Recent developments in qT subtraction

Massimiliano Grazzini University of Zurich

Subtracting Infrared Singularities Beyond NLO Edinburgh, April 11th 2018

Outline

- Introduction
- q_T subtraction
- The MATRIX project
- Most recent results: $pp \rightarrow HH+X$ at NNLO
- Beyond colour singlet: heavy-quark production
- Summary & Outlook

NNLO methods

Broadly speaking there are two approaches that we can follow:

- Organise the calculation from scratch so as to cancel all the singularities
 - sector decomposition
 - antenna subtraction
 - "colourful" subtraction
 - join subtraction and sector decomposition

T. Binoth, G.Heinrich (2000,2004) C.Anastasiou, K.Melnikov, F.Petriello (2004)

A. & T. Gehrmann, N. Glover (2005)

G, Somogyi, Z. Trocsanyi, V. Del Duca (2005, 2007)

S.Catani, MG (2007)

M.Czakon (2010,2011) R.Boughezal, K.Melnikov, F.Petriello (2011) F.Caola, K.Melnikov, R.Rontsch (2017)

- Start from an inclusive NNLO calculation (sometimes obtained through resummation) and combine it with an NLO calculation for n+1 parton process
 - q_T subtraction
 - "N-jettiness" method

R.Boughezal, C.Focke, X.Liu, F.Petriello (2015) F.Tackmann et al. (2015)

- recently introduced "Born projection" method for VBF

M.Cacciari, F.Dreyer, A.Karlberg, G.Salam, G.Zanderighi (2015)

...and then we need the relevant two-loop amplitudes !

C.Anastasiou, F.Caola, M.Czakon, T.Gehrmann, N.Glover, M.Jaquier, A. Koukoutsakis C.Oleari, K.Melnikov, L.Tancredi, M.E. Tejeda-Yeomans, A. von Manteuffel and many others

S. Catani, MG (2007)

 $R_{2iets}^{LO} = 1$

At LO all events are two-jet like

S. Catani, MG (2007)

 $R_{2jets}^{LO} = 1$

At LO all events are two-jet like

$$R_{2jets}^{NLO} = 1 - R_{3jets}^{LO}$$

At NLO all events are two-jet like except those that contribute to the LO three-jet rate

S. Catani, MG (2007)

 $R_{2jets}^{LO} = 1$

At LO all events are two-jet like

$$R_{2jets}^{NLO} = 1 - R_{3jets}^{LO}$$

At NLO all events are two-jet like except those that contribute to the LO three-jet rate

$$R_{2jets}^{NNLO} = 1 - R_{3jets}^{NLO} - R_{4jets}^{LO}$$

At NNLO all events are two-jet like except those that contribute to the NLO three-jet rate and to the LO four jet rate

S. Catani, MG (2007)

 $R_{2jets}^{LO} = 1$

At LO all events are two-jet like

$$R_{2jets}^{NLO} = 1 - R_{3jets}^{LO}$$

At NLO all events are two-jet like except those that contribute to the LO three-jet rate

$$R_{2jets}^{NNLO} = 1 - R_{3jets}^{NLO} - R_{4jets}^{LO}$$

At NNLO all events are two-jet like except those that contribute to the NLO three-jet rate and to the LO four jet rate

 $R^{N^nLO}_{2jets} \text{ can be obtained through a } N^{n-1}LO \text{ computation !}$ See e.g. NNLO calculation of A_{FB} S.Catani, M.H.Seymour (1999)

Can this idea be extended to hadron collisions ? It was !

Computation of Higgs cross section with a jet veto up to NNLO

S. Catani, D. de Florian, MG (2001)

Jet veto: cut on jets with $p_T > p_T^{\text{veto}}$

$$\begin{aligned} \sigma_{\rm veto}^{LO} &= \sigma_{\rm tot}^{LO} \\ \sigma_{\rm veto}^{NLO} &= \sigma_{\rm tot}^{NLO} - \sigma_{p_T^{\rm jet} > p_T^{\rm veto}}^{LO} \\ \sigma_{\rm veto}^{NNLO} &= \sigma_{\rm tot}^{NNLO} - \sigma_{p_T^{\rm jet} > p_T^{\rm veto}}^{NLO} \end{aligned}$$

(N)NLO computation can
be done by having the
(N)NLO total cross section
and the (N)LO cross
section for H+jet

Does it work for general
cuts ? Yes ! $p_T^{\gamma} > 20 \,\text{GeV}$ $E_T^{R=0.3} < 6 \,\text{GeV}$ Example: $H \to \gamma \gamma$ $|y^{\gamma}| < 2.5 \,\text{GeV}$ photon isolation

$$d\sigma^{NNLO} = d\sigma^{NNLO}_{\{p_T^{\gamma} > 20 \text{ GeV}, |y^{\gamma}| < 2.5\}} - d\sigma^{NLO}_{\{p_T^{\gamma} > 20 \text{ GeV}, |y^{\gamma}| < 2.5; E_T^{R=0.3} > 6 \text{ GeV}\}}$$
Inclusive cross section to be computed H+jet cross section to be

up to NNLO (no free lunch !)

H+jet cross section to be computed up to NLO Can this idea be extended to hadron collisions ? It was !

Computation of Higgs cross section with a jet veto up to NNLO

S. Catani, D. de Florian, MG (2001)

Jet veto: cut on jets with $p_T > p_T^{\text{veto}}$

 $T \cap$

 $T \cap$

$$\sigma_{\text{veto}}^{LO} = \sigma_{\text{tot}}^{LO}$$
$$\sigma_{\text{veto}}^{NLO} = \sigma_{\text{tot}}^{NLO} - \sigma_{p_T^{\text{jet}} > p_T^{\text{veto}}}^{LO}$$
$$\sigma_{\text{veto}}^{NNLO} = \sigma_{\text{tot}}^{NNLO} - \sigma_{p_T^{\text{jet}} > p_T^{\text{veto}}}^{NLO}$$

(N)NLO computation canbe done by having the(N)NLO total cross sectionand the (N)LO crosssection for H+jet

Does it work for general cuts ? Yes !

Example: $H \to \gamma \gamma$

 $p_T^{\gamma} > 20 \,\mathrm{GeV}$ $|y^{\gamma}| < 2.5 \,\mathrm{GeV}$

$$d\sigma^{NNLO} = d\sigma^{NNLO}_{\{p_T^{\gamma} > 20 \text{ GeV}, |y^{\gamma}| < 2.5\}} - d\sigma^{NLO}_{\{p_T^{\gamma} > 20 \text{ GeV}, |y^{\gamma}| < 2.5\}} - d\sigma^{R=0.3}_{\{p_T^{\gamma} > 20 \text{ GeV}, |y^{\gamma}| < 2.5\}}$$

Inclusive cross section to be computed up to NNLO (no free lunch !) H+jet cross section to be computed up to NLO

The q_T subtraction method

S. Catani, MG (2007)

Let us consider a more general class of processes: the production of colourless high-mass systems F in hadron collisions (F may consist of lepton pairs, vector bosons, Higgs bosons.....) $c \sim c$

At LO it starts with $c\bar{c} \rightarrow F$

Strategy: start from NLO calculation of F+jet(s) and observe that as soon as the transverse momentum of the F $q_T \neq 0$ one can write:

$$d\sigma^F_{(N)NLO}|_{q_T \neq 0} = d\sigma^{F+\text{jets}}_{(N)LO}$$

Define a counterterm to deal with singular behaviour at $q_T \rightarrow 0$

But.....

the singular behaviour of $d\sigma^{F+\text{jets}}_{(N)LO}$ is well known from the resummation program of large logarithmic contributions at small transverse momenta

G. Parisi, R. Petronzio (1979) J. Collins, D.E. Soper, G. Sterman (1985) S. Catani, D. de Florian, MG (2000)

where
$$\Sigma^{F}(q_{T}/Q) \sim \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} \sum_{k=1}^{2n} \Sigma^{F(n;k)} \frac{Q^{2}}{q_{T}^{2}} \ln^{k-1} \frac{Q^{2}}{q_{T}^{2}}$$

Then the calculation can be extended to include the $q_T = 0$ contribution:

$$d\sigma_{(N)NLO}^{F} = \mathcal{H}_{(N)NLO}^{F} \otimes d\sigma_{LO}^{F} + \left[d\sigma_{(N)LO}^{F+\text{jets}} - d\sigma_{(N)LO}^{CT} \right]$$

where I have subtracted the truncation of the counterterm at (N)LO and added a contribution at $q_T = 0$ to restore the correct normalization

The function \mathcal{H}^F can be computed in QCD perturbation theory

$$\mathcal{H}^F = 1 + \left(\frac{\alpha_S}{\pi}\right) \mathcal{H}^{F(1)} + \left(\frac{\alpha_S}{\pi}\right)^2 \mathcal{H}^{F(2)} + \dots$$

Let's focus on Higgs production (F=H)

The function \mathcal{H}^H can be computed in QCD perturbation theory as follows

$$\mathcal{H}^{H} = 1 + \left(\frac{\alpha_{S}}{\pi}\right) \mathcal{H}^{H(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \mathcal{H}^{H(2)} + \dots$$
S. Catani, MG (2011)

consider integral of q_T distribution up to an arbitrary small Q_0 $\int_0^{Q_0^2} dq_T^2 \frac{d\hat{\sigma}_{H\,ab}}{dq_T^2} (q_T, M, \hat{s} = M^2/z) \equiv z\sigma_H^{(0)} \hat{R}_{ggab}^H(z, M/Q_0)$

Up to $O(\alpha_{\rm S}^2)$ the coefficients of the logarithmic expansion in $l_0 = \ln M_H^2/Q_0^2$ are all known D. de Florian, MG (2000)

$$\hat{R}_{gg\leftarrow ab}^{(1)}(z, M/Q_0) = l_0^2 \Sigma_{gg\leftarrow ab}^{H(1;2)}(z) + l_0 \Sigma_{gg\leftarrow ab}^{H(1;1)}(z) + \mathcal{H}_{gg\leftarrow ab}^{H(1)}(z) + \mathcal{O}(Q_0^2/M^2)$$

$$\hat{R}_{gg\leftarrow ab}^{(2)}(z, M/Q_0) = l_0^4 \Sigma_{gg\leftarrow ab}^{H(2;4)}(z) + l_0^3 \Sigma_{gg\leftarrow ab}^{H(2;3)}(z) + l_0^2 \Sigma_{gg\leftarrow ab}^{H(2;2)}(z)$$

$$+ l_0 \left(\Sigma_{ggab}^{H(2;1)}(z) - 16\zeta_3 \Sigma_{ggab}^{H(2;4)}(z) \right) + \left(\mathcal{H}_{ggab}^{H(2)}(z) - 4\zeta_3 \Sigma_{ggab}^{H(2;3)}(z) \right) + \mathcal{O}(Q_0^2/M^2)$$

The only missing one is
$$\mathcal{H}_{gg\leftarrow ab}^{H(2)}(z)$$

solve this equation to obtain the $\mathcal{H}_{gg\leftarrow ab}^{H(2)}(z)$
 $\int_{0}^{Q_{0}^{2}} dq_{T}^{2} \frac{d\hat{\sigma}_{H\,ab}}{dq_{T}^{2}}(q_{T}, M; z) = \hat{\sigma}_{ab}^{H}(z) - \int_{Q_{0}^{2}}^{\infty} dq_{T}^{2} \frac{d\hat{\sigma}_{H\,ab}}{dq_{T}^{2}}(q_{T}, M; z)$
Use available analytical NLO results C.Glosser, C.Schmidt (2003)

For a generic $pp \rightarrow F + X$ process:

At NLO we need a LO calculation of $d\sigma^{F+\text{jet}(s)}$ plus the knowledge of $d\sigma_{LO}^{CT}$ and $\mathcal{H}^{F(1)}$

- the counterterm $d\sigma_{LO}^{CT}$ requires the resummation coefficients $A^{(1)}, B^{(1)}$ and the one loop anomalous dimensions
- the general form of $\mathcal{H}^{F(1)}$ is known

D. de Florian, MG (2000) G. Bozzi, S. Catani, D. de Florian, MG (2005)

- At NNLO we need a NLO calculation of $d\sigma^{F+\text{jet}(s)}$ plus the knowledge of $d\sigma^{CT}_{NLO}$ and $\mathcal{H}^{F(2)}$
 - the counterterm $d\sigma_{NLO}^{CT}$ depends also on the resummation coefficients $A^{(2)}, B^{(2)}$ and on the two loop anomalous dimensions
 - we have computed $\mathcal{H}^{F(2)}$ for Higgs and vector boson production !

S. Catani, MG (2007) S. Catani, L. Cieri, G.Ferrera, D. de Florian, MG (2009)

this is enough to compute NNLO corrections for any process in this class provided F+jet is known up NLO and the two loop amplitude for $c\overline{c} \to F$ is known

Subtraction or slicing?

Slicing: integrate $d\sigma_{CT}$ from q_{Tcut} to ∞ (unitarity) (e.g. MATRIX)

Logarithmic terms in q_{Tcut}/Q that cancel those coming from the integral of the F+jet contribution

(Non-local) subtraction: map an event in the real contribution to a counter event at $q_T=0$

(e.g. first versions of DYNNLO and HNNLO)

But: the counter term is integrated only up to the kinematical boundary q_{Tmax} (practically irrelevant at the LHC but relevant for VH at the Tevatron !)

q_T subtraction vs Born projection

Suppose we have only one variable q_T (neglect rapidity.....)

$$d\sigma \sim H\delta(q_T) + (d\sigma^R - d\sigma^{CT})$$
 q_T subtraction

$$d\sigma \sim \sigma_{\rm tot} \delta(q_T) + \left(d\sigma^R \right)_+$$

Born projection

Available implementations

Generality of the method suggests that a single implementation in a general purpose program could be more efficient

The MATRIX project

S.Kallweit, D.Rathlev, M.Wiesemann, MG + (H.Sargsyan, J.Mazzitelli.....)

Munich Automates qT subtraction and Resummation to Integrate X--sections

Status

- $pp \rightarrow Z/\gamma^* (\rightarrow l^+l^-)$
- pp→W(→lv)
- pp→H
- рр→үү
- pp→Wγ→lvγ
- pp→Zγ→l+l⁻γ

$pp \rightarrow ZZ (\rightarrow 4l)$ \checkmark

- $pp \rightarrow WW \rightarrow (lv l'v')$
- pp→ZZ/WW →llvv 🗸
- pp→WZ →lvll
- pp→HH

 \checkmark

 \checkmark

 \checkmark

 \checkmark

not in public release

First public release out in November 2017

S.Kallweit, M.Wiesemann, MG (2017)

Stability of the subtraction procedure

$$d\sigma^{F}_{(N)NLO} = \mathcal{H}^{F}_{(N)NLO} \otimes d\sigma^{F}_{LO} \left(+ \left[d\sigma^{F+\text{jets}}_{(N)LO} - d\sigma^{CT}_{(N)LO} \right] \right)$$

The q_T subtraction counterterm is non-local

the difference in the square bracket is evaluated with a cut-off r_{cut} on the ratio $r = q_T/Q$

In MATRIX $q_{\rm T}$ subtraction indeed works as a slicing method

It is important to monitor the dependence of our results on r_{cut}

MATRIX allows for a simultaneous evaluation of the NNLO cross section for different values of r_{cut}

The dependence on r_{cut} is used by the code to provide an estimate of the systematic uncertainty in any NNLO run

Stability: the easy case

Stability: the easy case

...but life is not always so easy !

The extrapolation

We introduce an automatic extrapolation procedure to obtain the best result for the NNLO cross section with a solid estimate of its systematic uncertainty

We use a simple quadratic least χ^2 fit

Two options: start from a minimum $r_{cut}=0.15\%$ (default) and from $r_{cut}=0.05\%$

Repeat the fit by varying the upper limit of r_{cut} and assign an uncertainty by comparing the difference between the results

Introduce a lower limit to the uncertainty as half of the difference between the best fit and the cross section evaluated at the minimum $r_{cut}=0.15\%$ (0.05%)

Stability plots

Stability plots

Stability plots

Most recent results: HH

It is the process that gives direct access to the Higgs self coupling λ Up to very recently QCD corrections at NLO and NNLO known only in the large-m_{top} approximation

S.Dawson,S.Dittmaier,M.Spira (1998) D. de Florian, J.Mazzitelli (2013)

NNLL resummation available

D. de Florian, J.Mazzitelli (2015)

Main issue: large-m_{top} approximation known not to work so well

J.Grigo et al. (2013)

Recent breakthrough: exact NLO calculation completed

S.Borowka et al (2016)

Multi scale two-loop integrals evaluated numerically

Accurate predictions must account for exact NLO

Promising for other important multi scale NLO calculations

G.Heinrich, S.Jones, S.Kallweit, M.Kerner, J.Lindert, MG (2018)

Approximate NNLO calculation recently presented combining the most advanced perturbative information available at present

NNLO_{FTapprox} Combine exact double real emission amplitudes with suitably reweighted single real and double virtual contributions

- Start from exact NLO
- At NNLO:

- use exact double-real one loop amplitudes

- use real-virtual and double virtual HEFT amplitudes reweighed with

$$\mathcal{R}(ij \to HH + X) = \frac{\mathcal{A}_{\text{Full}}^{\text{Born}}(ij \to HH + X)}{\mathcal{A}_{\text{HEFT}}^{(0)}(ij \to HH + X)}$$

G.Heinrich, S.Jones, S.Kallweit, M.Kerner, J.Lindert, MG (2018)

Numerical stability: the double real contribution requires $gg \rightarrow HHgg$ six point integrals to be evaluated in the unresolved region

Quadrupole precision prohibitive (10s/phase space point)

Switch to (reweighted) HEFT amplitudes below a given α_{cut}

Set $\alpha_{cut}=10^{-4}$ but check the independence of the results by varying α_{cut} 10⁻³ and 10⁻⁵

r_{cut} stability at the few per mille level

G.Heinrich, S.Jones, S.Kallweit, M.Kerner, J.Lindert, MG (2018)

\sqrt{s}	$13 { m TeV}$	$14 { m TeV}$	$27 { m ~TeV}$	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
$\rm NLO_{FTapprox}$ [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220{}^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224{}^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapper}	$\pm 2.6\%$	$\pm 2.7\%$	$\pm 3.4\%$	$\pm 4.6\%$
$\rm NNLO_{FTapprox}/\rm NLO$	1.118	1.116	1.096	1.067

Uncertainty from finite mtop effects down to the few percent level

Beyond colour singlets

The case of heavy-quark production

S.Catani, A.Torre, MG (2014)

The case of heavy-quark production

S.Catani, A.Torre, MG (2014)

$$(\mathbf{H}\,\boldsymbol{\Delta})_{c\bar{c}} = \frac{\langle \widetilde{\mathcal{M}}_{c\bar{c}\to Q\bar{Q}} \mid \boldsymbol{\Delta} \mid \widetilde{\mathcal{M}}_{c\bar{c}\to Q\bar{Q}} \rangle}{\alpha_{\mathrm{S}}^2(M^2) \mid \mathcal{M}_{c\bar{c}\to Q\bar{Q}}^{(0)}(p_1, p_2; p_3, p_4) \mid^2}$$

$$|\,\widetilde{\mathcal{M}}_{car{c}
ightarrow Qar{Q}}\,
angle$$

subtracted virtual amplitude

 $\Delta(\mathbf{b}, M; y_{34}, \phi_3) = \mathbf{V}^{\dagger}(b, M; y_{34}) \ \mathbf{D}(\alpha_{\mathrm{S}}(b_0^2/b^2); \phi_{3b}, y_{34}) \ \mathbf{V}(b, M; y_{34})$

$$\mathbf{V}(b,M;y_{34}) = \overline{P}_q \exp\left\{-\int_{b_0^2/b^2}^{M^2} \frac{dq^2}{q^2} \mathbf{\Gamma}_t(\alpha_{\mathrm{S}}(q^2);y_{34})\right\} \qquad \alpha_{\mathrm{S}}^n L^m \text{ terms } n \ge m$$

soft anomalous dimension

 $\Gamma_t^{(1)}$ and $\Gamma_t^{(2)}$ directly related to singular structure of $|\mathcal{M}_{c\bar{c}\to Q\bar{Q}}\rangle$

M.Neubert et al. (2009)

 $\mathbf{D}(\alpha_{\mathrm{S}};\phi_{3b},y_{34})$

embodies azimuthal correlations at scale 1/b

 $\langle \mathbf{D}(\alpha_{\mathrm{S}}; \phi_{3b}, y_{34}) \rangle_{\mathrm{av.}} = 1$

R.Bonciani, S.Catani, H.Sargsyan and A.Torre , MG (2015)

The q_T subtraction method can be extended to heavy-quark production

We have used this method to compute ttbar production at NLO and to include all the off-diagonal partonic channels at NNLO

σ(pb)	NLO	O(a _S ⁴) _{qg}	O(as ⁴)qq+qq'	σ(fb)	NLO	O(a _S ⁴) _{qg}	O(as4)qq+qq'
q⊤ subtraction	226.2(1)	-2.25(5)	1.51(3)	q⊤ subtraction	7083(3)	-61.5(5)	1.33(1)
Top++	226.3	-2.253	1.48	Top++	7086	-61.53	1.33

pp, 8 TeV

ppbar, 2 TeV

But: the r_{cut} dependence is larger in this case

S.Catani, S.Devoto, J.Mazzitelli, S.Kallweit, H.Sargsyan, MG (in progress)

S.Catani, S.Devoto, J.Mazzitelli, S.Kallweit, H.Sargsyan, MG (in progress)

r_{cut} stability: off-diagonal channels

S.Catani, S.Devoto, J.Mazzitelli, S.Kallweit, H.Sargsyan, MG (in progress)

r_{cut} stability: diagonal channels

Summary & Outlook

The q_T subtraction method has been used to perform a number of important NNLO calculations where a coloured singlet final state is produced in hadron collisions

- The calculations were implemented in numerical codes which are to a large extent independent from each other
- We provide a new NNLO parton level generator which implements all these calculations in a unique framework and includes all the vector-boson pair production processes

The program combines the MUNICH Monte Carlo framework with amplitudes from Openloops and q_T subtraction and will eventually include transverse-momentum resummation at NNLL

Summary & Outlook

- MATRIX encompasses all the previous codes in a single general framework
- First public version including single vector and Higgs boson production and all the diboson processes has been released
- Non-trivial applications to loop induced processes: HH production
- Some items on our to do list:
 - NLO gg in WW and ZZ
 - inclusion of processes with a heavy-quark pair
 - Include EW corrections
 - Include anomalous couplings

Thank you !

Backup

<pre>process (\${process_id})</pre>	$\sigma_{ m LO}$	$\sigma_{ m NLO}$	$\sigma_{\rm loop} \ (\sigma_{\rm loop}/\Delta\sigma_{\rm NNLO}^{\rm ext})$	$\sigma_{\rm NNLO}^{r_{\rm cut}}$	$\sigma_{\rm NNLO}^{\rm extrapolated}$	$K_{\rm NLO}$	$K_{\rm NNLO}$
$pp \rightarrow H$ (pph21)	$15.42(0)^{+22\%}_{-17\%} \mathrm{pb}$	$30.26(1)^{+20\%}_{-15\%}\mathrm{pb}$		$39.93(3)^{+11\%}_{-10\%}\rm pb$	$39.93(3)^{+11\%}_{-10\%} \mathrm{pb}$	+96.2%	+32.0%
$pp \rightarrow Z$ (ppz01)	$43.32(0)^{+12\%}_{-13\%}\rm{nb}$	$54.20(1)^{+3.1\%}_{-4.9\%}\rm{nb}$	_	$56.01(3)^{+0.84\%}_{-1.1\%}~\rm{nb}$	$55.99(3)^{+0.84\%}_{-1.1\%}\mathrm{nb}$	+25.1%	+3.31%
$pp \rightarrow W^-$ (ppw01)	$60.15(0)^{+13\%}_{-14\%}\rm{nb}$	$75.95(2)^{+3.3\%}_{-5.3\%}\rm{nb}$	—	$78.36(3)^{+0.98\%}_{-1.2\%}~{\rm nb}$	$78.33(8)^{+0.98\%}_{-1.2\%}\rm{nb}$	+26.3%	+3.14%
$pp \rightarrow W^+$ (ppwx01)	$81.28(1)^{+13\%}_{-14\%}\rm{nb}$	$102.2(0)^{+3.4\%}_{-5.3\%}\rm{nb}$	_	$105.8(1)^{+0.93\%}_{-1.3\%}~\rm nb$	$105.8(1)^{+0.93\%}_{-1.3\%}\rm{nb}$	+25.7%	+3.52%
$pp \rightarrow e^- e^+$ (ppeex02)	$592.8(1)^{+14\%}_{-14\%}\rm pb$	$699.7(2)^{+2.9\%}_{-4.5\%}\rm{pb}$	_	$728.4(3)^{+0.48\%}_{-0.72\%}\rm{pb}$	$732.7(3.4)^{+0.43\%}_{-0.79\%}\mathrm{pb}$	+18.0%	+4.72%
$pp \rightarrow \nu_e \bar{\nu}_e$ (ppnenex02)	$2876(0)^{+12\%}_{-13\%}\rm pb$	$3585(1)^{+3.0\%}_{-4.9\%}\rm pb$	—	$3705(2)^{+0.86\%}_{-1.1\%}~\rm pb$	$3710(2)^{+0.85\%}_{-1.1\%}\rm pb$	+24.6%	+3.48%
$pp \rightarrow e^- \bar{\nu}_e$ (ppenex02)	$2972(0)^{+14\%}_{-15\%}\rm{pb}$	$3674(1)^{+3.1\%}_{-5.2\%}\rm pb$		$3772(2)^{+0.89\%}_{-0.94\%}\rm pb$	$3768(3)^{+0.90\%}_{-0.93\%}\rm{pb}$	+23.6%	+2.57%
$pp \rightarrow e^+ \nu_e$ (ppexne02)	$3964(0)^{+14\%}_{-14\%}\rm{pb}$	$4855(1)^{+3.0\%}_{-5.1\%}\rm pb$		$4986(2)^{+0.88\%}_{-0.95\%}\rm{pb}$	$4986(3)^{+0.88\%}_{-0.95\%}\rm{pb}$	+22.5%	+2.70%
$pp \rightarrow \gamma \gamma$ (ppaa02)	$5.592(1)^{+10\%}_{-11\%} \mathrm{pb}$	$25.75(1)^{+8.8\%}_{-7.5\%}\rm{pb}$	$2.534(1)^{+24\%}_{-17\%}$ pb (17.4%)	$40.86(2)^{+8.7\%}_{-7.2\%}\rm pb$	$40.28(30)^{+8.7\%}_{-7.0\%}\rm{pb}$	+361%	+56.4%
$pp \rightarrow e^- e^+ \gamma$ (ppeexa03)	$1469(0)^{+12\%}_{-12\%}$ fb	$2119(1)^{+2.9\%}_{-4.6\%}{\rm fb}$	$\frac{16.02(1)^{+24\%}_{-18\%}}{(8.14\%)}$	$2326(1)^{+1.2\%}_{-1.3\%}{\rm fb}$	$2316(5)^{+1.1\%}_{-1.2\%}$ fb	+44.3%	+9.29%
$pp \rightarrow \nu_e \bar{\nu}_e \gamma$ (ppnenexa03)	$63.61(1)^{+2.7\%}_{-3.5\%}$ fb	$98.75(2)^{+3.3\%}_{-2.7\%}$ fb	$2.559(2)^{+26\%}_{-19\%} \text{fb} (17.3\%)$	$114.7(1)^{+3.2\%}_{-2.6\%}{\rm fb}$	$113.5(6)^{+2.9\%}_{-2.4\%}{\rm fb}$	+55.2%	+15.0%
$pp ightarrow e^- \bar{ u}_e \gamma$ (ppenexa03)	$726.1(1)^{+11\%}_{-12\%}$ fb	$1850(1)^{+6.6\%}_{-5.3\%}{\rm fb}$	—	$2286(1)^{+4.0\%}_{-3.7\%}$ fb	$2256(15)^{+3.7\%}_{-3.5\%}$ fb	+155%	+22.0%
$pp \rightarrow e^+ \nu_e \gamma$ (ppexnea03)	$861.7(1)^{+10\%}_{-11\%}$ fb	$2187(1)^{+6.6\%}_{-5.3\%}\mathrm{fb}$		$2707(3)^{+4.1\%}_{-3.8\%}$ fb	$2671(35)^{+3.8\%}_{-3.6\%}$ fb	+154%	+22.1%
$pp \rightarrow ZZ$ (ppzz02)	$9.845(1)^{+5.2\%}_{-6.3\%}\rm{pb}$	$14.10(0)^{+2.9\%}_{-2.4\%} \mathrm{pb}$	$1.361(1)^{+25\%}_{-19\%}$ pb (52.9%)	$16.68(1)^{+3.2\%}_{-2.6\%}\mathrm{pb}$	$16.67(1)^{+3.2\%}_{-2.6\%}\rm{pb}$	+43.3%	+18.2%
$pp \rightarrow W^+W^-$ (ppwxw02)	$66.64(1)^{+5.7\%}_{-6.7\%}\rm pb$	$103.2(0)^{+3.9\%}_{-3.1\%}\rm pb$	$4.091(3)^{+27\%}_{-19\%}$ pb (29.5%)	$117.1(1)^{+2.5\%}_{-2.2\%} \mathrm{pb}$	$117.1(1)^{+2.5\%}_{-2.2\%}\rm pb$	+54.9%	+13.4%
$pp \rightarrow e^- \mu^- e^+ \mu^+$ (ppemexmx04)	$11.34(0)^{+6.3\%}_{-7.3\%}$ fb	$16.87(0)^{+3.0\%}_{-2.5\%}$ fb	$1.971(1)^{+25\%}_{-18\%}$ fb (57.6%)	$20.30(1)^{+3.5\%}_{-2.9\%}$ fb	$20.30(1)^{+3.5\%}_{-2.9\%}{\rm fb}$	+48.8%	+20.3%
$pp \rightarrow e^-e^-e^+e^+$ (ppeeexex04)	$5.781(1)^{+6.3\%}_{-7.4\%}$ fb	$8.623(3)^{+3.1\%}_{-2.5\%}$ fb	$0.9941(4)^{+25\%}_{-18\%}$ fb (56.9%)	$10.37(1)^{+3.5\%}_{-3.0\%}{\rm fb}$	$10.37(1)^{+3.5\%}_{-3.0\%}{\rm fb}$	+49.2%	+20.2%
$pp \rightarrow e^- e^+ \nu_\mu \nu_\mu$ (ppeexnmnmx04)	$22.34(0)^{+5.3\%}_{-6.4\%}$ fb	$33.90(1)^{+3.3\%}_{-2.7\%}$ fb	$3.212(1)^{+25\%}_{-19\%}$ fb (49.6%)	$40.39(2)^{+3.5\%}_{-2.8\%}$ fb	$40.38(2)^{+3.5\%}_{-2.8\%}\mathrm{fb}$	+51.7%	+19.1%
$pp \rightarrow e^- \mu^+ \nu_\mu \bar{\nu}_e$ (ppemxnmnex04)	$232.9(0)^{+6.6\%}_{-7.6\%}$ fb	$236.1(1)^{+2.8\%}_{-2.4\%}$ fb	$26.93(1)^{+27\%}_{-19\%}$ fb (94.3%)	$264.7(1)^{+2.2\%}_{-1.4\%}$ fb	$264.6(2)^{+2.2\%}_{-1.4\%}{\rm fb}$	+1.34%	+12.1%
$pp \rightarrow e^- e^+ \nu_e \bar{\nu}_e$ (ppeexnenex04)	$115.0(0)^{+6.3\%}_{-7.3\%}$ fb	$203.4(1)^{+4.7\%}_{-3.8\%}{\rm fb}$	$(33.8\%)^{+26\%}$ fb (33.8%)	$240.8(1)^{+3.4\%}_{-3.0\%}{\rm fb}$	$240.7(1)^{+3.4\%}_{-3.0\%}{\rm fb}$	+76.9%	+18.4%
$pp \rightarrow e^- \mu^- e^+ \bar{\nu}_\mu$ (ppemexnmx04)	$11.50(0)^{+5.7\%}_{-6.8\%}{\rm fb}$	$23.55(1)^{+5.5\%}_{-4.5\%}\mathrm{fb}$	—	$26.17(1)^{+2.2\%}_{-2.1\%}$ fb	$26.17(2)^{+2.2\%}_{-2.1\%}$ fb	+105%	+11.1%
$pp \rightarrow e^- e^- e^+ \bar{\nu}_e$ (ppeeexnex04)	$11.53(0)^{+5.7\%}_{-6.8\%}$ fb	$23.63(1)^{+5.5\%}_{-4.5\%}{\rm fb}$	—	$26.27(1)^{+2.3\%}_{-2.1\%}$ fb	$26.25(2)^{+2.3\%}_{-2.1\%}{\rm fb}$	+105%	+11.1%
$pp \rightarrow e^- e^+ \mu^+ \nu_\mu$ (ppeexmxnm04)	$17.33(0)^{+5.3\%}_{-6.3\%}$ fb	$34.14(1)^{+5.3\%}_{-4.3\%}{\rm fb}$		$37.74(2)^{+2.2\%}_{-2.0\%}$ fb	$37.74(4)^{+2.2\%}_{-2.0\%}{\rm fb}$	+97.0%	+10.6%
$pp \rightarrow e^- e^+ e^+ \nu_e$ (ppeexexne04)	$17.37(0)^{+5.3\%}_{-6.3\%}{\rm fb}$	$34.21(2)^{+5.3\%}_{-4.3\%}{\rm fb}$	—	$37.85(2)^{+2.3\%}_{-2.0\%}{\rm fb}$	$37.84(3)^{+2.3\%}_{-2.0\%}{\rm fb}$	+96.9%	+10.6%

process	LO runtime	NLO runtime	NNLO runtime	NNLO runtime estimate for 10^{-3} uncertainty
(#throcess_1d)	(relative uncertainty)	(relative uncertainty)	(relative uncertainty)	ior io uncertainty
pp ightarrow H (pph21)	$\begin{array}{ccc} 0{\rm d} & 0{\rm h} & 2{\rm m} \\ (1.5\cdot10^{-4}) \end{array}$	$\begin{array}{c} 0\mathrm{d} & 0\mathrm{h} 12\mathrm{m} \\ (2.7\cdot10^{-4}) \end{array}$	35 d 23 h 23 m $(7.2 \cdot 10^{-4})$	19 CPU days
$pp \rightarrow Z$ (ppz01)	0 d 0 h 10 m (8.2 · 10 ⁻⁵)	0 d 0 h 16 m (2.6 · 10 ⁻⁴)	53 d 15 h 31 m (4.6 · 10 ⁻⁴)	11 CPU days
$pp \rightarrow W^-$ (ppw01)	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ (8.1 \cdot 10^{-5}) \end{pmatrix}$	0 d 0 h 22 m (2.6 · 10 ⁻⁴)	50 d 17 h 29 m $(4.4 \cdot 10^{-4})$	10 CPU days
$pp \rightarrow W^+$ (ppwr01)	$(0.1 \cdot 10^{-5})$ 0 d 0 h 14 m $(8.1 \cdot 10^{-5})$	$\begin{pmatrix} 2.6 & 10 \\ 0 & 0 & 24 \\ (2.6 & 10^{-4}) \end{pmatrix}$	$(4.9 \cdot 10^{-4})$	11 CPU days
$pp \rightarrow e^- e^+$ (ppeex02)	$(1.0 \cdot 10^{-4})$	$(2.8 + 10^{-4})$ 0 d 2 h 24 m $(2.8 \cdot 10^{-4})$	$(1.6 - 10^{-1})$ 173 d 20 h 36 m $(3.6 \cdot 10^{-4})$	22 CPU days
$pp \rightarrow \nu_e \bar{\nu}_e$	$\begin{pmatrix} 1.6 & 1.6 \\ 0.d & 1.h & 31.m \\ (8.2 \cdot 10^{-5}) \end{pmatrix}$	$\begin{pmatrix} 2.6 & 10 \\ 0 & 1 \\ 0 & 0 \\ (2.5 \cdot 10^{-4}) \end{pmatrix}$	$(4.5 \cdot 10^{-4})$	18 CPU days
$pp \rightarrow e^- \bar{\nu}_e$ (ppenex02)	$\begin{pmatrix} 0.2 & 10 \\ 0 & 1 & 46 \\ (8.7 \cdot 10^{-5}) \end{pmatrix}$	$(2.3 + 10^{-1})$ 0 d 5 h 21 m $(2.2 \cdot 10^{-4})$	$(1.0 \ 10^{-1})$ 114 d 2 h 18 m $(4.3 \cdot 10^{-4})$	21 CPU days
$pp \rightarrow e^+ \nu_e$ (ppexne02)	$\begin{pmatrix} 0.1 & 10 \\ 0 & 1 & 56 \\ (8.5 \cdot 10^{-5}) \end{pmatrix}$	$(2.6 \cdot 10^{-4})$	$(1.6 \cdot 10^{-9})$ 114 d 6 h 18 m $(4.6 \cdot 10^{-4})$	24 CPU days
$pp \rightarrow \gamma\gamma$ (ppaa02)	$(9.8 \cdot 10^{-5})$	$\begin{pmatrix} 2.6 & 10 \\ 0 & 4h \\ 11m \\ (2.8 \cdot 10^{-4}) \end{pmatrix}$	$(1.6 + 10^{-4})$ 27d 17h 7m $(4.6 \cdot 10^{-4})$	6 CPU days
$pp \rightarrow e^- e^+ \gamma$ (ppeexa03)	$(0.0 - 10^{-5})$ 0 d 17 h 55 m $(9.2 \cdot 10^{-5})$	$(2.8 + 10^{-4})$ 1 d 19 h 48 m $(2.8 + 10^{-4})$	$(1.6 \cdot 10^{-1})$ 1276 d 12 h 47 m $(3.6 \cdot 10^{-4})$	167 CPU days
$pp \rightarrow \nu_e \bar{\nu}_e \gamma$ (pppenexa03)	$(3.2 + 10^{-5})$ 0 d 2 h 50 m $(8.7 \cdot 10^{-5})$	$(2.5 \cdot 10^{-4})$ 0 d 8 h 59 m $(2.5 \cdot 10^{-4})$	$(5.0 + 10^{-4})$ 75 d 9 h 6 m $(4.7 \cdot 10^{-4})$	17 CPU days
$pp \rightarrow e^- \bar{\nu}_e \gamma$ (ppenexa03)	$(0.1 - 10^{-1})$ 0 d 22 h 18 m $(1.0 \cdot 10^{-4})$	$(3.2 \cdot 10^{-4})$ 3 d 16 h 59 m $(3.2 \cdot 10^{-4})$	$(4.0 \cdot 10^{-4})$	232 CPU days
$pp \rightarrow e^+ \nu_e \gamma$ (pperpead)	$(1.6 \ 1.6 \)$ 1 d 7 h 8 m $(9.6 \cdot 10^{-5})$	6d 8h 7m (3.0 · 10 ⁻⁴)	$(10^{-10^{-1}})$ 428 d 7 h 1 m $(10 \cdot 10^{-3})$	443 CPU days
$pp \rightarrow ZZ$ (ppzz02)	$\begin{pmatrix} 0.0 & 10 \\ 0 & 1 & 44 \\ (8.2 \cdot 10^{-5}) \end{pmatrix}$	$(0.6 + 10^{-4})$ 0 d + 1 h + 6 m $(2.4 \cdot 10^{-4})$	$(1.0 \ 10^{-1})$ 132 d 19 h 37 m $(4.4 \cdot 10^{-4})$	25 CPU days
$pp \rightarrow W^+W^-$	$\begin{pmatrix} 0.2 & 10 \\ 0 & 1 & 123 \\ (8.2 \cdot 10^{-5}) \end{pmatrix}$	$(2.1 + 10^{-1})$ 0 d = 0 h 48 m $(2.5 \cdot 10^{-4})$	$(4.3 \cdot 10^{-4})$ 69 d 20 h 49 m $(4.3 \cdot 10^{-4})$	13 CPU days
$pp \rightarrow e^{-}\mu^{-}e^{+}\mu^{+}$	$(0.2 \ 10^{-5})$ 0d 5h 43m (8.2 · 10 ⁻⁵)	$(2.6 \ 10^{-1})$ 0 d 4 h 32 m $(2.7 \cdot 10^{-4})$	$(4.5 \cdot 10^{-4})$ 219 d 16 h 33 m $(4.5 \cdot 10^{-4})$	45 CPU days
$pp \rightarrow e^- e^- e^+ e^+$	$(3.2 \cdot 10^{-5})$ 0 d 11 h 34 m $(9.0 \cdot 10^{-5})$	(2.1×10^{-9}) 0 d 12 h 8 m (3.4×10^{-4})	(4.3×10^{-9}) 742 d 13 h 37 m (5.1×10^{-4})	193 CPU days
$pp \rightarrow e^- e^+ \nu_\mu \bar{\nu}_\mu$	$(9.4 \cdot 10^{-5})$	$(3.4 \cdot 10^{-1})$ 0 d 6 h 36 m $(2.7 \cdot 10^{-4})$	$(5.1 \cdot 10^{-9})$ 158 d 13 h 40 m $(4.4 \cdot 10^{-4})$	31 CPU days
$pp \rightarrow e^- \mu^+ \nu_\mu \bar{\nu}_e$ (ppersymmer 04)	$(9.2 \cdot 10^{-5})$	$(2.7 \cdot 10^{-9})$ 1 d 22 h 9 m $(2.7 \cdot 10^{-4})$	$(4.4 \cdot 10^{-1})$ 521 d 2 h 20 m $(4.8 \cdot 10^{-4})$	119 CPU days
$pp \rightarrow e^- e^+ \nu_e \bar{\nu}_e$ (ppeexpense)(4)	$(3.2 + 10^{-5})$ 0 d 23 h 36 m $(8.2 \cdot 10^{-5})$	$(2.1, 10^{-1})$ 0 d 17 h 46 m $(4.8 \cdot 10^{-4})$	$(1.0 \ 10^{-1})$ 270 d 6 h 59 m $(4.4 \cdot 10^{-4})$	52 CPU days
$pp \rightarrow e^- \mu^- e^+ \bar{\nu}_\mu$ (ppemernmr04)	(1.0×10^{-4})	$(2.0 \cdot 10^{-1})$ 0d 5h 15m $(2.9 \cdot 10^{-4})$	$(4.3 \cdot 10^{-4})$ 104 d 16 h 46 m $(4.3 \cdot 10^{-4})$	19 CPU days
$pp \rightarrow e^- e^- e^+ \bar{\nu}_e$ (ppeeexpex(04))	$(1.0 + 10^{-5})$ 0 d 14 h 19 m $(8.3 + 10^{-5})$	$(2.7 \cdot 10^{-4})$ 0 d 14 h 56 m $(2.7 \cdot 10^{-4})$	$(4.0 + 10^{-1})$ 179d 14h 6m $(4.7 \cdot 10^{-4})$	39 CPU days
$pp \rightarrow e^- e^+ \mu^+ \nu_\mu$	(0.3×10^{-5}) 0 d 10 h 32 m (8.1×10^{-5})	$(2.1 + 10^{-1})$ 0 d 8 h 18 m $(2.6 \cdot 10^{-4})$	$(4.7 \cdot 10^{-7})$ 104 d 17 h 58 m $(4.5 \cdot 10^{-4})$	21 CPU days
$pp \rightarrow e^- e^+ e^+ \nu_e$ (ppeexexne04)	$(0.1 \cdot 10^{-9})$ 0 d 9 h 19 m $(1.0 \cdot 10^{-4})$	$(2.6 \cdot 10^{-7})$ 0 d 13 h 11 m $(4.6 \cdot 10^{-4})$	$(4.5 \cdot 10^{-9})$ 167 d 6 h 49 m $(5.1 \cdot 10^{-4})$	44 CPU days