N-jettiness subtraction: overview, recent developments and applications Frank Petriello

Subtracting Infrared Singularities Beyond NLO

April 11, 2018

Overview of N-jettiness subtraction

Fixed-order cross sections at NNLO

•Need the following ingredients for NNLO cross sections:

•In principle this is straightforward: draw all diagrams and calculate. In practice, it is complicated by by the implicit poles in the real radiation corrections that only appear after integration over phase space; that's why we're here at this workshop!

Subtraction at NNLO

•This is typically dealt with using a subtraction scheme. The generic form of an NNLO subtraction scheme is the following:

$$\begin{split} \mathrm{d}\sigma_{NNLO} &= \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\sigma_{NNLO}^R - \mathrm{d}\sigma_{NNLO}^S \right) \\ &+ \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NNLO}^{V,1} - \mathrm{d}\sigma_{NNLO}^{VS,1} \right) \\ &+ \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\sigma_{NNLO}^S + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NNLO}^{VS,1} \\ &+ \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{NNLO}^{V,2} , \end{split}$$

 Maximally singular configurations at NNLO can have two collinear, two soft singularities

•Subtraction terms must account for all of the many possible singular configurations: triple-collinear (p1||p2||p3), double-collinear (p1||p2,p3||p4), double-soft, single-soft, soft +collinear, etc.

•There has been significant progress in developing subtraction schemes at NNLO over the past several years, which will extensively discussed at this workshop.

Regulating the IR with $\ensuremath{\mathsf{P}}\ensuremath{\mathsf{T}}$

• To see the possibility of another approach, consider Higgs production at NLO, or $O(\alpha_s)$, as an example. A real emission correction:

This propagator can't diverge for finite transverse momentum (note that η must be finite for non-vanishing $p_{TH})$

O(α_s) becomes a Born-level calculation with no singularities at finite p_{TH}

Regulating the IR with $\ensuremath{\mathsf{P}}\ensuremath{\mathsf{T}}$

 This observation motivates the following partition of phase space for the differential cross section:

Singular regions of real emissions and virtual corrections go here

Finite regions of real emissions go here

This is a simple, finite tree-level calculation

Regulating the IR with $\ensuremath{\mathsf{P}}\ensuremath{\mathsf{T}}$

 This observation motivates the following partition of phase space for the differential cross section:

Effective field theory for low PTH

• Effective field theory can simplify the calculation when $p_{TH} \ll m_{H}$. It provides a systematic way of expanding the full differential cross section for small p_{TH}/m_{H} .

 x_a , x_b =Bjorken-x for each beam

This formula can be used at NNLO since S, C_i are known to $O(\alpha_s^2)$

It is a much simpler problem to calculate S and C_i than it is to cancel real and virtual singularities at NNLO for arbitrary observables!

Effective field theory for low PTH

• Effective field theory can simplify the calculation when $p_{TH} \ll m_{H}$. It provides a systematic way of expanding the full differential cross section for small p_{TH}/m_{H} .

 x_a , x_b =Bjorken-x for each beam

For $p_{cut}/m_H \rightarrow 0$ this becomes an *exact* expression for the NNLO result. This is the idea behind q_T -subtraction. Catani, Grazzini (2007)

Jets at the LHC?

 A limitation of this approach is that it can only describe partonic processes with no final-state collinear singularities

$$\frac{1}{2p_1 \cdot p_2} = \frac{1}{2p_{T1}|\vec{p}_{TH} - \vec{p}_{T1}|}$$
$$\times \frac{1}{\cosh(\Delta \eta) - \cos(\Delta \phi)}$$

This vanishes independently of p_{TH} for either p_{T1} or p_{T2} soft, or $p_1||p_2$

p_{TH} no longer resolves singularities in the presence of final-state collinear singularities

N-jettiness

There is a resolution parameter suitable for final-state partons!

N=number of jets $\tau_N = \sum_k \min \{n_i \cdot q_k\}$ N-jettiness, an event shape variable (similar to thrust); first introduced in Stewart, Tackmann, Waalewijn (2009) N=number of jets min { $n_i \cdot q_k$ } light-like directions of initial beams and final-state jets momenta of finalstate partons

Intuition: $T_N \sim 0$: all radiation is either soft, or collinear to a beam/jet $T_N > 0$: at least one additional jet beyond Born level is resolved

N-jettiness

 Go back and reconsider our Higgs+jet example using this variable, in the potentially singular kinematic limits p₁||p₂ and p_{1,2} soft:

We can obtain NNLO predictions for arbitrary jet production processes using N-jettiness as a resolution parameter since we know the below-cut result already!

First derived in Stewart, Tackmann, Waalewijn (2009)

We can obtain NNLO predictions for arbitrary jet production processes using N-jettiness as a resolution parameter since we know the below-cut result already!

First derived in Stewart, Tackmann, Waalewijn (2009)

•Practical application: Introduce T_N^{cut} that separates the $T_N=0$ doubly-unresolved limit of phase space from the single-unresolved and hard regions

$$\sigma_{NNLO} = \int d\Phi_N |\mathcal{M}_N|^2 + \int d\Phi_{N+1} |\mathcal{M}_{N+1}|^2 \theta_N^{<}$$
$$+ \int d\Phi_{N+2} |\mathcal{M}_{N+2}|^2 \theta_N^{<} + \int d\Phi_{N+1} |\mathcal{M}_{N+1}|^2 \theta_N^{>}$$
$$+ \int d\Phi_{N+2} |\mathcal{M}_{N+2}|^2 \theta_N^{>}$$
$$\equiv \sigma_{NNLO}(\mathcal{T}_N < \mathcal{T}_N^{cut}) + \sigma_{NNLO}(\mathcal{T}_N > \mathcal{T}_N^{cut})$$

 $\theta_N^{<} = \theta(\tau_N^{cut} - \tau_N)$ and $\theta_N^{>} = \theta(\tau_N - \tau_N^{cut})$

•Practical application: Introduce T_N^{cut} that separates the $T_N=0$ doubly-unresolved limit of phase space from the single-unresolved and hard regions

$$\sigma_{NNLO} = \int d\Phi_N |\mathcal{M}_N|^2 + \int d\Phi_{N+1} |\mathcal{M}_{N+1}|^2 \theta_N^{<}$$
$$+ \int d\Phi_{N+2} |\mathcal{M}_{N+2}|^2 \theta_N^{<} + \int d\Phi_{N+1} |\mathcal{M}_{N+1}|^2 \theta_N^{>}$$
$$+ \int d\Phi_{N+2} |\mathcal{M}_{N+2}|^2 \theta_N^{>}$$
$$\equiv \sigma_{NNLO}(\mathcal{T}_N < \mathcal{T}_N^{cut}) + \sigma_{NNLO}(\mathcal{T}_N > \mathcal{T}_N^{cut})$$

•For $T_N > T_N^{cut}$: at least one of the two additional radiations that appear at NNLO is resolved; just the NLO correction to the N+1 jet process! •For $T_N < T_N^{cut}$: use factorization theorem!

• Only one more issue to address: what is known regarding the functions H, B, S, J? Do we known them to the requisite NNLO?

•*H@NNLO:* for W/H+j, Gehrmann, Tancredi (2011); Gehrmann, Jaquier, Glover, Koukoutsakis (2011) (see also Becher, Bell, Lorentzen, Marti (2013))

• **B@NNLO:** Gaunt, Stahlhofen, Tackmann (2014)

•S@NNLO: Boughezal, Liu, FP PRD 91 (2015)

•J@NNLO: Becher, Neubert (2006); Becher, Bell (2011)

Within the past few years all ingredients have become available to apply this idea to jet production at colliders!

Recent developments: power corrections

Power corrections

 Primary numerical challenge is the impact of power corrections to the factorization formula

Leading power NLO: $\alpha_s \times \tau^{cut} Log(\tau^{cut})$ corrections: NNLO: $\alpha_s^2 \times \tau^{cut} Log^3(\tau^{cut})$ Behavior of below/ above cut at leading power:

NLO: $\alpha_s \times Log^2(\tau^{cut})$ NNLO: $\alpha_s^2 \times Log^4(\tau^{cut})$

Power corrections

 Primary numerical challenge is the impact of power corrections to the factorization formula

Want to reduce T^{cut} to minimize power corrections; this introduces numerical noise in the cancellation of logarithms between below and above cut contributions!

Leading power corrections:

NLO: $\alpha_S \times T^{cut} Log(T^{cut})$ NNLO: $\alpha_S^2 \times T^{cut} Log^3(T^{cut})$ Behavior of below/ above cut at leading power:

NLO: $\alpha_s \times Log^2(\tau^{cut})$ NNLO: $\alpha_s^2 \times Log^4(\tau^{cut})$

Power corrections for color-singlet production

 Significant recent activity and progress in understanding power corrections for the simplest case of color-singlet production

here

Moult et al, 1612.00450, 1710.03227; Boughezal et al, 1612.02911 (1802.00456)

 Can consider the power corrections integrated up to T^{cut}, and also at the unintegrated level

Integrated:	LL	NLL	Un-integrated:	LL	NLL
NLO	α _s ×τ ^{cut} Log(τ ^{cut})	αs×τ ^{cut}	NLO	α _s ×Log(τ)	α _s
NNLO	α _{S²×τ^{cut}Log³(τ^{cut})}	unknown	NNLO	α _s ²×Log²(τ)	unknown

Goals

- Calculate and include color-singlet power corrections where possible
- See what aspects of the calculation generalize beyond color-singlet production
- As a by-product of our analysis provide a map between direct QCD and SCET derivations of the N-jettiness spectrum
- Analyze different definitions of N-jettiness

$$\mathcal{T}_N = \sum_k \min_i \left\{ \frac{2q_i \cdot p_k}{Q_i} \right\}$$

Are there choices of the hardness measures that minimize power corrections; especially helpful when their calculation at NNLO is difficult!

Use gluon-fusion Higgs production at NLO as an example

Born process: $g(p_1)+g(p_2) \rightarrow H(p_H)$

NLO real-emission correction: $g(p_1')+g(p_2') \rightarrow H(p_H)+g(p_3)$

$$PS_{Born} = (2\pi) \int_0^1 dx_a \int_0^1 dx_b \frac{f_g(x_a) f_g(x_b)}{2sx_a x_b} \,\delta(sx_a x_b - m_H^2)$$

$$\frac{\mathrm{dPS}_{\mathrm{NLO}}^{(a)}}{\mathrm{d}\mathcal{T}} = \frac{\mathcal{T}^{-\varepsilon}}{8\pi} \frac{\left(4\pi\mu_0^2\right)^{\varepsilon}}{\Gamma(1-\varepsilon)} \int_0^1 \mathrm{d}x_a \int_0^1 \mathrm{d}x_b \frac{f_g(x_b)}{2sx_a x_b} \delta\left(sx_a x_b - m_H^2\right) \int_{x_a + \frac{Q_a \mathcal{T}}{m_H^2}}^{1-\frac{\mathcal{T}Q_b}{m_H^2}} \frac{\mathrm{d}z_a}{z_a} \left(Q_a\right)^{1-\varepsilon} \left(\frac{1-z_a}{z_a}\right)^{-\varepsilon} \left\{f_g\left(\frac{x_a}{z_a}\right) + \frac{\mathcal{T}}{m_H^2 z_a^2} \left[\left(Q_a' z_a x_a - Q_a z_a \varepsilon\right) f_g\left(\frac{x_a}{z_a}\right) + Q_a x_a f_g'\left(\frac{x_a}{z_a}\right)\right] + \mathcal{O}\left(\mathcal{T}^2\right)\right\}$$

Use gluon-fusion Higgs production at NLO as an example

Born process: $g(p_1)+g(p_2) \rightarrow H(p_H)$

NLO real-emission correction: $g(p_1')+g(p_2') \rightarrow H(p_H)+g(p_3)$

$$PS_{Born} = (2\pi) \int_{0}^{1} dx_{a} \int_{0}^{1} dx_{b} \frac{f_{g}(x_{a}) f_{g}(x_{b})}{2sx_{a}x_{b}} \,\delta(sx_{a}x_{b} - m_{H}^{2})$$

$$Born phase space$$

$$\frac{PS_{NLO}^{(a)}}{d\mathcal{T}} = \frac{\mathcal{T}^{-\varepsilon}}{8\pi} \frac{(4\pi\mu_{0}^{2})^{\varepsilon}}{\Gamma(1-\varepsilon)} \left(\int_{0}^{1} dx_{a} \int_{0}^{1} dx_{b} \frac{f_{g}(x_{b})}{2sx_{a}x_{b}} \delta\left(sx_{a}x_{b} - m_{H}^{2}\right) \right) \int_{x_{a} + \frac{QaT}{m_{H}^{2}}}^{1-\frac{TQ_{b}}{m_{H}^{2}}} \frac{dz_{a}}{z_{a}} (Q_{a})^{1-\varepsilon} \left(\frac{1-z_{a}}{z_{a}}\right)^{-\varepsilon} \left\{ f_{g}\left(\frac{x_{a}}{z_{a}}\right) + \frac{\mathcal{T}}{m_{H}^{2}z_{a}^{2}} \left[(Q_{a}'z_{a}x_{a} - Q_{a}z_{a}\varepsilon) f_{g}\left(\frac{x_{a}}{z_{a}}\right) + Q_{a}x_{a}f_{g}'\left(\frac{x_{a}}{z_{a}}\right) \right] + \mathcal{O}\left(\mathcal{T}^{2}\right) \right\}$$

Use gluon-fusion Higgs production at NLO as an example

Born process: $g(p_1)+g(p_2) \rightarrow H(p_H)$

NLO real-emission correction: $g(p_1')+g(p_2') \rightarrow H(p_H)+g(p_3)$

$$\begin{aligned} \mathbf{z_a} = \mathbf{I} \text{ corresponds to} \\ \mathbf{soft \ limit \ of \ p_3} \end{aligned}$$

$$\frac{\mathrm{dPS}_{\mathrm{NLO}}^{(a)}}{\mathrm{d}\mathcal{T}} &= \frac{\mathcal{T}^{-\varepsilon}}{8\pi} \frac{(4\pi\mu_0^2)^{\varepsilon}}{\Gamma(1-\varepsilon)} \int_0^1 \mathrm{d}x_a \int_0^1 \mathrm{d}x_b \frac{f_g(x_b)}{2sx_a x_b} \delta\left(sx_a x_b - m_H^2\right) \left(\int_{x_a}^{1-\frac{\mathcal{T}Q_b}{m_H^2}} \frac{\mathrm{d}z_a}{z_a} (Q_a)^{1-\varepsilon} \left(\frac{1-z_a}{z_a}\right)^{-\varepsilon} \right) \right) d\tau = \int_{x_a}^{1-\varepsilon} \frac{\mathrm{d}x_a}{z_a} \left(\int_{x_a}^{1-\frac{\mathcal{T}Q_b}{\mathcal{T}}} \frac{\mathrm{d}x_a}{z_a} \left(\int_{x_a}^{1-\frac{\mathcal{T}Q_b}{\mathcal{T}}} \frac{\mathrm{d}x_a}{z_a}\right) + \int_{x_a}^{1-\varepsilon} \frac{\mathrm{d}x_a}{z_a} \left(\int_{x_a}^{1-\frac{\mathcal{T}Q_b}{\mathcal{T}}} \frac{\mathrm{d}x_a}{z_a} \left(\int_{x_a}^{1-\frac{\mathcal{T}Q_b}{\mathcal{T}}} \frac{\mathrm{d}x_a}{z_a}\right) \right) d\tau = \int_{x_a}^{1-\varepsilon} \frac{\mathrm{d}x_a}{z_a} \left(\int_{x_a}^{1-\frac{\mathcal{T}Q_b}{\mathcal{T}}} \frac{\mathrm{d}x_a}{z_a} \left(\int_{x_a}^{1-\frac{\mathcal{T}Q_b}{\mathcal{T}}} \frac{\mathrm{d}x_a}{z_a}\right) \right) d\tau = \int_{x_a}^{1-\varepsilon} \frac{\mathrm{d}x_a}{z_a} \left(\int_{x_a}^{1-\frac{\mathcal{T}Q_b}{\mathcal{T}}} \frac{\mathrm{d}x_a}{z_a}\right) d\tau = \int_{x_a}^{1-\varepsilon} \frac{\mathrm{d}x_a}{z_a} \left(\int_{x_a}^{1-\frac{\mathcal{T}Q_b}{\mathcal{T}}} \frac{\mathrm{d}x_a}{z_a}\right) d\tau = \int_{x_a}^{1-\varepsilon} \frac{\mathrm{d}x_a}{z_a} d\tau$$

Use gluon-fusion Higgs production at NLO as an example

Born process: $g(p_1)+g(p_2) \rightarrow H(p_H)$

NLO real-emission correction: $g(p_1')+g(p_2') \rightarrow H(p_H)+g(p_3)$

$$\begin{split} & \frac{\mathrm{dPS}_{\mathrm{NLO}}^{(a)}}{\mathrm{d}\mathcal{T}} = \frac{\mathcal{T}^{-\varepsilon}}{8\pi} \frac{(4\pi\mu_0^2)^{\varepsilon}}{\Gamma(1-\varepsilon)} \int_0^1 \mathrm{d}x_a \int_{\sigma}^1 \mathrm{d}x_b \frac{f_g(x_b)}{2sx_a x_b} \delta\left(sx_a x_b - m_H^2\right) \int_{\sigma_+}^{1-\frac{\mathcal{T}Q_b}{m_H^2}} \frac{\mathrm{d}z_a}{z_a} \left(Q_a\right)^{1-\varepsilon} \left(\frac{1-z_a}{z_a}\right)^{-\varepsilon} \\ & \left\{ f_g\left(\frac{x_a}{z_a}\right) + \left(\frac{\mathcal{T}}{m_H^2 z_a^2}\right) \left[\left(Q_a' z_a x_a - Q_a z_a \varepsilon\right) f_g\left(\frac{x_a}{z_a}\right) + Q_a x_a f_g'\left(\frac{x_a}{z_a}\right) \right] + \mathcal{O}\left(\mathcal{T}^2\right) \right\} \end{split}$$

Use gluon-fusion Higgs production at NLO as an example

Born process: $g(p_1)+g(p_2) \rightarrow H(p_H)$

NLO real-emission correction: $g(p_1')+g(p_2') \rightarrow H(p_H)+g(p_3)$

• First step is to map NLO real emission events with fixed τ to Born level (consider the region $\tau=n \cdot p_3$ as an example):

Derivative of PDF with respect to Bjorken-x

$$\frac{\mathrm{dPS}_{\mathrm{NLO}}^{(a)}}{\mathrm{d}\mathcal{T}} = \frac{\mathcal{T}^{-\varepsilon}}{8\pi} \frac{\left(4\pi\mu_0^2\right)^{\varepsilon}}{\Gamma(1-\varepsilon)} \int_0^1 \mathrm{d}x_a \int_0^1 \mathrm{d}x_b \frac{f_g(x_b)}{2sx_a x_b} \delta\left(sx_a x_b - m_H^2\right) \int_{x_a + \frac{Q_a T}{m_H^2}}^{1 - \frac{\mathcal{T}Q_b}{m_H^2}} \frac{\mathrm{d}z_a}{z_a} \left(Q_a\right)^{1-\varepsilon} \left(\frac{1-z_a}{z_a}\right)^{-\varepsilon} \left\{f_g\left(\frac{x_a}{z_a}\right) + \frac{\mathcal{T}}{m_H^2 z_a^2} \left[\left(Q_a' z_a x_a - Q_a z_a \varepsilon\right) f_g\left(\frac{x_a}{z_a}\right) + Q_a x_a f_g'\left(\frac{x_a}{z_a}\right)\right] + \mathcal{O}\left(\mathcal{T}^2\right)\right\}$$

Use gluon-fusion Higgs production at NLO as an example

Born process: $g(p_1)+g(p_2) \rightarrow H(p_H)$

NLO real-emission correction: $g(p_1')+g(p_2') \rightarrow H(p_H)+g(p_3)$

• First step is to map NLO real emission events with fixed τ to Born level:

The steps leading to this form appear to be also applicable to jet production processes

$$\frac{\mathrm{dPS}_{\mathrm{NLO}}^{(a)}}{\mathrm{d}\mathcal{T}} = \frac{\mathcal{T}^{-\varepsilon}}{8\pi} \frac{\left(4\pi\mu_0^2\right)^{\varepsilon}}{\Gamma(1-\varepsilon)} \int_0^1 \mathrm{d}x_a \int_0^1 \mathrm{d}x_b \frac{f_g(x_b)}{2sx_a x_b} \delta\left(sx_a x_b - m_H^2\right) \int_{x_a + \frac{Q_a \mathcal{T}}{m_H^2}}^{1-\frac{\mathcal{T}Q_b}{m_H^2}} \frac{\mathrm{d}z_a}{z_a} \left(Q_a\right)^{1-\varepsilon} \left(\frac{1-z_a}{z_a}\right)^{-\varepsilon} \left\{f_g\left(\frac{x_a}{z_a}\right) + \frac{\mathcal{T}}{m_H^2 z_a^2} \left[\left(Q_a' z_a x_a - Q_a z_a \varepsilon\right) f_g\left(\frac{x_a}{z_a}\right) + Q_a x_a f_g'\left(\frac{x_a}{z_a}\right)\right] + \mathcal{O}\left(\mathcal{T}^2\right)\right\}$$

Expansion of the matrix elements

 Straightforward to expand the matrix elements; consider the all-gluon channel as an example

Mapping to SCET at LP

 We can establish a connection between out derivation and the SCET factorization theorem through the z_a integral in the following way:

At leading power gives exactly the beam function contribution from the SCET factorization theorem At leading power gives exactly the soft function contribution from the SCET factorization theorem

Results for LL-NLP

 Consider the expression for the LL-NLO contribution (the full NLL-NLP can be derived as well):

$$\frac{\mathrm{d}\sigma_{\mathrm{LL}}^{\mathrm{NLP}}}{\mathrm{d}\mathcal{T}} = \left(\frac{C_A \alpha_s}{\pi}\right) \int_0^1 \mathrm{d}x_a \int_0^1 \mathrm{d}x_b \frac{(2\pi)}{2sx_a x_b} \delta(sx_a x_b - m_H^2) |\mathcal{M}(gg \to H)|^2 \\ \left\{\frac{Q_a}{m_H^2} \log\left(\frac{\mathcal{T}}{Q_a}\right) f_g(x_b) \left[\left(1 - \frac{Q_a' x_a}{Q_a}\right) f_g(x_a) - x_a f_g'(x_a)\right] \right. \\ \left. + \frac{Q_b}{m_H^2} \log\left(\frac{\mathcal{T}}{Q_b}\right) f_g(x_a) \left[\left(1 - \frac{Q_b' x_b}{Q_b}\right) f_g(x_b) - x_b f_g'(x_b)\right] \right\}.$$

Results for LL-NLP

• Two results for $Q_{a,b}$ to consider: <u>Hadronic</u>: $Q_a = x_a \sqrt{s}$, $Q_b = x_b \sqrt{s}$

$$\frac{\mathrm{d}\sigma_{\mathrm{LL}}^{\mathrm{NLP}}}{\mathrm{d}\mathcal{T}} = \left(\frac{C_A \alpha_s}{\pi}\right) \int_0^1 \mathrm{d}x_a \int_0^1 \mathrm{d}x_b \frac{(2\pi)}{2sx_a x_b} \delta(sx_a x_b - m_H^2) |\mathcal{M}(gg \to H)|^2$$

$$\left\{ \underbrace{\sqrt{sx_a}}{m_H^2} \log\left(\frac{\mathcal{T}}{\sqrt{sx_a}}\right) f_g(x_b) \left[-x_a f_g'(x_a)\right] + \underbrace{\sqrt{sx_b}}{m_H^2} \log\left(\frac{\mathcal{T}}{\sqrt{sx_b}}\right) f_g(x_a) \left[-x_b f_g'(x_b)\right] \right\}.$$

 $x_{a,b} \sim e^{\pm YH}$; strong rapidity dependence of the power corrections for hadronic 0-jettiness

Results for LL-NLP

• Two results for $Q_{a,b}$ to consider: Leptonic: $Q_a = Q_b = Q$ (Q=m_H)

$$\frac{\mathrm{d}\sigma_{\mathrm{LL}}^{\mathrm{NLP}}}{\mathrm{d}\mathcal{T}} = \left(\frac{C_A \alpha_s}{\pi}\right) \int_0^1 \mathrm{d}x_a \int_0^1 \mathrm{d}x_b \frac{(2\pi)}{2sx_a x_b} \delta(sx_a x_b - m_H^2) |\mathcal{M}(gg \to H)|^2 \\ \left\{ \underbrace{\frac{1}{m_H}}_{m_H} \log\left(\frac{\mathcal{T}}{m_H}\right) \left[2f_g(x_a)f_g(x_b) - x_a f_g'(x_a)f_g(x_b) - x_b f_g(x_a)f_g'(x_b)\right] \right\}$$
No such strong rapidity dependence for leptonic 0-jettiness (first noted by Moult et al, 1612.00450)

Numerics for hadronic 0-jettiness

 Significant improvement upon including LL-NLP power corrections; even more observed when NLL-NLP is incorporated. Significant positive impact on numerics, much larger τ^{cut} can be chosen.

Numerics for leptonic 0-jettiness

 Almost no deviation from dipole subtraction observed when NLL-NLP corrections are included for leptonic 0-jettiness.

Numerics for leptonic 0-jettiness

Including full NLL-NLP power corrections, and a clever choice of 0-jettiness, almost completely removes power corrections for 0-jet processes; we're very hopeful that similar conclusions for jet production will hold as well!

Selected recent applications

The Z-boson transverse momentum

• The Z-boson transverse momentum spectrum measurement has reached a remarkable precision at the LHC, with errors below 1% over a large range

The Z-boson transverse momentum

• The Z-boson transverse momentum spectrum measurement has reached a remarkable precision at the LHC, with errors below 1% over a large range

Comparison with NLO theory

 NLO theory errors more than an order of magnitude larger than experimental ones; can't use this data to measure the gluon without NNLO!

Comparison with NNLO theory

- We have performed an NNLO QCD calculation using N-jettiness subtraction and extensively compared with ATLAS and CMS (see also talk of A. Huss for another calculation of this quantity)
- We have combined NNLO QCD and NLO electroweak corrections for this prediction

Note the importance of NNLO QCD+NLO EW as compared to just NNLO QCD in the off-peak data

No current PDF set describes this well; feed this information back into the PDF fit!

Boughezal, Guffanti, FP, Ubiali JHEP 1707 (2017)

Comparison with NNLO theory

- We have performed an NNLO QCD calculation using N-jettiness subtraction and extensively compared with ATLAS and CMS (see also talk of A. Huss for another calculation of this quantity)
- We have combined NNLO QCD and NLO electroweak corrections for this prediction

NLO EW as not as important onpeak; NNLO QCD leads to a much improved description

Better than off-peak, but still no current PDF set describes this well; feed this information back into the PDF fit!

Boughezal, Guffanti, FP, Ubiali JHEP 1707 (2017)

Impact on PDFs Gluon-Gluon, luminosity $\sim f_g x f_g$ Quark-Gluon, luminosity $\sim f_q x f_g$ 1.3_□ 1.3 NN3.0red NN3.0red 1.25 1.25 NN3.0red + 8 TeV NN3.0red + 8 TeV 1.2 1.2 VS = 1.30e+04 GeV √S = 1.30e+04 GeV 1.15 1.15 1.1 1.1 ... 멸렬 .05 .05 명희 (05 0.95 0.95 0.9 0.9 0.85 0.85 0.8 0.8 10² 10³ 10³ 10² M_x [GeV] M_x [GeV] Gluon-gluon and quark-gluon luminosity errors reduced right near $M_X \sim m_H = 125$ GeV! After p_T^Z data Before p_T^Z data 1.8% 48.61 ± 0.61 48.22 ± 0.89 1.3° pb| $\sigma_{gg \to H}$ 3.92 ± 0.06 (1.5%) 3.96 ± 0.04 (1.0%) $\sigma_{\rm VBF}$ pb

PDF error on Higgs cross sections reduced!

Boughezal, Guffanti, FP, Ubiali JHEP 1707 (2017)

The emergent proton spin

• Our efforts to understand QCD are not limited to questions arising from the LHC... Even after four decades of study, basic aspects of QCD still surprise us

The emergent proton spin

• Our efforts to understand QCD are not limited to questions arising from the LHC... Even after four decades of study, basic aspects of QCD still surprise us

A definitive answer to this questions will require a future electron-ion collider (EIC), a top priority for DOE nuclear physics

eRHIC (BNL)

- Add e Rings to RHIC facility: Ring-Ring (alt. recirculating Linac-Ring)
- Electrons up to 18 GeV
- Protons up to 275 GeV
- Vs=30-140 √(Z/A) GeV
- L ≈ 1×10³⁴ cm⁻²s⁻¹ at √s=105 GeV

JLEIC (JLab)

- Figure-8 Ring-Ring Collider, use of CEBAF as injector
- Electrons 3-10 GeV
- Protons 20-100 GeV
- e+A up to √s=40 GeV/u
- e+p up to √s= 64 GeV
- L ≈ 2×10³⁴ cm⁻² s⁻¹ at √s=45 GeV

eRHIC: arXiv:1409.1633, JLEIC: arXiv:1504.07961

A definitive answer to this questions will require a future electron-ion collider (EIC), a top priority for DOE nuclear physics

Jet physics at an Electron-Ion Collider

 Proton structure studies will be a central aspect of a future EIC. Jets will play an important role these probes, just as at the LHC.

EIC jet production at NNLO

N-jettiness subtraction allows for a NNLO calculation of EIC jet production!

EIC jet production at NNLO

 Jet distributions at the EIC are an excellent probe of PDFs; no single channel dominates over all of phase space, indicating that different kinematic regions provide access to different partonic luminosities.

Abelof, Boughezal, Liu, FP, PLB 763 (2016)

Polarized jet production

• We are also interested in polarized collisions at the EIC.

Extending to polarized collisions

• Schematic form of factorization theorem for unpolarized and longitudinally polarized collisions (Δ denotes the different between right-handed and left-handed polarizations):

Polarized PDFs at the EIC

• Polarization asymmetries in EIC jet production are a powerful probe of gluon and quark distributions! $\sigma_{LL} + \sigma_{RR} - \sigma_{LR} - \sigma_{RR}$

