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The overall picture




The NNLO cross section

Aim: compute cross sections at NNLO with arbitrary acceptance cuts (J) in d = 4

oNNLO[ ] — /

doBY i1 + / do ¥V Jm
m+2

m

RR
dopmindmea + /
m+1

* Phase space integrals must be performed numerically
e All three terms are separately IR divergent in d = 4 dimensions

 Infrared singularities cancel between real and virtual quantum corrections at the
same order in perturbation theory, for sufficiently inclusive (i.e. IR safe) observables
(KLN theorem)

How to make this cancellation explicit, so that the various contributions can be
computed numerically?



CoLoRFuINNLO

CoLoRFuINNLO is built around the idea that the solution should

* Give the exact perturbative result = subtraction
(no slicing parameter)

* Be well-defined = completely local counterterms with all spin and color correlations
(no integrals that are finite but undefined in d = 4)

¢ Lead to general and explicit expressions
(automation, we use color space notation)

It is also advantageous if in addition

» The cancellation of explicit e-poles in virtual contributions is analytic
(“mathematical rigor”)

* The option exists to constrain the subtractions to near the singular regions (amax)
(efficiency, important check)

¢ The construction is algorithmic
(valid at any order in perturbation theory, in principle)



Use the same framework that was successful at NLO: local subtraction scheme

The NLO correction to some m-jet observable J

UNLO[J] :/ [dUEHJMH m+1lJm} / {dg +/darl:+A11} Im
m+1 d=4

The NNLO correction is the sum of three pieces
MNOY = [ dofldmiat [ ol + [ dofVn
m+2 m+1 m

The three contributions are separately IR divergent in d = 4

* RR: double and single unresolved real emission
* RV: single unresolved real emission & e-poles from m + 1 parton one-loop

¢ VV: ¢ poles from m parton two-loop



For the RR contribution subtractions are needed to regularize one- and two-parton

emissions
NNLO __ RR RR,A, RR JAy RR,Aqp
Om+2 = / 5 {df’m+2jm+2 —dops Pdm = |dop iy Im1 —dop iy P m dea
m+ -

* A; and A have overlapping singularities = A2 is needed to cancel

For the RV contribution emissions are like at NLO but for one-loop @ tree interference

RR,A;

RR,A RV,A A
‘Trl:glLO :/ {[d0m+1 +/d O m+2 1]Jm+1 - [d0m+l v+ </d0m+2 ) I]Jm} »
m+1 1 d=4

Notice the integrated A; from RR which is still singular = subtraction is needed

(last term)

The m-parton contribution contains the double virtual and integrated subtractions

NNLO vV RR,A RR,A RV,A RR,A;\ A
/ {da +/ m+2 2 7do’m+2 12:| +/1[d m+1 1+ (/d m+2 1) 1:| }d:4-/m



R'RfAIQ

The non-trivial role of do 7

The sum of subtractions, symbolically (r, s can become unresolved)
izt = o150 = 3T [P+ (Dr 4 Ds) — (DsDr + D))

r,s

do RRA2+d

The dual role of Aqo

 In the double unresolved limits (r, s unresolved), it cancels Ay

doRT, — da,l:+R2A2 = doll, — Dy = “finite”
doptth _ qoitthz — (D, 4 D,) — (DsD, + DyDs) = “finite”

* In the single unresolved limits (say, r unresolved), it cancels A, and part of Ay

dam+2 (part of do RR, Al) = dcrm+2 D, = “finite”

RR,A,

dam+2

(part of daRR A“) = Dys — DsD, = “finite”

RR,A

(part of do, .5 1) (part of do,

RR, A12> = Ds; — D;Ds = “finite”




Constructing approximate cross sections

Repeat what already worked at NLO!
1. Compute relevant IR factorization formulae for squared matrix elements
2. Use those to construct general, explicit, local subtractions

3. Integrate the subtractions once and for all, check cancellation of e-poles

&>

Apply to specific processs



Use known ingredients

Collinear and soft factorization of QCD matrix elements at NNLO known

e Tree level 3-parton splitting functions and double soft gg and gg currents

—O= —Oox ~O= —OF

[Campbell, Glover 1997; Catani, Grazzini 1998;
Del Duca, Frizzo, Maltoni 1999; Kosower 2002]

e One-loop 2-parton splitting functions and soft gluon current

—On. ~0_ ~OC

[Bern, Dixon, Dunbar, Kosower 1994; Bern, Del Duca, Kilgore, Schmidt
1998-9; Kosower, Uwer 1999; Catani, Grazzini 2000; Kosower 2003]
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Use known ingredients

Collinear and soft factorization of QCD matrix elements at NNLO known

e Tree level 3-parton splitting functions and double soft gg and gg currents

—O= —Oox ~O= —OF

[Campbell, Glover 1997; Catani, Grazzini 1998;
Del Duca, Frizzo, Maltoni 1999; Kosower 2002]

e One-loop 2-parton splitting functions and soft gluon current

—On. ~0_ ~OC

[Bern, Dixon, Dunbar, Kosower 1994; Bern, Del Duca, Kilgore, Schmidt
1998-9; Kosower, Uwer 1999; Catani, Grazzini 2000; Kosower 2003]

But note

e Unresolved regions in phase space overlap

e Quantities in factorization formulae are only well-defined in the strict limit
10



Defining the subtraction terms — issues

1. Matching of limits to avoid multiple subtraction in overlapping singular regions of
phase space. General structure dictated by “sieve principle”. E.g., at NLO simply:
collinear limit + soft limit — collinear—soft limit.

A1:Z(C+SfCﬂS>
At NNLO for double radiation we have

Agzz[C3+C2;2+CS+S—(C3OCS+C3QS+CQ;20CS

+Cg;2ﬂS+CSﬁS)+(C3ﬂCSﬂS+Cg;2ﬂCSﬂS)]

2. Extension of IR factorization formulae over full phase space. E.g., must define the
momenta entering factorized matrix elements. Requires momentum mappings that
respect factorization and delicate structure of cancellations in all limits.

{Prmir = Bt ddmi1({Pmi1i Q) = ddm({B} mi Q)ldprm]
{Pymiz =3 {BYm:  démi2({P}mi2i Q) = dém({B}mi Q)ldp2,m]

3. Integration of the counterterms over the phase space of unresolved emission. 1



Defining the subtraction terms — issues

Issues specific to NNLO

1.

Matching: since limits do not commute in general, care must be taken to specify the
proper ordering.

Extension: the A; counterterms for single unresolved real emission (unintegrated and
integrated) must have universal IR limits, so that Aj2 can be constructed in general.
This is (obviously) not guaranteed by QCD factorization.

Choosing the counterterms such that integration over the unresolved phase space
becomes more straightforward may conflict with the delicate internal cancellations
between subtractions. Integrating the counterterms is tedious.

12



General features of CoLoRFulNNLO

ColLoRFUINNLO: Completely Local subtRactions for Fully differential NNLO

Subtractions built using universal IR limit formulae and exact PS factorization

» Altarelli-Parisi splitting functions, soft currents

» PS factorizations based on momentum mappings that can be generalized to any
number of unresolved partons

Completely local in color ® spin space, fully differential in phase space

* No need to consider the color decomposition of real emission ME's
e Azimuthal correlations correctly taken into account in gluon splitting

e Can check explicitly that the ratio of the sum of counterterms to the real emission
cross section tends to unity in any IR limit

Poles of integrated subtraction terms computed analytically
e Can check pole cancellation in (double) virtual contribution explicitly
Explicit formulae for processes with colorless initial state

* Automation is possible (MCCSM)
13



The nuts and bolts
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Single unresolved A; subtractions — IR factorization

The symbolic operators C;, and S, denote taking the single collinear and single soft limits
o Collinear: pi||pr (pi = zipir + ki + O(K3), pr = zepir — ki + O(k2))
1.
Crl MLy (pisprs - )PP = Brasp™ Py (2121, k1) © M (i)
r

* Soft: p, — 0

e Sjk
SAMa(prs- I = —8rack® 30 T M 4y (-
j,k r r

In order to avoid double subtraction when p, is both soft and collinear to another
momentum p;, we need to remove the “collinear-soft” contribution.

However, the soft and collinear limits do not commute at the level of factorization

formulae.

15



Non-commuting limits

Consider the soft limit of the collinear formula: S,C;,

* Momentum fractions:
S;zi — 1, S,z — 0

o Altarelli-Parisi splitting kernels: e.g., for ¢ — qg splitting (z; + z- = 1)

1+212

1—2z

Pag(zi, zr;€) = Cp

2
—e(1— z,-)] = S/Pgg(zi,zr;e) > —Crp

r

and in general

2
S/ Prr(zi,zr, kii€) — - T
r

o Soft-collinear limit

1
S, Cir MO (pi, pry . ) = 87rasu26—— T2IMO Py )1

Sir

16



Non-commuting limits

Consider the collinear limit of the soft formula: C;.S,

e Two-particle invariants

Cirsit = zis(iny, Cirsir = zrS(iry1, I=j,k
« Eikonal factor
S 1T =0,y 2k TTk—>Z——T Ti=-2772
T Sirskr  SirSkr Sir zr Sir zr
e Collinear-soft limit
1 22,

CirSAMO (b pr )2 = Brasu®® T2 MO, (o, )P

ir Zr

16



Non-commuting limits

Hence limits do not commute: S,C;, # C;S,

12

0 2z;
.MU o &

(0
m-

0 1 0
FUMOLE ot OSIMOLE s 2 T
r

ir Zr M

* Reason: soft operators send some momentum fractions to one: S,z — 1

* Note: no explicit phasespace parametrization, so no specific parameter controls the
approach to limits

Which ordering to use?
e S,C; will not work in the collinear limit

Sr (Cir - SrCir) |MES)+2|2 =0 but Cir (Sr - Srcir) ‘ng)lzﬁ 75 0
* C;S, will work in both limits
. _C. ) 2 _ . _C. ) 12 _
Sr (CH’ C/rsr) |Mm+2| =0 but le (Sf ClrSr) ‘Mm+2‘ =0
This phenomenon arises also in double unresolved limits. In general, limits must be
ordered form “more soft” to “less soft".
16



Single unresolved A; subtractions — matching

Hence the complete single unresolved subtraction term has the structure

Al‘M(O+2‘2 Z |:Z Clr + Sr Z Clrs :| |Mm+2|2

r i#r i#r

We must still give the precise definition of each term away from the respective limit

0 1
Cir|MSn)+2(PhPr7- )‘ —871‘045# :Pff,(zuzr:kj_ 6)®‘M +1(p/r:-~-)|2

0 € Sik
S Mo (prs )P = —8mass? 0 M )P
jk

SjrS)

1 22,'

0 6 0
CirS MO (pis pr, )P = Bragys? T2AME (i )P

ir Zr

* Must provide precise definitions of momenta entering factorized matrix elements

* Also of z;, z and k|

17



Single unresolved A; subtractions — extension

Definition of momenta entering factorized matrix elements: momentum mappings

{p}m+2 — {ﬁ}erl

¢ Implement momentum conservation
¢ Mass-shell conditions conserved
» Lead to an exact factorization of the m + 2 parton phase space

» Respect the structure of cancellations
Momentum mappings

» Separate momentum mappings for collinear and soft subtractions
* Recoil is distributed democratically (no spectator)

» Straightforward to generalize to any number of unresolved momenta

18



Momentum mappings

Collinear mapping

. 1 -
Bl = (pf" + pt' — ir Q") By =
1—ay

1

Qj = 5 [Y(ir)Q - y(2ir)Q - 4}/ir}

* momentum conservation
Bt DB =l 3P
n#i,r n#i,r
* phase space factorization
démi2({p}; Q) = dgmi1({B}": QA" (pr, Bir: Q)]
S—
r

@ dea(pi, pri Piry)

[4p{ 1 (pr Biri Q)] = daa(1 — )29

19



Momentum mappings

Soft mapping

Bl = ALLQ(Q—p)/A(R/A), n# T, Ar=yT—yq,
20K + K)(K+ K)y | 2KFK,
(K + K)? K2

MK, K] =gl —

* momentum conservation

STt =pt+> pt

n#r n#r
* phase space factorization
démi2({p}; Q) = dgmir ({B}"); o)[de)mH(pr; Q)]

102

[dP§f2n+1(pr: Q)] = dy(1 — y)™ d¢2(Pr7 K; Q)

19



Definitions of z;, z, and k|

In the p;, — p; + pr splitting we define

* Momentum fractions

pi- Q pr-Q
—_ and Zr =z = ——————
(Pi+pr)Q R S el
Q is the total incoming momentum

zZi — Zir =

e Transverse momentum
W o I S
kJ_ — kJ—v"y’ - Ci,rpﬁ - Cr,[p,' + Cirp,'r )

Yil Yi
Ci,r = Zir — —r ) Ci,r = Zji,r — —r ’ Ci,r =
XirY(ir)Q XirY(ir)Q QirYirQ

(Zr,[ - Zi,r)

We have p; - ki ;, =0 and ky ;, — 0 in the collinear limit (no gauge term)

20



Single unresolved counterterms

The collinear and soft momentum mappings define extensions of the limit formulae over
the full phase space

0,0
Cirl MEL, 2 — ¢

S/ MO, — S0
C; S MY,12 — ¢, 800

¢ On ther.hs. Cff)’o), S and ¢ S %) are functions of the original momenta that
inherit the notation of the operators, but have nothing to do with taking limits

* Precise definitions of momenta, momentum fractions z;, z. and transverse
momentum k, that appear in the AP functions are as above

The true subtraction term
1
AUMP P — AMP P =D [Z SC00 4 800 ZC,-,SE"’“’}
r i#r i#r

The approximate cross section

RR,A; _

dotM = dgma[dpi] A MO, 2

21



Double unresolved As subtractions — IR fractorization

Doubly-unresolved IR limits

e Triple collinear: p;||pr||ps

1 A
Cirsl MY 5P, pro ps - )P = (Brasis®) 5P, @ 1M (i, )P

irs

* Double collinear: pj||p, and pj||ps

0 5 5 0
Cir;js|M§qqzrz(Pi7PnPj7Ps )P = (Brasp®)? Prr. @ Prr, ® \Mgn)(anPjs, P

SirSjs

e Soft-collinear: p;||pr and ps — 0
Csir;s‘M(m0)+2(pi:PraPs )P = —(8mas uze)zz =Sik(s n‘sﬁf, ® IMS?U,,()(P#,)(,--JF
¢ Double soft: p;,ps — 0

S apr - = (0| 3 ESSHAIM 1 6.y 0K

ij/

—7CAZ$,;< rs\./\/l ()()( )|2

ik

22



Double unresolved As subtractions — matching

The complete double unresolved subtraction term has the structure

As |Mm+2‘2 ZZ{Z |:601rs+ Z 8C:r15+ Cslrs:| + =S

ros#r i#r,s J#i,r,s
- Z |: C/rscslrs + Z 2Clrjs(Elr s+ 2C/rssrs + CSlr sSrs
i#r,s j#i,r,s
Y m] [c,,scs,rss,s + 3 (G| vl
J#irs Jj#i,r,s

* Must provide precise definitions of momenta entering factorized matrix elements

e Also of z;, z, and k|

23



Double unresolved As subtractions — matching

The complete double unresolved subtraction term has the structure

AZ‘M(O)z‘z ZZ{ Z |: Cirs + Z C/sz+ ;$/rs:| + ;Srs

r s#r ~i#r,s j#l r,s

- Z { CI(S$H’ 'S + Z CIFJS(BH’ 'S + CII’SSFS + Gll" Sst
i#r,s Jj#i,r,s

- Z Clrjssrs CirsCSir;sSr5:| }‘M(O+2‘2
Jj#i,r,s

* Must provide precise definitions of momenta entering factorized matrix elements

e Also of z, z and k|

23



Double unresolved A, subtractions — extension

Definition of momenta entering factorized matrix elements: momentum mappings

{p}m+2 - {5}!11

¢ Implement momentum conservation
* Mass-shell conditions conserved
» Lead to an exact factorization of the m + 2 parton phase space

* Respect the structure of cancellations
Momentum mappings

» Separate momentum mappings for triple collinear, double collinear, soft-collinear and
double soft subtractions

* Recoil is distributed democratically (no spectator)

* Simple generalizations of single unresolved mappings

24



Double unresolved counterterms

The various momentum mappings define extensions of the limit formulae over the full
phase space

Cis MP, P — Y
Cirjs MG, — %)
sl MU, — s
S| MO 2 — 500

¢ On ther.hs. Cfro’o), S and C, S % are functions of the original momenta that
inherit the notation of the operators, but have nothing to do with taking limits.

* Precise definitions of momentum fractions and transverse momenta that appear in
the AP functions are available, but not exhibited.

25



Double unresolved counterterms

The true subtraction term

A‘Mm+2‘2 ZZ{ Z |:6 irs + Z 8 ler I(YS)} + SSS )

ro s#r “i#r,s J#i,r,s
(0,0) (0,0)
- Z |: lrs ,r s Z 7C1r JSCS” ‘5 + ClrsS + C:Slr SS
i#r,s ;él,r,s
- Z Clrjss 0 0) CIFSGSIF SSESO 0):| }
j#i,r,s

The approximate cross section

R

dop 522 = dgm[dpa] Al M, 2

25



Rest of the unresolved counterterms

The remaining approximate cross sections are constructed in the same way

e In particular, it turns out that daRR A2 can be obtained from the single unresolved
RR,A,

limit of do, 3

Ap MO, =3 [Z CiAz +S,A2 — > C;S, AQ} MO, 12
r i#r i#r

* This construction relies on the fact that at the level of IR factorization formulae, A;
has universal IR limits, and also on a certain compatibility between iterated single
unresolved and strongly ordered double unresolved IR formulae.

* The extension of A;» must respect this compatibility, which puts certain constraints
on the specific form in which some IR limit formulae are written, e.g.,

I3 kv
PH = —Agh¥ + BKH K — —Agh” + B(—sirziz/) if
are equivalent at the level of limits (k3 = —s;;z:z,), but should use second form

» Use iterated single unresolved momentum mappings

26



Rest of the unresolved counterterms

The remaining approximate cross sections are constructed in the same way

. . . RV,A; - :
* The real-virtual approximate cross section do, ;" is constructed exactly like
A . .
do,l:};‘z’ 1, only the specific IR limit formulae change
RR,A;

e The construction of (f1 do,3

A RR,A .
) ! relies on the fact that [, do,,;5"! has universal
RR,A,

IR behaviour and proceeds exactly like the building of do, 73

26



Universal limits for subtraction terms

The existence of universal IR limits of approximate cross sections is (clearly) not
guaranteed by QCD factorizataion.

¢ We do not specify which momenta can become unresolved, hence the single
unresolved subtraction terms must themselves have universal IR limits

e In the real-virtual contribution, these terms appear in integrated form, and these
forms again must have universal IR limits

e These are non-trivial constraints, since the (unintegrated and integrated) single soft
factorization formula involves color-correlated matrix elements

0,0 Sik
st )azs"s MO T T M9 )
ik i kr

* In, say, the pj||ps limit only the sum

(M m+1|T Tk‘Mm+1> (M m+1‘T5Tk‘Mm+1>
factorizes, due to soft gluon coherence, but not the two pieces separately

27



Universal limits for subtraction terms

In, say, the pj||ps limit only the sum

< m+1|T Tk|Mm+1> < m+1|T5Tk|Mm+l>

factorizes, due to soft gluon coherence, but not the two pieces separately
k k k
J
( 3 Ej + (] %E i—= ) g ® <
°
s s Js

27



Universal limits for subtraction terms

Then we must make sure that in any collinear limit (for any i and r), the two appropriate
terms from the soft formula actually go to the same limit

* The eikonal factors are homogeneous in p; and ps, so they go to the same limit
(note no partial fraction decomposition)
Sjk Zj5Us)k SUs)k Ssk ZsS(js)k Us)k

Cijs = = and Cjs = =
SjrSkr ZjS(js)rSkr S(js)rSkr SrsSkr ZsS(js)rSkr S(js)rSkr

* But we must also have that the mapped momenta that appear in the factorized
matrix elements in

0 0 0
MONTTUMEO ) and (MO T T MO,

also go to the same limit.

» Constrains the soft momentum mapping. A trivial way of satisfying this constraint is
to use the same mapped momenta in all terms in the soft formula < dipole picture.
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Integrated counterterms

Momentum mappings used to define the counterterms

(P nip =5 (Bt = donin({p}: Q) = dén({B}; @)[dpY]

» lead to exact factorization of phase space

o different collinear and soft mappings (R labels precise limit)
Counterterms are products (in color and spin space) of

o factorized ME's independent of variables in [dp‘(f,,)]

+ singular factors (AP functions, soft currents), to be integrated over [dp,(,{?,z]

Xr({p}nip) = (8masu®)P Singr(pS™) @ IMD (1))

Can compute once and for all the integral over unresolved partons

/ Xr({Phasp) = (Brasu? [ / Singr(p }@\M“’({p} 0k

28



Solving the integrals

Strategy for computing the integrals: direct integration

1.

o o

write phase space in terms of
angles and energies

angular integrals in terms of
Mellin-Barnes representations
resolve the ¢ poles by analytic
continuation

MB integrals to Euler-type
integrals, pole coefficients are finite
parametric integrals

simplify result (optional)

4

choose explicit parametrization of
phase space

write the parametric integral
representation in chosen variables

resolve the € poles by sector
decomposition

pole coefficients are finite
parametric integrals

. evaluate the parametric integrals in terms of multiple polylogs

Poles and logs of the finite parts known fully analytically, regular pieces of finite parts
computed numerically on a grid

29



Pole cancellation in the VV contribution

After adding all integrated approximate cross sections the double virtual contribution
must be finite in e.

#NNLO :/m{davar/Q[ oREAs _daiiiéAu] +/[ oV A /d RR Al ]}Jm

» After summing over unobserved flavors, all integrated approximate cross sections can
be written as products (in color space) of various insertion operators with lower
point cross sections.

e Have checked the cancellation of the 64 and 5 L poles analytically for any number of
jets (i.e., with m symbolic).

* Have checked m =2 (efe~ — qg, H — bb) explicitly and we find that all poles
cancel.

e Have checked m =3 (e*e™ — qgg) explicitly and we find that all poles cancel.

30



Example: H — bb

The double virtual contribution has the following pole structure (u? = m?)
2\ 2 2
vy [as(p?) B 2Cq 11CA Cr 5 Ceng\ 1
doy s = ( o > doHabE{ ! + 4 +6Ck - > )3
8 2Can 1
- CaG — —on?)CE - =
+K9+12>AF+( ) -5

961  13¢3 109 _, . 65Cen]1
- CaCr — 2?1453 ) C 2
+K 216 2) +(8 g C3> Pt 08 |

(Anastasiou, Herzog, Lazopoulos, arXiv:0111.2368)
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Example: H — bb

The double virtual contribution has the following pole structure (u? = m?)

201 2 2

vy [as(p?) B 2Cq 11CA Cr 5 Ceng\ 1

do 5 = ( o >dgH~>bE{ ! + 4 +6CH — > )3
8 2(§:nf 1
- CaG — —on?)CE - =
+K9+12>AF+( )F 9 L2

65CFI7{‘:|1}
€

961 13 109 _, s
_ CACr —or? —14¢3)C
[( 216 2) +(8 g C3> T

(Anastasiou, Herzog, Lazopoulos, arXiv:0111.2368)

The sum of the integrated approximate cross sections gives (u? = m?))
A [os(p?) —2C2 11CA Cr o Ceng\ 1
Z/d ( >dHbe{ 4 +{ - 4 —6Cr + 2 3
8 2 17
~-2-T )G ~ L ior?) g
H(-3-G)ac (- Frat)e

961  13¢3 109 o 65Can} }
20 S\ ec 2P o 1a :
[(216 2 ) A F+< g Tt 43) 108 | e

(Del Duca, Duhr, GS, Tramontano, Trécsanyi,
arXiv:1501.07226)
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Example: ete™ — 3 jets

The double virtual contribution has the following pole structure (u? = s)

doyV = Poles( A<V + ALV 4 Finite (AT + ALY)

where

2
Poles (A0 AV) =2 - (1 (0)" - 100
—eny T(1—=2¢) (Bo @ | 40
te Wmh +K> @ (2¢) + HZ | AY(14, 34, 25)

1
+ 215 ()AL(14, 3¢, 25)

q4g

with
€y 589  11x2 1 41 72
il e (o)
9 = gra—o \** T 7 T 2% 5 s
2

3 72\ 1 19 72 1 72\ ng 5
SV A DY (. R DY) - 2
+< G 16+4>NC+< 18+36> °"f+( 54 24)N+27 f}

(Gehrmann-De Ridder, Gehrmann, Glover, Heinrich,
arXiv:0710.0346)
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Example: ete™ — 3 jets

The double virtual contribution has the following pole structure (u? = s)

doyV = Poles(AL*V + ALY + Finite (AT + AL Y)

Adding the sum of the integrated approximate cross sections gives

Poles (AT + ALY 4 PolesZ/daA = 117k terms

32



Example: ete™ — 3 jets

The double virtual contribution has the following pole structure (u? = s)

doyV = Poles( A<V + ALV 4 Finite (AT + ALY)

Adding the sum of the integrated approximate cross sections gives
Poles (AT + ALY 4 PolesZ/daA = 117k terms
e zero numerically in any phase space point

In3s:= N[PolesVV3 /. {yl3-»2/10, y23 »3/10}, 40]

-388 -438
- 0.x10 -388 2 0.x10 nf -439
0.x107387 4, 224077 1 0. x10 Ng? 4 2210 T nf g, x10 Nc nf
* Nc Nc

Out[35]= +
ut(35] e
1 i 0. 10—335
Sl(0.x107% poLx10 9B ) s 10
| Nc?
0.x10°437 nf 3
(0.x107% 4 0.x107 % i) ne? + =70 % L 0.x10 " Nenf| +0(e]®

Nc

e zero analytically after simplification using symbol technology (C. Duhr)
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Event shapes in eTe™ — 3 jets

NNLO coefficients (O(al) parts) for thrust and the C-parameter

o Thrust * C-parameter

S(Jl)(J_. T T T T T T T T T 7T 77T 71 LI L L L L L T el T 1 7

6000 [~ - 10000 —
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Constrained subtractions

We can constrain subtractions to near singular regions: «g € (0, 1]

 poles cancel numerically (ap = 0.1)

54x1078% 39x107° 33x10% 6.7x103
A
do H—>bb+Z/d = + + + 22 o)

et €3 €2
31x107° 50x107% 81x103 7.7x10°2
A\
rr(Z/da > = o + = + 3 + - +0(1)

* Pesudorapidity of leading jet in H — bb

Durham clustering at ye, = 0.05, 1 = mpy
R o B L L B L I U
— D(ag=1) ===T(ag=0.1) 7
25 — Ty(ag=1) === TI'3(ap =0.1)
— D3(ag=1) === Iy(ag =0.1)
— Dy(ap = 1) --- Fi(ﬂn :0-1)

L AN RAALE RAREN RARRN BF &

7 AP P T PP L

gofam=etagaa Ly ST

0 0.5 1.0 15 2.0 2.5
[m]
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Constrained subtractions

We can constrain subtractions to near singular regions: «g € (0, 1]

* improved efficiency

ap 1 0.1
timing (rel.) | 1 | 0.40
(Nows) 52 | 145

(Ngup) is the average number of subtraction terms computed
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Towards processes with hadronic initial states
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The NNLO cross section with initial states

Overall structure unchanged, but must include (known) mass factorization counterterms

O—NNLO[J] _ / d0m+2Jm+2 +/ do’m+lJm+1 +/ dO’XVJm
m+2 m

+/ m+1 m+1+/ dUCQJm

“No new conceptual issues, but lots of tedious details to work out.”

Morally true v

IR factorization formulae known from crossing and/or direct computation

* Principles of matching, extension unchanged (only more terms to catalog)

But x

* Need new mappings for initial-final collinear limits
e Mappings not suited for processes with massive particles (e.g., V, H)

* Naive crossing of momentum fractions z and transverse momenta k; will not work
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IR factorization from crossing

The symbolic operators C,, and S, denote taking the single collinear and single soft limits

 Collinear: pa|lpr (pr = (1 — xa)pa + ki + O(k2))

11
Car|Mm+2(Pr7 c..iPat Pb)|2 = 87"05#26**

Xa Sar

X Pfarfr(Xavxf:kJ_ €) ®|M +1(>< -3 P(ar) +pb)‘2
where the initial-final AP kernel is related to the final-final one by crossing

P i (Xay Xr, k1 €) =

—(=1)FEHF )y, By 2 (12, —xr /Xa, kL €)
o Soft: p, =0

.
SHMD o (pr i pa+ po) 2 = —Bmae?e Y | M)

. 2
3 e M s )

In order to avoid double subtraction overlapping limits must be identified and removed

All quantities (momenta, momentum fractions x,, x,, transverse momentum k, ) must be
unambiguously defined over the full phase space
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New momentum mappings

The recoil is redistributed to the initial momenta

Collinear mapping for initial-final configurations

B = &arpl By =ph,  Bi=MQ Q%P n#ar
2pr - P(ab
Car=1-— f27(a)
Plab)
* momentum conservation
PPy =Pty P, BBy = B
n#r n#r
* phase space convolution
2
Emax <\ (ar) p(ab)
dém+2({p}; P(ab)) = d§dém+1({p}*: Epa + Pb)? de2(Q, pr; P(ab))
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New momentum mappings

The recoil is redistributed to the initial momenta

New collinear mapping for final-final configurations

B=(L—ap)pl, Bl=(1-—

air)pg ) 5“ = P +p = apQF,
By = ph, n#ir,
Qjp = ! [}/(' 1@ = /Yoo — 4}%}
2 ir (inQ
* momentum conservation
i Py = bl et Y Pt +By =B+ Y B
n#i,r n#i,r

* phase space convolution

@max (/) 2pir + P b ~

démi2({P}: P(ab)) = / dordgm1 ({p}); (l—a)p(ab))T(a) dea(pi, pri Bir+0p(an))
Xmin
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New momentum mappings

The recoil is redistributed to the initial momenta
New soft mapping

B =Apl, B =N, B =NQQMPE,  n#r,

20, -
A =1 PP
Plab)
* momentum conservation
ph4py =pE+ D P, BBy = B
n#i,r n#r
* phase space convolution
Amax w1 () péb)
dpm2({P}: P(ab)) = / dXdpm1({BH); VAp(ar)) o de2(Q, pr; P(ab))

min
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New momentum mappings

The recoil is redistributed to the initial momenta
New soft mapping

B =~ Aept, BE =Nl BE=NMQ,QEPY, n#r,

20, -
A =1 PP
Plab)
* momentum conservation
ph4py =pE+ D P, BBy = B
n#i,r n#r
* phase space convolution
Amax w1 () péb)
dpm2({P}: P(ab)) = / dXdpm1({BH); VAp(ar)) o de2(Q, pr; P(ab))

min

Double unresolved mappings are straightforward generalizations of the above
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Definitions of x5, x, and k|

Define momentum fractions from crossing?

» Single collinear v

Pr'Q_

— GQa,r

_ (pi+pr)-Q
Pi——Pa pi- @

=1-

X3 = —
pi——Pa pa- Q

Zir

Same as &, appearing in the collinear mapping, clearly x, € [0, 1].

e Triple collinear

2 1

Xa =

_(pitprtps)Q
Pi——Pa pi- Q

_1_pr‘Q_ps‘Q
pi——pa pa- Q@  pa-Q

Zj,rs
But we find that 0 ¢ [0,1]! In fact, x, can vanish at “ordinary” points inside the

double real phase space.

Momentum fractions for initial-final collinear splitting cannot be defined by naive crossing.

Have tentative definitions for momentum fractions and transverse momenta for all single
and double limits
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Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d(p2) — W~ (p3) + g(pa) + g(ps)

LN e B S B B S — Yy =1.25-107°
1e+06 = T yie=125-107°
— g =125-10"7
I T yia=1.25-107%
— yu=125-10"°
500000 = 1 — yu=125-10""
g =125-10""
I 1 —yu=125-10"
600000 — yu=125.10""1

I
|

— n, = 459417, n, = 389003
400000 N = 353745, n, = 340389
—— n, = 245780, n, = 243362
r 1 n, = 120369, n, = 119988
— n, = 21491, n, = 21708
200000 1 — n.=802,n, =807

n, =59, n, = 66

i 1 —nu=7n,=3
o) S—— [ —nu=0,n,=0
0.99995 1.0 1.00005

Subs/SME

I
|

# of points

014 limit
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Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d(p2) — W~ (p3) + g(pa) + g(ps)

e e LA e e — Y3 =8.33-107°
yis = 8.33-1077
le+06 -y =98 33 10-8
800000 — -
@n F 9 Ya 3
£ = 833101
‘2 600000 -
o
e L i
© —me 193352, n, = 8091
F= 400000 - =0,n,=0
— nu—(] ne =10
+ q n, =0,n,=0
— Ny =0,n,=0
200000 1 — n,=0,n,=0
—n,=0,n,=0
B 1T —n.=0,n,=0
0 I8 ﬂém:;n‘ | I —n,=0,n,=0

0.99995 1.0 1.00005
Subs/SME

C45 limit
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Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d(p2) — W~ (p3) + g(pa) + g(ps)

————— 107
10~
le+06 |- _ s
10
r 7 107
1 -8
800000 - = 0
" i |
=
2600000 .
o L _
o
3= 400000 - .
r 1 n, = 944390, n, = 39716
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Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d(p2) — W~ (p3) + g(pa) + g(ps)

R 3107
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Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d(p2) — W= (p3) + g(ps) + g(ps)

T T T g = 9.77- 1077, gy = 1.25 - 1074
g1 = 9.78 107, yp5 = 1.25- 107
le+06 - o g =9.77-1077, ypy = 1.25- 1076
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800000 -
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d(p2) — W= (p3) + g(ps) + g(ps)

T T T T T T T T -1074
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le4+06 = 10-6
- -1077
I T 11078
— Y1 -107°
800000 = 1 510719, ¢5 = 3.07- 1071
" L | 21071, e5 = 3.07- 1071
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Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d(p2) — W~ (p3) + g(pa) + g(ps)
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Does it work?
Subtractions work as designed in all limits, so try to integrate
Cutoff dependence of subtracted RR contribution to total cross section for pp — W~

(2pi * Pj > Ymin §)

2800 T T T T T T T
—— W~ NNLO RR
I SR s s S
2750 | B B
2700 + ]
= .
=)
g 2650 1
S
)
2600 F 1
2550 1
2500 1 1 1 1 1 1 1
e 10° 10°® 10”7 10° 10°
Ymin
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Does it work?

Subtractions work as designed in all limits, so try to integrate

* Subtracted RR contribution to rapidity distribution of the W in pp — W

T T T
— W~ LO
—— W~ NNLORR

T T T
— W*LO
—— W+ NNLO RR
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Conclusions and outlook

42



Conclusions and outlook

CoLoRFuINNLO framework
» Completely Local subtRactions for Fully differential NNLO
¢ Construction of subtraction terms based on IR limit formulae
e Analytic integration of subtraction terms feasible with modern techniques
¢ Demonstrated cancellation of poles for m =2 and m=3
* Worked out in full detail for processes with no colored particles in the initial state

*  Good numerical convergence and stability for ete™ — 3 jets
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Conclusions and outlook

Extension to hadronic initial states on the way

¢ Subtraction terms for double real radiation defined for generic processes

e Subtraction terms for real-virtual radiation tentatively defined for generic processes
TODO:

* Subtraction terms for mass factorization counterterms (NLO complexity)

* Some integrals done, but many more to do
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