NNLO Corrections Using Antenna Subtraction & Applications

Alexander Huss

Subtracting Infrared Singularities Beyond NLO

Higgs Centre for Theoretical Physics Edinburgh — April 10th 2018

Part 1. Antenna Subtraction Formalism

Part 2. Example: Drell-Yan

- Part 3. Going beyond...
 - → Transverse Momentum Spectrum
 - ↔ Projection-to-Born Method

Anatomy of an NNLO calculation

Non-trivial cancellation of infrared singularities

Anatomy of an NNLO calculation

$$\sigma_{\rm NNLO} = \int_{\Phi_{\rm Z+3}} d\sigma_{\rm NNLO}^{\rm RR}$$

$$+\int_{\Phi_{Z+2}} d\sigma_{NNLO}^{RV}$$

$$+\int_{\Phi_{Z+1}} d\sigma_{NNLO}^{VV}$$

finite

Different methods:

Antenna subtraction [Gehrmann-De Ridder, Gehrmann, Glover '05] CoLorFul subtraction [Del Duca, Somogyi, Trocsanyi '05] $q_{\rm T}$ subtraction ... [Catani, Grazzini '07] Sector-improved residue subtraction [Czakon '10], [Boughezal, Melnikov, Petriello '11] N-jettiness subtraction [Gaunt, Stahlhofen, Tackmann, Walsh '15] [Boughezal, Focke, Liu, Petriello '15] Projection-to-Born [Cacciari, et al. '15] Nested soft-collinear subtraction [Caola, Melnikov, Röntsch '17]

Approaches: subtraction, slicing

NNLO using Antenna

$$\begin{split} \sigma_{\rm NNLO} &= \int_{\Phi_{\rm Z+3}} \left({\rm d}\sigma_{\rm NNLO}^{\rm RR} - {\rm d}\sigma_{\rm NNLO}^{\rm S} \right) \\ &+ \int_{\Phi_{\rm Z+2}} \left({\rm d}\sigma_{\rm NNLO}^{\rm RV} - {\rm d}\sigma_{\rm NNLO}^{\rm T} \right) \\ &+ \int_{\Phi_{\rm Z+1}} \left({\rm d}\sigma_{\rm NNLO}^{\rm VV} - {\rm d}\sigma_{\rm NNLO}^{\rm U} \right) \end{split}$$

► $d\sigma_{NNLO}^{S}, d\sigma_{NNLO}^{T}$: mimic $d\sigma_{NNLO}^{RR}, d\sigma_{NNLO}^{RV}$ in unresolved limits

► $d\sigma_{NNLO}^{T}$, $d\sigma_{NNLO}^{U}$:

analytic cancellation of poles in $d\sigma_{\rm NNLO}^{\rm RV}$, $d\sigma_{\rm NNLO}^{\rm VV}$

 \sum finite -0

\Rightarrow each line suitable for numerical evaluation in D = 4

Antenna factorisation

- > antenna formalism operates on *colour-ordered* amplitudes
- exploit universal factorisation properties in IR limits

$$\underbrace{|\mathcal{A}_{m+1}^{0}(\dots,i,j,k,\dots)|^{2}}_{\text{partial amplitude}} \xrightarrow{j \text{ unresolved}} \underbrace{X_{3}^{0}(i,j,k)}_{\text{antenna function}} \underbrace{|\mathcal{A}_{m}^{0}(\dots,\widetilde{I},\widetilde{K},\dots)|^{2}}_{\substack{\text{reduced ME}\\ + \text{ mapping}\\ \{p_{i},p_{j},p_{k}\} \rightarrow \{\widetilde{p}_{I},\widetilde{p}_{K}\}}$$

captures multiple limits* and smoothly interpolates between them

limit	$X_3^0(i,j,k)$	mapping
$p_j \rightarrow 0$	$\frac{2s_{ik}}{s_{ij}s_{jk}}$	$\widetilde{p}_I ightarrow p_i$, $\widetilde{p}_K ightarrow p_k$
$p_j \parallel p_i$	$rac{1}{s_{ij}} P_{ij}(z)$	$\widetilde{p}_I ightarrow (p_i + p_j)$, $\widetilde{p}_K ightarrow p_k$
$p_j \parallel p_k$	$\frac{1}{s_{jk}} P_{kj}(z)$	$\widetilde{p}_I \rightarrow p_i, \ \widetilde{p}_K \rightarrow (p_j + p_k)$

* c.f. dipoles: $X_3^0(i, j, k) \sim \mathcal{D}_{ij,k} + \mathcal{D}_{kj,i}$

Antenna subtraction — building blocks

► X(...) based on physical matrix elements
$$X = \widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D}, \widetilde{E}, \widetilde{F}, \widetilde{G}, \widetilde{H}$$

 $X_3^0(i, j, k) = \frac{|\mathcal{A}_3^0(i, j, k)|^2}{|\mathcal{A}_2^0(\widetilde{I}, \widetilde{K})|^2}, \qquad X_4^0(i, j, k, l) = \frac{|\mathcal{A}_4^0(i, j, k, l)|^2}{|\mathcal{A}_2^0(\widetilde{I}, \widetilde{L})|^2},$
 $X_3^1(i, j, k) = \frac{|\mathcal{A}_3^1(i, j, k)|^2}{|\mathcal{A}_2^0(\widetilde{I}, \widetilde{K})|^2} - X_3^0(i, j, k) \frac{|\mathcal{A}_2^1(\widetilde{I}, \widetilde{K})|^2}{|\mathcal{A}_2^0(\widetilde{I}, \widetilde{K})|^2},$
 $A_3^0(i_q, j_g, k_{\widetilde{q}}) = \left| \overbrace{\sim}^{\gamma^*} \overbrace{\sim}^{\widetilde{i_q}}_{k_q} \right|^2 / \left| \overbrace{\sim}^{\gamma^*}_{\kappa_q} \overbrace{\sim}^{i_q}_{\kappa_q} \right|^2$

 \blacktriangleright integrating the antennae \longleftrightarrow phase-space factorization

$$d\Phi_{m+1}(\dots, p_i, p_j, p_k, \dots)$$

= $d\Phi_m(\dots, \widetilde{p}_I, \widetilde{p}_K, \dots) d\Phi_{X_{ijk}}(p_i, p_j, p_k; \widetilde{p}_I + \widetilde{p}_K)$
 $\mathcal{X}_3^{0,1}(i, j, k) = \int d\Phi_{X_{ijk}} X_3^{0,1}(i, j, k), \quad \mathcal{X}_4^0(i, j, k, l) = \int d\Phi_{X_{ijkl}} X_4^0(i, j, k, l)$

$$\mathcal{X}_{3}^{0,1}(i,j,k) = \int \mathrm{d}\Phi_{X_{ijk}} X_{3}^{0,1}(i,j,k), \quad \mathcal{X}_{4}^{0}(i,j,k,l) = \int \mathrm{d}\Phi_{X_{ijkl}} X_{4}^{0}(i,j,k,l)$$

Antenna subtraction

NNLO

- ► double real: $d\sigma^{\rm S} \sim X_3^0 |\mathcal{A}_{m+1}^0|^2$, $X_4^0 |\mathcal{A}_m^0|^2$, $X_3^0 X_3^0 |\mathcal{A}_m^0|^2$ ► real-virtual: $d\sigma^{\rm T} \sim \mathcal{X}_3^0 |\mathcal{A}_{m+1}^0|^2$, $X_3^0 |\mathcal{A}_m^1|^2$, $X_3^1 |\mathcal{A}_m^0|^2$
- double virtual: $d\sigma^{U} = (\text{collect rest}) \sim \mathcal{X} |\mathcal{A}_{m}^{0,1}|^{2}$

What about those angular terms?

• Antenna subtraction: $X_n^l |\mathcal{A}_m|^2 \leftrightarrow \text{spin averaged!}$

angular terms in gluon splittings:

$$P_{\mathbf{g}\to q\bar{q}} = \frac{2}{s_{ij}} \left[-g^{\mu\nu} + 4z(1-z) \, \frac{k_{\perp}^{\mu} k_{\perp}^{\nu}}{k_{\perp}^{2}} \right]$$

10

 \hookrightarrow subtraction non-local in these limits!

 \hookrightarrow vanish upon azimuthal-angle (φ) average (\Rightarrow do not enter \mathcal{X})

sol. 1: supplement angular terms in the subtraction sol. 2: exploit φ dependence & average in the phase space

$$\begin{array}{c} \mathcal{A}_{\mu}^{*} \; \frac{k_{\perp}^{\mu} k_{\perp}^{\nu}}{k_{\perp}^{2}} \; \mathcal{A}_{\nu} \; \sim \; \cos(2\varphi + \varphi_{0}) \\ \Rightarrow \; \mathrm{add} \; \varphi \; \& \; (\varphi + \pi/2)! \end{array} \qquad \overbrace{ \begin{array}{c} \left\{p_{i}^{\varphi}, \quad p_{j}^{\varphi}, \quad \ldots\right\} \\ \left\{p_{i}^{\varphi}, \quad p_{j}^{\varphi}, \quad \ldots\right\} \end{array} } \left[\begin{array}{c} \left\{p_{i}^{\varphi}, \quad p_{j}^{\varphi}, \quad \ldots\right\} \\ \left\{p_{i}^{\varphi + \pi/2}, \quad p_{j}^{\varphi + \pi/2}, \quad \ldots\right\} \end{array} \right] \end{array}$$

Checks of the calculation — unresolved limits

Double-real level

► $d\sigma^{S} \rightarrow d\sigma^{RR}$ (single- & double-unresolved)

bin the ratio: $d\sigma^{\rm S}/d\sigma^{\rm RR} \xrightarrow{\rm unresolved} 1$

Real-virtual level $d\sigma^{T} \rightarrow d\sigma^{RV}$ (single-unresolved) bin the ratio: $d\sigma^{T}/d\sigma^{RV} \xrightarrow{\text{unresolved}} 1$ $q \ \bar{q} \rightarrow Z + g_3 g_4 \quad @ 1-loop$ (g₄ || q)

Checks of the calculation — pole cancellation

Double-virtual level

► Poles
$$(d\sigma^{VV} - d\sigma^{U}) = 0$$

2-loop, (1-loop)² $\rightarrow 1/\epsilon^4, ..., 1/\epsilon$

09:26:35maple/process/Z	
<pre>\$ form autoqgB1g2ZgtoqU.frm</pre>	
FORM 4.1 (Mar 13 2014) 64-bits	
#-	
poles = 0;	
6.58 sec out of 6.64 sec	

DimReg: $D = 4 - 2\epsilon$

Real-virtual level

► Poles
$$(d\sigma^{\rm RV} - d\sigma^{\rm T}) = 0$$

1-loop $\sim 1/\epsilon^2, 1/\epsilon$

pole coefficient: $d\sigma^{\rm T}/d\sigma^{\rm RV}~\equiv~1$

$$q \; ar{q}
ightarrow {
m Z} + {
m g} \; {
m g}$$
 @ 1-loop (1/ ϵ coefficient)

X. Chen, J. Cruz-Martinez, J. Currie, R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, AH, I. Majer, T. Morgan, J. Niehues, J. Pires, D. Walker

Common framework for NNLO corrections using Antenna Subtraction

- parton-level event generator
- based on antenna subtraction
- test & validation framework
- APPLfast-NNLO interface (Work in progress)

[Britzger, Gwenlan, AH, Morgan, Sutton, Rabbertz]

Processes:

▶ ...

- ▶ pp $\rightarrow V \rightarrow \bar{\ell}\ell + 0$, 1 jets
- ▶ $pp \rightarrow H + 0$, 1 jets
- ▶ $pp \rightarrow H + 2$ jets (VBF)
- ▶ $pp \rightarrow dijets$
- $ep \rightarrow 1, 2 jets$
- ▶ $e^+e^- \rightarrow 3$ jets

Part 1. Antenna Subtraction Formalism

Part 2. Example: Drell-Yan

- Part 3. Going beyond...
 - ↔ Transverse Momentum Spectrum
 - → Projection-to-Born Method

$$\begin{aligned} & \text{Drell} - \text{Yan}: \quad 9 \quad 9 \quad \Rightarrow \text{gluons channel} \\ & \text{d}\sigma^{\text{RR}} \sim \quad \frac{1}{2!} \left[\left| \mathcal{A}_{4}^{\circ}(1_{q_{1}}3_{g_{1}}4_{g_{2}},2_{\bar{q}}) \right|^{2} + \left| \mathcal{A}_{4}^{\circ}(1_{q_{1}}4_{g_{1}}3_{g_{2}},2_{\bar{q}}) \right|^{2} - \frac{1}{N_{c}^{2}} \left| \widetilde{\mathcal{A}}_{4}^{\circ}(1_{q_{1}}3_{g_{1}},4_{g_{1}},2_{\bar{q}}) \right|^{2} \right] \\ & \text{d}\sigma^{\text{RV}} \sim \quad \left| \mathcal{A}_{3}^{1}(1_{q_{1}}3_{g_{2}},2_{\bar{q}}) \right|^{2} - \frac{1}{N_{c}^{2}} \left| \widetilde{\mathcal{A}}_{3}^{1}(1_{q_{1}}3_{g_{2}},2_{\bar{q}}) \right|^{2} \\ & \text{d}\sigma^{\text{VV}} \sim \quad \left| \mathcal{A}_{2}^{2}(1_{q_{1}}2_{\bar{q}}) \right|^{2} - \frac{1}{N_{c}^{2}} \left| \widetilde{\mathcal{A}}_{2}^{2}(1_{q_{1}}2_{\bar{q}}) \right|^{2} \end{aligned}$$

* 2 Re { $\mathcal{A}_{n}^{*}(4_{n}3_{0},4_{0},2_{0})^{*}\mathcal{A}_{n}^{*}(4_{n}4_{0},3_{0},2_{0})^{}$ = $\left|\widetilde{\mathcal{A}_{n}^{*}}(4_{n}3_{0},4_{0},2_{0})\right|^{2} - \left|\mathcal{A}_{n}^{*}(4_{n}3_{0},4_{0},2_{0})\right|^{2} - \left|\mathcal{A}_{n}^{*}(4_{n}4_{0},3_{0},2_{0})\right|^{2}$

 $\widetilde{\mathcal{A}}_{4}^{*}(I_{11}^{*}3_{51}^{*}4_{52}^{*}2_{\overline{1}}) = \widetilde{\mathcal{A}}_{4}^{*}(I_{11}^{*}3_{31}^{*}4_{51}^{*}2_{\overline{1}}) + \widetilde{\mathcal{A}}_{4}^{*}(I_{11}^{*}4_{31}^{*}3_{51}^{*}2_{\overline{1}})$

<□> <0>< <0>< <0>< <0<</p>

Subtraction Term for
$$|\mathcal{A}_{4}^{\circ}(1_{q}, 3_{g}, 4_{g}, 2_{\bar{q}})|^{2}$$

 $+ d_{3}^{\circ}(1_{q}, 3_{g}, 4_{g}) |\mathcal{A}_{3}^{\circ}(\tilde{1}_{q}, (\tilde{3}4)_{g}, 2_{\bar{q}})|^{2} \stackrel{\text{(As index inde$

Subtraction Term for
$$|\mathcal{A}_{4}^{\circ}(1_{q}, 3_{q}, 4_{g}, 2_{\bar{q}})|^{2}$$
 RR
+ $d_{3}^{\circ}(1_{q}, 3_{q}, 4_{g}) |\mathcal{A}_{3}^{\circ}(\tilde{1}_{1}, (\tilde{3}_{4})_{g}, 2_{\bar{q}})|^{2} \stackrel{\text{and}}{=} \sum_{\substack{\text{subtr. term} \\ \text{subtr. term} \\ \text{subtr. term} \\ \text{single: 4} \\ \text{double: 384} \\ \text{single: 4} \\ \text{double: 384} \\ \text{single: 4} \\ \text{double: 384} \\ \text{double: 384} \\ \text{single: 4} \\ \text{single: 4} \\ \text{double: 384} \\ \text{single: 4} \\ \text{single: 4} \\ \ \ \text{single$

DONE

Subtraction Term for $|\mathcal{A}_{3}^{1}(1_{q}, 3_{g}, 2_{\overline{q}})|^{2}$ IRV $-\left[\frac{1}{2} \lambda_{3}^{\circ}(S_{13}) + \frac{1}{2} \lambda_{3}^{\circ}(S_{23})\right] \left| A_{3}^{\circ}(1_{q_{1}}3_{q_{2}}2_{\overline{q}}) \right|^{2} \stackrel{\text{and}}{=} \text{NLO } \mathcal{Z}_{\text{fet}} \xrightarrow{\text{poles}} \text{poles}$

Subtraction Term for
$$|\mathcal{A}_{3}^{1}(1_{q}, 3_{q}, 2_{\bar{q}})|^{2}$$
 [RV

$$-\left[\frac{1}{2}\mathcal{A}_{3}^{\circ}(s_{13}) + \frac{1}{2}\mathcal{A}_{3}^{\circ}(s_{23})\right]|\mathcal{A}_{3}^{\circ}(1_{q}, 3_{q}, 2_{\bar{q}})|^{2} \stackrel{\text{and}}{=} \overset{\text{NLO} \ z+jet}{\text{subtr. term}} \xrightarrow{\text{poles}} poles$$

$$+\mathcal{A}_{3}^{\circ}(1_{q}, 3_{q}, 2_{\bar{q}}) |\mathcal{A}_{2}^{\circ}(\tilde{1}_{q}, \tilde{2}_{\bar{q}})|^{2} \quad (\text{tree}) \times (loop) \qquad \text{single: 3}$$

$$+\mathcal{A}_{3}^{\circ}(1_{q}, 3_{q}, 2_{\bar{q}}) |\mathcal{A}_{2}^{\circ}(\tilde{1}_{q}, \tilde{2}_{\bar{q}})|^{2} \quad (loop) \times (tree)$$

Subtraction Term for
$$|\mathcal{A}_{3}^{1}(1_{q}, 3_{q}, 2_{\bar{q}})|^{2}$$
 [RV

$$-\left[\frac{1}{2}\mathcal{A}_{3}^{\circ}(s_{n_{3}}) + \frac{1}{2}\mathcal{A}_{3}^{\circ}(s_{2_{3}})\right]|\mathcal{A}_{3}^{\circ}(1_{q}, 3_{q}, 2_{\bar{q}})|^{2} \stackrel{\land}{=} \underset{\text{subtr.term.}}{\text{NLO } z_{ijet}} poles$$

$$\sup_{\text{subtr.term.}} \text{subtr.term.} poles$$

$$\sup_{\text{singularities}} \sup_{\text{singularities}} \sup_{\text{singularities}} \sup_{\text{singularities}} \sup_{\text{single: 3}} \sup_{\text{single: 3}} \sup_{\text{single: 3}} \sup_{\text{singularities}} \left[\frac{1}{2}\mathcal{A}_{3}^{\circ}(1_{q}, 3_{q}, 2_{\bar{q}}) \right]^{2} \int (\text{tree}) \times (\text{loop}) \sup_{\text{singularities}} \sup_{\text{singularities}} \sup_{\text{singularities}} \sup_{\text{single: 3}} \sup_{\text{poles}} \sup_{\text{singularities}} \sup_{\text{singularities}} \sup_{\text{singularities}} \sup_{\text{singularities}} \sup_{\text{single: 3}} \sup_{\text{poles}} \sum_{\text{single: 3}} \sup_{\text{poles}} \sum_{\text{single: 3}} \sup_{\text{poles}} \sum_{\text{single: 3}} \sup_{\text{poles}} \sum_{\text{single: 3}} \sum_{\text{poles}} \sum_{\text{single: 3}} \sum_{\text{single: 3}}$$

Subtraction Term for $|\mathcal{A}_{2}^{2}(1_{q}, 2_{\overline{q}})|^{2}$ $-\mathcal{A}_{4}^{\circ}(S_{n_{2}}) \left|\mathcal{A}_{2}^{\circ}(1_{q_{1}}2_{\overline{q}})\right|^{2} \qquad \left\{ from \ \mathcal{A}_{4}^{\circ} \in \mathbb{RR} \right\}$ $-\mathcal{A}_{3}^{\circ}(S_{12}) \left| \mathcal{A}_{2}^{1}(1_{q_{1}}2_{\overline{q}}) \right|^{2} \qquad (\text{tree})_{X}(\text{loop}) \\ -\mathcal{A}_{3}^{1}(S_{12}) \left| \mathcal{A}_{2}^{\circ}(1_{q_{1}}2_{\overline{q}}) \right|^{2} \qquad (\text{loop})_{X}(\text{tree}) \\ \end{array}$

+ MF

DONE

Part 1. Antenna Subtraction Formalism

Part 2. Example: Drell-Yan

Part 3. Going beyond...

- → Transverse Momentum Spectrum
- \hookrightarrow Projection-to-Born Method

Transverse Momentum Spectrum

Inclusive $p_{\rm T}$ spectrum from $X + {\rm jet}$

$X+\mathrm{jet}$ @ NNLO

►	H + jet (Antenna, <i>N</i> -jettiness, Sector-improved R.S.)
►	W + jet
►	$\mathbf{Z} + \mathbf{jet}$
►	$\gamma + jet$

 \rightsquigarrow validation $\,\&\,$ opportunity for benchmarks

- fixed-order prediction diverges for $p_{\rm T} \rightarrow 0$
- ▶ large logarithms: $\ln^k(p_T/M)/p_T^2 \quad \sim \quad \text{all-order resummation needed!}$
- \Rightarrow matching: $d\sigma_{matched} = d\sigma_{f.o.} + d\sigma_{res.} d\sigma_{res.}|_{exp.}$

Compare the logs — fixed-order vs. resummation

- excellent agreement within stat. errors $\sim 1\%$
- predictions down to $p_{\rm T}^{\rm H} = 0.7 \, {\rm GeV}$
- important cross check ~ matching of NNLO and N³LL

Matched $p_{\rm T}$ spectrum

- \blacktriangleright NNLO & NNLO \oplus N 3 LL start to deviate @ $p_{
 m T} \lesssim 30~{
 m GeV}$
- reduction of uncertainties by more than a factor of two
- ► NLO ⊕ NLL → NNLO ⊕ N³LL: large impact in peak region

Projection-to-Born Method

Deep Inelastic Scattering

precise probe to resolve the inner structure of the proton

- PDF constraints
- α_{s} extraction (+ running)

DIS 2 jet @ NNLO

[Currie, Gehrmann, Niehues '16]

[Currie, Gehrmann, AH, Niehues '17]

- \Leftarrow precise α_{s} determination
- DIS 1 jet @ N³LO

[Currie, Gehrmann, Glover, AH, Niehues, Vogt. '18]

Fully Differential N³LO

DIS 2 jet @ NNLO

[Currie, Gehrmann, Niehues '16] [Currie, Gehrmann, AH, Niehues '17]

Projection-to-Born

[Cacciari, et al. '15]

DIS structure function **@ N³LO**

[Moch, Vermaseren, Vogt '05]

inclusive DIS (structure function)

Born kinematics:
$$Q^2 = -q^2 > 0$$
, $x = \frac{-Q^2}{2P \cdot q}$

differential DIS (w/o IR treatment)

$$\sigma_{\rm NLO}^{\rm diff.} = \sum_{\substack{\alpha_{\rm s}\\ \xi}}$$

Born kinematics:
$$Q^2 = -q^2 > 0$$
, $x = \frac{-Q^2}{2P \cdot q}$

differential DIS (w/ IR treatment)

Born kinematics:
$$Q^2 = -q^2 > 0$$
, $x = \frac{-Q^2}{2P \cdot q}$

differential DIS (w/ IR treatment)

only "special" processes *but* not restricted to any order $\begin{array}{c} \text{inclusive } X & \textcircled{0}{\ } \mathbb{N}^{n} LO \\ + & X + \text{jet} & \textcircled{0}{\ } \mathbb{N}^{n-1} LO \end{array} \right\} \quad \sim \quad X \textcircled{0}{\ } \mathbb{N}^{n} LO$

Born kinematics: $Q^2 = -q^2 > 0$, $x = \frac{-Q^2}{2P \cdot q}$

Validation up to NNLO — Antenna vs. P2B

Differential distributions at N³LO

► for the first time: *overlapping* scale bands agreement with data

reduction of scale uncertainties

Jet Rates

$$R_{(n+1)} = N_{(n+1)}/N_{\mathsf{tot}}$$

JADE algorithm \hookrightarrow cluster partons if: $2E_iE_j(1 - \cos \theta_{ij})$

$$\frac{\frac{\partial L_j (1 - \cos \theta_{ij})}{W^2}}{W^2} < y_{\rm cut}$$

$$\begin{split} &\int \Bigl\{ \mathrm{d}\sigma_{\mathrm{H+0jet}}^{\mathrm{R}} - \mathrm{d}\sigma_{\mathrm{H+0jet}}^{\mathrm{SNLO}} \Bigr\} \\ &= \int \mathrm{d}\Phi_{\mathrm{H+1}} \Bigl\{ \text{ A3gOH}(\mathrm{1_g}, \mathrm{2_g}, \mathrm{3_g}, \mathrm{H}) \ \mathcal{J}(\Phi_{\mathrm{H+1}}) \\ &\quad - \textit{F}_3^0(\mathrm{1_g}, \mathrm{2_g}, \mathrm{3_g}) \text{ A2gOH}(\tilde{\mathrm{1_g}}, \tilde{\mathrm{2_g}}, \mathrm{H}) \ \mathcal{J}(\tilde{\Phi}_{\mathrm{H+0}}) \Bigr\} \end{split}$$

$$\begin{split} &\int \left\{ \mathrm{d}\sigma_{\mathrm{H+0jet}}^{\mathrm{R}} - \mathrm{d}\sigma_{\mathrm{H+0jet}}^{\mathrm{SNLO}} \right\} \\ &= \int \mathrm{d}\Phi_{\mathrm{H+1}} \left\{ \text{ A3gOH}(1_{\mathrm{g}}, 2_{\mathrm{g}}, 3_{\mathrm{g}}, \mathrm{H}) \ \mathcal{J}(\Phi_{\mathrm{H+1}}) \\ &\quad - F_{3}^{0}(1_{\mathrm{g}}, 2_{\mathrm{g}}, 3_{\mathrm{g}}) \text{ A2gOH}(\tilde{1}_{\mathrm{g}}, \tilde{2}_{\mathrm{g}}, \mathrm{H}) \ \mathcal{J}(\tilde{\Phi}_{\mathrm{H+0}}) \right\} \\ &= \int \mathrm{d}\Phi_{\mathrm{H+1}} \text{ A3gOH}(1_{\mathrm{g}}, 2_{\mathrm{g}}, 3_{\mathrm{g}}, \mathrm{H}) \left\{ \mathcal{J}(\Phi_{\mathrm{H+1}}) - \mathcal{J}(\tilde{\Phi}_{\mathrm{H+0}}) \right\} \end{split}$$

$$\begin{split} &\int \left\{ \mathrm{d}\sigma_{\mathrm{H+0jet}}^{\mathrm{R}} - \mathrm{d}\sigma_{\mathrm{H+0jet}}^{\mathrm{SNLO}} \right\} \\ &= \int \mathrm{d}\Phi_{\mathrm{H+1}} \left\{ \text{A3gOH}(1_{\mathrm{g}}, 2_{\mathrm{g}}, 3_{\mathrm{g}}, \mathrm{H}) \ \mathcal{J}(\Phi_{\mathrm{H+1}}) \\ &\quad - F_3^0(\mathbf{1}_{\mathrm{g}}, 2_{\mathrm{g}}, 3_{\mathrm{g}}) \text{A2gOH}(\tilde{1}_{\mathrm{g}}, \tilde{2}_{\mathrm{g}}, \mathrm{H}) \ \mathcal{J}(\tilde{\Phi}_{\mathrm{H+0}}) \right\} \\ &= \int \mathrm{d}\Phi_{\mathrm{H+1}} \text{A3gOH}(1_{\mathrm{g}}, 2_{\mathrm{g}}, 3_{\mathrm{g}}, \mathrm{H}) \left\{ \mathcal{J}(\Phi_{\mathrm{H+1}}) - \mathcal{J}(\tilde{\Phi}_{\mathrm{H+0}}) \right\} \end{split}$$

\Rightarrow Simple processes where antenna $\,\simeq\,$ real-emission Matrix Element \rightsquigarrow Projection-to-Born

Similarly at NNLO: $X_4^0 \& X_3^0 \times X_3^0$ are "projections" of RR ME & NLO(+jet) subtraction term.

Summary & Outlook — tl;dr

Antenna subtraction successfully applied to many important processes:

$$\label{eq:constraint} \begin{array}{ll} \hookrightarrow \mbox{ } pp \rightarrow X \ + \mbox{ } 0, 1 \mbox{ jets } & ({\rm X} = {\rm H}, \ {\rm Z}, \ {\rm W}) \\ \\ \hookrightarrow \mbox{ } pp \rightarrow {\rm H} \ + \mbox{ } 2 \mbox{ jets } & ({\rm VBF}) \end{array}$$

$$\hookrightarrow$$
 pp \rightarrow dijets $(N_c^2, N_c N_F, N_F^2)$

- $\hookrightarrow \ \mathrm{ep} \to 1, \ 2 \ \mathsf{jets}$
- $\hookrightarrow e^+e^- \rightarrow 3 \text{ jets}$
- \Rightarrow subtraction set up for: $pp \rightarrow$ "colour neutral" + 0, 1, 2 jets
- ► inclusive p_T^H spectrum: NNLO prediction matched to N³LL \hookrightarrow fixed order: stable predictions down to $p_T^H = 0.7 \text{ GeV}$
 - \sim is it good enough for $q_{\rm T}$ -subtraction @ N³LO?!
- \blacktriangleright Projection-to-Born method \oplus Antenna subtraction
 - $\,\hookrightarrow\,$ first fully differential N^3LO prediction: inclusive jets in DIS
 - $\,\hookrightarrow\,$ method also applicable for colour-neutral final states ${\rm pp}$ in collisions

Thank you

Backup Slides

Antenna subtraction @ NLO

[J. Currie , E.W.N. Glover, S. Wells '13]

Antenna subtraction @ NNLO

[J. Currie , E.W.N. Glover, S. Wells '13]

