Why a classical picture isn’t so far-fetched . . .

The correspondence principle is the key to IR divergences.

An accelerated charge must produce classical radiation, and an infinite numbers of soft
gluons are required to make a classical field.
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Again . . .

• (B) Autonomy for jets in gauge theories:
classical field seen by scattered charges (“jet”)

x < βc t3

x frame x0 frame
(everything else) (jet)

� ⌘ x0
3 + �ct0

• Why a classical picture isn’t so far-fetched . . .

The correspondence principle is the key to IR divergences.

An accelerated charge must produce classical radiation,
and an infinite numbers of soft gluons are required to
make a classical field.

18

q

• Our charges move in the x′3 direction, in the field of “everything else” which also has
some abelian charge q in it.

Lorentz transformation to the rest frame of the charge q:

x3 = γ(x′3 + vt′) = γ∆.

The “collision” is at ∆ = 0, i.e. t′ = − 1
v
x′3 .

49



• (B) Autonomy for jets in gauge theories:
classical field seen by scattered charges (“jet”)

x < βc t3

x frame x0 frame
(everything else) (jet)

� ⌘ x0
3 + �ct0

• Why a classical picture isn’t so far-fetched . . .

The correspondence principle is the key to IR divergences.

An accelerated charge must produce classical radiation,
and an infinite numbers of soft gluons are required to
make a classical field.

18

q

Electric fields in the x and x′ frame:

E3(x) =
q

|~x|2 E′3(x
′) =

qγ∆

(x2
T + γ2∆2)3/2

∼ 1

γ2

q

∆
(3)

• The electric, ~E field seen by the receeding particles is highly contracted, falling off as
1/γ2 once it passes by.
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• (B) Autonomy for jets in gauge theories:
classical field seen by scattered charges (“jet”)

x < βc t3

x frame x0 frame
(everything else) (jet)

� ⌘ x0
3 + �ct0

• Why a classical picture isn’t so far-fetched . . .

The correspondence principle is the key to IR divergences.

An accelerated charge must produce classical radiation,
and an infinite numbers of soft gluons are required to
make a classical field.

18

• In contrast, the vector potential, Aµ is uncontracted, but is mostly a total derivative as
seen in the x′ frame:

Aµ = q
∂

∂x′µ
ln

(
∆(t′, x′3)

)
+O(1− β)

• The “large” part of Aµ can be removed by a gauge transformation. Implementing this
freedom makes proofs of factorization challenging in gauge theories.

• The residual “drag” forces are corrections to the total derivative:

1− β ∼ 1

2

[√
1− β2

]2
∼ m2

2E2

Corrections to the autonomous = factorized description of high energy processes
are power suppressed in momentum transfer.
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• How it works in QCD: for k collinear to p, with q, r and s the rest of the 2 → 2

collision, all diagrams contribute, but:

+

p

k

pk

q

s

q

r s

q

r k s

p

q

r

p

s k

+

TIMES

IS INDEPENDENT OF MOMENTA q, r, s
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