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The overall picture
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The NNLO cross section

Aim: compute cross sections at NNLO with arbitrary acceptance cuts (J) in d = 4

σNNLO[J] =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m
dσVV

m Jm

• Phase space integrals must be performed numerically

• All three terms are separately IR divergent in d = 4 dimensions

• Infrared singularities cancel between real and virtual quantum corrections at the
same order in perturbation theory, for sufficiently inclusive (i.e. IR safe) observables
(KLN theorem)

How to make this cancellation explicit, so that the various contributions can be
computed numerically?
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CoLoRFulNNLO

CoLoRFulNNLO is built around the idea that the solution should

• Give the exact perturbative result ⇒ subtraction
(no slicing parameter)

• Be well-defined ⇒ completely local counterterms with all spin and color correlations
(no integrals that are finite but undefined in d = 4)

• Lead to general and explicit expressions
(automation, we use color space notation)

It is also advantageous if in addition

• The cancellation of explicit ε-poles in virtual contributions is analytic
(“mathematical rigor”)

• The option exists to constrain the subtractions to near the singular regions (αmax)
(efficiency, important check)

• The construction is algorithmic
(valid at any order in perturbation theory, in principle)

5



Structure

Use the same framework that was successful at NLO: local subtraction scheme

The NLO correction to some m-jet observable J

σNLO[J] =

∫
m+1

[
dσR

m+1Jm+1 − dσ
R,A1
m+1 Jm

]
d=4

+

∫
m

[
dσV

m +

∫
1
dσ

R,A1
m+1

]
d=4

Jm

The NNLO correction is the sum of three pieces

σNNLO[J] =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m
dσVV

m Jm

The three contributions are separately IR divergent in d = 4

• RR: double and single unresolved real emission

• RV: single unresolved real emission ⊕ ε-poles from m + 1 parton one-loop

• VV: ε poles from m parton two-loop
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For the RR contribution subtractions are needed to regularize one- and two-parton
emissions

σNNLO
m+2 =

∫
m+2

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}
d=4

• A1 and A2 have overlapping singularities ⇒ A12 is needed to cancel

For the RV contribution emissions are like at NLO but for one-loop⊗ tree interference

σNNLO
m+1 =

∫
m+1

{[
dσRV

m+1 +

∫
1
dσ

RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

(∫
1
dσ

RR,A1
m+2

)
A1
]
Jm
}
d=4

• Notice the integrated A1 from RR which is still singular ⇒ subtraction is needed
(last term)

The m-parton contribution contains the double virtual and integrated subtractions

σNNLO
m =

∫
m

{
dσVV

m +

∫
2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫
1

[
dσ

RV,A1
m+1 +

(∫
1
dσ

RR,A1
m+2

)
A1
]}

d=4
Jm
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The non-trivial role of dσ
RR,A12
m+2

The sum of subtractions, symbolically (r , s can become unresolved)

dσ
RR,A2
m+2 + dσ

RR,A1
m+2 − dσ

RR,A12
m+2 =

∑
r,s

[Drs + (Dr +Ds)− (DŝDr +Dr̂Ds)]

The dual role of A12

• In the double unresolved limits (r , s unresolved), it cancels A1

dσRR
m+2 − dσ

RR,A2
m+2 = dσRR

m+2 −Drs = “finite”

dσ
RR,A1
m+2 − dσ

RR,A12
m+2 = (Dr +Ds)− (DŝDr +Dr̂Ds) = “finite”

• In the single unresolved limits (say, r unresolved), it cancels A2 and part of A1

dσRR
m+2 −

(
part of dσ

RR,A1
m+2

)
= dσRR

m+2 −Dr = “finite”

dσ
RR,A2
m+2 −

(
part of dσ

RR,A12
m+2

)
= Drs −DŝDr = “finite”(

part of dσ
RR,A1
m+2

)
−
(

part of dσ
RR,A12
m+2

)
= Ds −Dr̂Ds = “finite”
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Constructing approximate cross sections

Repeat what already worked at NLO!

1. Compute relevant IR factorization formulae for squared matrix elements

2. Use those to construct general, explicit, local subtractions

3. Integrate the subtractions once and for all, check cancellation of ε-poles

4. Apply to specific processs
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Use known ingredients

Collinear and soft factorization of QCD matrix elements at NNLO known

• Tree level 3-parton splitting functions and double soft gg and qq̄ currents

Use known ingredients

Collinear and soft factorization of QCD matrix elements at NNLO known

! Tree level 3-parton splitting functions and double soft gg and qq̄ currents

(Campbell, Glover 1997; Catani, Grazzini 1998;
Del Duca, Frizzo, Maltoni 1999; Kosower 2002)

! One-loop 2-parton splitting functions and soft gluon current

(Bern, Dixon, Dunbar, Kosower 1994; Bern, Del Duca, Kilgore,
Schmidt 1998-9; Kosower, Uwer 1999; Catani, Grazzini 2000;

Kosower 2003)
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Kosower 2003)
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But note

• Unresolved regions in phase space overlap

• Quantities in factorization formulae are only well-defined in the strict limit
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Defining the subtraction terms – issues

1. Matching of limits to avoid multiple subtraction in overlapping singular regions of
phase space. General structure dictated by “sieve principle”. E.g., at NLO simply:
collinear limit + soft limit − collinear–soft limit.

A1 =
∑(

C + S −C ∩ S
)

At NNLO for double radiation we have

A2 =
∑[

C3 + C2;2 + CS + S − (C3 ∩CS + C3 ∩ S + C2;2 ∩CS

+ C2;2 ∩ S + CS ∩ S) + (C3 ∩CS ∩ S + C2;2 ∩CS ∩ S)
]

2. Extension of IR factorization formulae over full phase space. E.g., must define the
momenta entering factorized matrix elements. Requires momentum mappings that
respect factorization and delicate structure of cancellations in all limits.

{p}m+1
r−→ {p̃}m : dφm+1({p}m+1;Q) = dφm({p̃}m;Q)[dp1,m]

{p}m+2
r,s−→ {p̃}m : dφm+2({p}m+2;Q) = dφm({p̃}m;Q)[dp2,m]

3. Integration of the counterterms over the phase space of unresolved emission.
11



Defining the subtraction terms – issues

Issues specific to NNLO

1. Matching: since limits do not commute in general, care must be taken to specify the
proper ordering.

2. Extension: the A1 counterterms for single unresolved real emission (unintegrated and
integrated) must have universal IR limits, so that A12 can be constructed in general.
This is (obviously) not guaranteed by QCD factorization.

3. Choosing the counterterms such that integration over the unresolved phase space
becomes more straightforward may conflict with the delicate internal cancellations
between subtractions. Integrating the counterterms is tedious.
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General features of CoLoRFulNNLO

CoLoRFulNNLO: Completely Local subtRactions for Fully differential NNLO

Subtractions built using universal IR limit formulae and exact PS factorization

• Altarelli-Parisi splitting functions, soft currents

• PS factorizations based on momentum mappings that can be generalized to any
number of unresolved partons

Completely local in color ⊗ spin space, fully differential in phase space

• No need to consider the color decomposition of real emission ME’s

• Azimuthal correlations correctly taken into account in gluon splitting

• Can check explicitly that the ratio of the sum of counterterms to the real emission
cross section tends to unity in any IR limit

Poles of integrated subtraction terms computed analytically

• Can check pole cancellation in (double) virtual contribution explicitly

Explicit formulae for processes with colorless initial state

• Automation is possible (MCCSM)
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The nuts and bolts
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Single unresolved A1 subtractions – IR factorization

The symbolic operators Cir and Sr denote taking the single collinear and single soft limits

• Collinear: pi ||pr (pi → zipir + k⊥ +O(k2
⊥), pr → zrpir − k⊥ +O(k2

⊥))

Cir |M(0)
m+2(pi , pr , . . .)|2 = 8παsµ

2ε 1

sir
P̂fi fr (zi , zr , k⊥; ε)⊗ |M(0)

m+1(pir , . . .)|2

• Soft: pr → 0

Sr |M(0)
m+2(pr , . . .)|2 = −8παsµ

2ε
∑
j,k

sjk

sjr skr
|M(0)

m+1,(i,k)
(�Zpr , . . .)|2

In order to avoid double subtraction when pr is both soft and collinear to another
momentum pi , we need to remove the “collinear-soft” contribution.

However, the soft and collinear limits do not commute at the level of factorization
formulae.
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Non-commuting limits

Consider the soft limit of the collinear formula: SrCir

• Momentum fractions:
Sr zi → 1, Sr zr → 0

• Altarelli-Parisi splitting kernels: e.g., for q → qg splitting (zi + zr = 1)

Pqg (zi , zr ; ε) = CF

[
1 + z2

i

1− zi
− ε(1− zi )

]
⇒ SrPqg (zi , zr ; ε)→ 2

zr
CF

and in general

SrPfi fr (zi , zr , k⊥; ε)→ 2

zr
T 2
ir

• Soft-collinear limit

SrCir |M(0)
m+2(pi , pr , . . .)|2 = 8παsµ

2ε 1

sir

2

zr
T 2

ir |M
(0)
m+1(pi , . . .)|2

16



Non-commuting limits

Consider the collinear limit of the soft formula: CirSr

• Two-particle invariants

Cir sil → zi s(ir)l , Cir slr → zr s(ir)l , l = j , k

• Eikonal factor

Cir

∑
j,k

sjk

sjr skr
T jT k = Cir

∑
k

2sik

sir skr
T iT k →

∑
k

2

sir

zi

zr
T iT k = − 2

sir

zi

zr
T 2

i

• Collinear-soft limit

CirSr |M(0)
m+2(pi , pr , . . .)|2 = 8παsµ

2ε 1

sir

2zi

zr
T 2

i |M
(0)
m+1(pi , . . .)|2
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Non-commuting limits

Hence limits do not commute: SrCir 6= CirSr

SrCir |M(0)
m+2|2 ∝

1

sir

2

zr
T 2

ir |M
(0)
m+1|2 but CirSr |M(0)

m+2|2 ∝
1

sir

2zi

zr
T 2

i |M
(0)
m+1|2

• Reason: soft operators send some momentum fractions to one: Sr zi → 1

• Note: no explicit phasespace parametrization, so no specific parameter controls the
approach to limits

Which ordering to use?

• SrCir will not work in the collinear limit

Sr (Cir − SrCir ) |M(0)
m+2|2 = 0 but Cir (Sr − SrCir ) |M(0)

m+2|2 6= 0

• CirSr will work in both limits

Sr (Cir −CirSr ) |M(0)
m+2|2 = 0 but Cir (Sr −CirSr ) |M(0)

m+2|2 = 0

This phenomenon arises also in double unresolved limits. In general, limits must be
ordered form “more soft” to “less soft”.
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Single unresolved A1 subtractions – matching

Hence the complete single unresolved subtraction term has the structure

A1|M(0)
m+2|2 =

∑
r

[∑
i 6=r

1

2
Cir + Sr −

∑
i 6=r

CirSr

]
|M(0)

m+2|2

We must still give the precise definition of each term away from the respective limit

Cir |M(0)
m+2(pi , pr , . . .)|2 = 8παsµ

2ε 1

sir
P̂fi fr (zi , zr , k⊥; ε)⊗ |M(0)

m+1(pir , . . .)|2

Sr |M(0)
m+2(pr , . . .)|2 = −8παsµ

2ε
∑
j,k

sjk

sjr skr
|M(0)

m+1,(i,k)
(�Zpr , . . .)|2

CirSr |M(0)
m+2(pi , pr , . . .)|2 = 8παsµ

2ε 1

sir

2zi

zr
T 2

i |M
(0)
m+1(pi , . . .)|2

• Must provide precise definitions of momenta entering factorized matrix elements

• Also of zi , zr and k⊥
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Single unresolved A1 subtractions – extension

Definition of momenta entering factorized matrix elements: momentum mappings

{p}m+2 → {p̃}m+1

• Implement momentum conservation

• Mass-shell conditions conserved

• Lead to an exact factorization of the m + 2 parton phase space

• Respect the structure of cancellations

Momentum mappings

• Separate momentum mappings for collinear and soft subtractions

• Recoil is distributed democratically (no spectator)

• Straightforward to generalize to any number of unresolved momenta

18



Momentum mappings

Collinear mapping

p̃µir =
1

1− αir
(pµi + pµr − αirQ

µ) , p̃µn =
1

1− αir
pµn , n 6= i , r

αir =
1

2

[
y(ir)Q −

√
y2

(ir)Q
− 4yir

]
• momentum conservation

p̃µir +
∑
n 6=i,r

p̃µ = pµi + pµr +
∑
n 6=i,r

pµ

• phase space factorization

dφm+2({p};Q) = dφm+1({p̃}(ir);Q)[dp
(ir)
1,m+1(pr , p̃ir ;Q)]

[dp
(ir)
1,m+1(pr , p̃ir ;Q)] = dα(1− α)2m(1−ε)−1

s
ĩr Q

2π
dφ2(pi , pr ; p(ir))
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Momentum mappings

Soft mapping

p̃µn = Λµν [Q, (Q − pr )/λr ](pνn /λr ) , n 6= r , λr =
√

1− yrQ ,

Λµν [K , K̃ ] = gµν −
2(K + K̃ )µ(K + K̃ )ν

(K + K̃ )2
+

2Kµ K̃ ν

K2

• momentum conservation ∑
n 6=r

p̃µ = pµr +
∑
n 6=r

pµ

• phase space factorization

dφm+2({p};Q) = dφm+1({p̃}(r);Q)[dp
(r)
1,m+1(pr ;Q)]

[dp
(r)
1,m+1(pr ;Q)] = dy(1− y)m(1−ε)−1 Q

2

2π
dφ2(pr ,K ;Q)
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Definitions of zi , zr and k⊥

In the p̃ir → pi + pr splitting we define

• Momentum fractions

zi → zi,r =
pi · Q

(pi + pr ) · Q and zr → zr,i =
pr · Q

(pi + pr ) · Q
Q is the total incoming momentum

• Transverse momentum

kµ⊥ → kµ⊥,i,r = ζi,rp
µ
r − ζr,ipµi + ζir p̃

µ
ir ,

ζi,r = zi,r −
yir

αiry(ir)Q

, ζi,r = zi,r −
yir

αiry(ir)Q

, ζi,r =
yir

αiry ĩr Q

(zr,i − zi,r )

We have p̃ir · k⊥,i,r = 0 and k⊥,i,r → 0 in the collinear limit (no gauge term)
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Single unresolved counterterms

The collinear and soft momentum mappings define extensions of the limit formulae over
the full phase space

Cir |M(0)
m+2|2 −→ C(0,0)

ir

Sr |M(0)
m+2|2 −→ S(0,0)

r

CirSr |M(0)
m+2|2 −→ CirS

(0,0)
r

• On the r.h.s. C(0,0)
ir , S(0,0)

r and CirS
(0,0)
r are functions of the original momenta that

inherit the notation of the operators, but have nothing to do with taking limits

• Precise definitions of momenta, momentum fractions zi , zr and transverse
momentum k⊥ that appear in the AP functions are as above

The true subtraction term

A1|M(0)
m+2|2 −→ A1|M(0)

m+2|2 =
∑
r

[∑
i 6=r

1

2
C(0,0)
ir + S(0,0)

r −
∑
i 6=r

CirS
(0,0)
r

]

The approximate cross section

dσ
RR,A1
m+2 = dφm+1[dp1]A1|M(0)

m+2|2
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Double unresolved A2 subtractions – IR fractorization

Doubly-unresolved IR limits

• Triple collinear: pi ||pr ||ps

Cirs |M(0)
m+2(pi , pr , ps . . .)|2 = (8παsµ

2ε)2 1

s2
irs

P̂fi fr fs ⊗ |M
(0)
m (pirs , . . .)|2

• Double collinear: pi ||pr and pj ||ps

Cir ;js |M(0)
m+2(pi , pr , pj , ps . . .)|2 = (8παsµ

2ε)2 1

sir sjs
P̂fi fr ⊗ P̂fj fs ⊗ |M

(0)
m (pir , pjs , . . .)|2

• Soft-collinear: pi ||pr and ps → 0

CSir ;s |M(0)
m+2(pi , pr , ps . . .)|2 = −(8παsµ

2ε)2
∑
j,k

1

2
Sjk (s)

1

sir
P̂fi fr ⊗ |M

(0)
m,(j,k)

(pir ,�Zps , . . .)|2

• Double soft: pr , ps → 0

Sr |M(0)
m+2(pr , ps . . .)|2 = (8παsµ

2ε)2

[ ∑
i,k,j,l

1

8
Sik (r)Sjl (r)|M(0)

m,(i,k),(j,l)
(�Zpr ,�Zps , . . .)|2

− 1

4
CA

∑
i,k

Sik (r , s)|M(0)
m,(i,k)

(�Zpr ,�Zps , . . .)|2
]
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Double unresolved A2 subtractions – matching

The complete double unresolved subtraction term has the structure

A2|M(0)
m+2|2 =

∑
r

∑
s 6=r

{ ∑
i 6=r,s

[
1

6
Cirs +

∑
j 6=i,r,s

1

8
Cir ;js +

1

2
CSir ;s

]
+

1

2
Srs

−
∑
i 6=r,s

[
1

2
CirsCSir ;s +

∑
j 6=i,r,s

1

2
Cir ;jsCSir ;s +

1

2
CirsSrs + CSir ;sSrs

+
∑

j 6=i,r,s

1

2
Cir ;jsSrs

]
+
∑
i 6=r,s

[
CirsCSir ;sSrs +

∑
j 6=i,r,s

Cir ;jsCSir ;sSrs

]}
|M(0)

m+2|2

• Must provide precise definitions of momenta entering factorized matrix elements

• Also of zi , zr and k⊥
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Double unresolved A2 subtractions – matching

The complete double unresolved subtraction term has the structure

A2|M(0)
m+2|2 =

∑
r

∑
s 6=r

{ ∑
i 6=r,s

[
1

6
Cirs +

∑
j 6=i,r,s

1

8
Cir ;js +

1

2
CSir ;s

]
+

1

2
Srs

−
∑
i 6=r,s

[
1

2
CirsCSir ;s +

∑
j 6=i,r,s

1

2
Cir ;jsCSir ;s +

1

2
CirsSrs + CSir ;sSrs

−
∑

j 6=i,r,s

1

2
Cir ;jsSrs −CirsCSir ;sSrs

]}
|M(0)

m+2|2

• Must provide precise definitions of momenta entering factorized matrix elements

• Also of zi , zr and k⊥
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Double unresolved A2 subtractions – extension

Definition of momenta entering factorized matrix elements: momentum mappings

{p}m+2 → {p̃}m

• Implement momentum conservation

• Mass-shell conditions conserved

• Lead to an exact factorization of the m + 2 parton phase space

• Respect the structure of cancellations

Momentum mappings

• Separate momentum mappings for triple collinear, double collinear, soft-collinear and
double soft subtractions

• Recoil is distributed democratically (no spectator)

• Simple generalizations of single unresolved mappings
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Double unresolved counterterms

The various momentum mappings define extensions of the limit formulae over the full
phase space

Cirs |M(0)
m+2|2 −→ C(0,0)

irs

Cir ;js |M(0)
m+2|2 −→ C(0,0)

ir ;js

CSir ;s |M(0)
m+2|2 −→ CS(0,0)

ir ;s

Srs |M(0)
m+2|2 −→ S(0,0)

rs

...

• On the r.h.s. C(0,0)
ir , S(0,0)

r and CirS
(0,0)
r are functions of the original momenta that

inherit the notation of the operators, but have nothing to do with taking limits.

• Precise definitions of momentum fractions and transverse momenta that appear in
the AP functions are available, but not exhibited.
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Double unresolved counterterms

The true subtraction term

A2|M(0)
m+2|2 =

∑
r

∑
s 6=r

{ ∑
i 6=r,s

[
1

6
C(0,0)
irs +

∑
j 6=i,r,s

1

8
C(0,0)
ir ;js +

1

2
CS(0,0)

ir ;s

]
+

1

2
S(0,0)
rs

−
∑
i 6=r,s

[
1

2
CirsCS

(0,0)
ir ;s +

∑
j 6=i,r,s

1

2
Cir ;jsCS

(0,0)
ir ;s +

1

2
CirsS

(0,0)
rs + CSir ;sS

(0,0)
rs

−
∑

j 6=i,r,s

1

2
Cir ;jsS

(0,0)
rs − CirsCSir ;sS

(0,0)
rs

]}

The approximate cross section

dσ
RR,A2
m+2 = dφm[dp2]A2|M(0)

m+2|2
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Rest of the unresolved counterterms

The remaining approximate cross sections are constructed in the same way

• In particular, it turns out that dσ
RR,A12
m+2 can be obtained from the single unresolved

limit of dσ
RR,A2
m+2

A12|M(0)
m+2|2 =

∑
r

[∑
i 6=r

1

2
CirA2 + SrA2 −

∑
i 6=r

CirSrA2

]
|M(0)

m+2|2

• This construction relies on the fact that at the level of IR factorization formulae, A1

has universal IR limits, and also on a certain compatibility between iterated single
unresolved and strongly ordered double unresolved IR formulae.

• The extension of A12 must respect this compatibility, which puts certain constraints
on the specific form in which some IR limit formulae are written, e.g.,

Pµν = −Agµν + Bkµ⊥k
ν
⊥ → −Agµν + B(−sir zizr )

kµ⊥k
ν
⊥

k2
⊥

are equivalent at the level of limits (k2
⊥ = −sir zizr ), but should use second form

• Use iterated single unresolved momentum mappings
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Rest of the unresolved counterterms

The remaining approximate cross sections are constructed in the same way

• The real-virtual approximate cross section dσ
RV,A1
m+1 is constructed exactly like

dσ
RR,A1
m+2 , only the specific IR limit formulae change

• The construction of
( ∫

1 dσ
RR,A1
m+2

)
A1 relies on the fact that

∫
1 dσ

RR,A1
m+2 has universal

IR behaviour and proceeds exactly like the building of dσ
RR,A1
m+2
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Universal limits for subtraction terms

The existence of universal IR limits of approximate cross sections is (clearly) not
guaranteed by QCD factorizataion.

• We do not specify which momenta can become unresolved, hence the single
unresolved subtraction terms must themselves have universal IR limits

• In the real-virtual contribution, these terms appear in integrated form, and these
forms again must have universal IR limits

• These are non-trivial constraints, since the (unintegrated and integrated) single soft
factorization formula involves color-correlated matrix elements

S(0,0)
r ∝

∑
i,k

sik

sir skr
〈M(0)

m+1|T iT k |M(0)
m+1〉

• In, say, the pj ||ps limit only the sum

〈M(0)
m+1|T jT k |M(0)

m+1〉+ 〈M(0)
m+1|T sT k |M(0)

m+1〉
factorizes, due to soft gluon coherence, but not the two pieces separately
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Universal limits for subtraction terms

In, say, the pj ||ps limit only the sum

〈M(0)
m+1|T jT k |M(0)

m+1〉+ 〈M(0)
m+1|T sT k |M(0)

m+1〉

factorizes, due to soft gluon coherence, but not the two pieces separately

k

j

s

+

k

j

s

−→

k

js

⊗
j

s
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Universal limits for subtraction terms

Then we must make sure that in any collinear limit (for any i and r), the two appropriate
terms from the soft formula actually go to the same limit

• The eikonal factors are homogeneous in pj and ps , so they go to the same limit
(note no partial fraction decomposition)

Cjs
sjk

sjr skr
=

zj s(js)k

zj s(js)r skr
=

s(js)k

s(js)r skr
and Cjs

ssk

srsskr
=

zss(js)k

zss(js)r skr
=

s(js)k

s(js)r skr

• But we must also have that the mapped momenta that appear in the factorized
matrix elements in

〈M(0)
m+1|T jT k |M(0)

m+1〉 and 〈M(0)
m+1|T sT k |M(0)

m+1〉
also go to the same limit.

• Constrains the soft momentum mapping. A trivial way of satisfying this constraint is
to use the same mapped momenta in all terms in the soft formula ⇔ dipole picture.
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Integrated counterterms

Momentum mappings used to define the counterterms

{p}n+p
R−→ {p̃}n ⇒ dφn+p({p};Q) = dφn({p̃}(R)

n ;Q)[dp
(R)
p,n ]

• lead to exact factorization of phase space

• different collinear and soft mappings (R labels precise limit)

Counterterms are products (in color and spin space) of

• factorized ME’s independent of variables in [dp
(R)
p,n ]

• singular factors (AP functions, soft currents), to be integrated over [dp
(R)
p,n ]

XR({p}n+p) =
(
8παsµ

2ε
)p

SingR(p
(R)
p )⊗ |M(0)

n ({p̃}(R)
n )|2

Can compute once and for all the integral over unresolved partons

∫
p
XR({p}n+p) =

(
8παsµ

2ε
)p [ ∫

p
SingR(p

(R)
p )

]
⊗ |M(0)

n ({p̃}(R)
n )|2
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Solving the integrals

Strategy for computing the integrals: direct integration

1. write phase space in terms of
angles and energies

2. angular integrals in terms of
Mellin-Barnes representations

3. resolve the ε poles by analytic
continuation

4. MB integrals to Euler-type
integrals, pole coefficients are finite
parametric integrals

1. choose explicit parametrization of
phase space

2. write the parametric integral
representation in chosen variables

3. resolve the ε poles by sector
decomposition

4. pole coefficients are finite
parametric integrals

5. evaluate the parametric integrals in terms of multiple polylogs

6. simplify result (optional)

⇓

Poles and logs of the finite parts known fully analytically, regular pieces of finite parts
computed numerically on a grid
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Pole cancellation in the VV contribution

After adding all integrated approximate cross sections the double virtual contribution
must be finite in ε.

σNNLO
m =

∫
m

{
dσVV

m +

∫
2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫
1

[
dσ

RV,A1
m+1 +

(∫
1
dσ

RR,A1
m+2

)
A1
]}

Jm

• After summing over unobserved flavors, all integrated approximate cross sections can
be written as products (in color space) of various insertion operators with lower
point cross sections.

• Have checked the cancellation of the 1
ε4 and 1

ε3 poles analytically for any number of
jets (i.e., with m symbolic).

• Have checked m = 2 (e+e− → qq̄, H → bb̄) explicitly and we find that all poles
cancel.

• Have checked m = 3 (e+e− → qq̄g) explicitly and we find that all poles cancel.
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Example: H → bb̄

The double virtual contribution has the following pole structure (µ2 = m2
H)

dσVV
H→bb̄

=

(
αs(µ2)

2π

)2

dσB
H→bb̄

{
2C2

F

ε4
+

(
11CACF

4
+ 6C2

F −
CFnf

2

)
1

ε3

+

[(
8

9
+
π2

12

)
CACF +

(
17

2
− 2π2

)
C2
F −

2CFnf

9

]
1

ε2

+

[(
− 961

216
+

13ζ3

2

)
CACF +

(
109

8
− 2π2 − 14ζ3

)
C2
F +

65CFnf

108

]
1

ε

}
(Anastasiou, Herzog, Lazopoulos, arXiv:0111.2368)

The sum of the integrated approximate cross sections gives (µ2 = m2
H)∑∫

dσA =

(
αs(µ2)

2π

)2

dσB
H→bb̄

{−2C2
F

ε4
+

(
− 11CACF

4
− 6C2

F +
CFnf

2

)
1

ε3

+

[(
− 8

9
− π2

12

)
CACF +

(
− 17

2
+ 2π2

)
C2
F +

2CFnf

9

]
1

ε2

+

[(
961

216
− 13ζ3

2

)
CACF +

(
− 109

8
+ 2π2 + 14ζ3

)
C2
F −

65CFnf

108

]
1

ε

}
(Del Duca, Duhr, GS, Tramontano, Trócsányi,

arXiv:1501.07226)
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Example: H → bb̄

The double virtual contribution has the following pole structure (µ2 = m2
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Example: e+e− → 3 jets

The double virtual contribution has the following pole structure (µ2 = s)

dσVV
3 = Poles

(
A

(2×0)
3 + A

(1×1)
3

)
+ F inite

(
A

(2×0)
3 + A

(1×1)
3

)
where

Poles
(
A

(2×0)
3 + A

(1×1)
3

)
= 2

[
−
(
I (1)
qq̄g (ε)

)2
− β0

ε
I (1)
qq̄g (ε)

+ e−εγ
Γ(1− 2ε)

Γ(1− ε)

(
β0

ε
+ K

)
I (1)
qq̄g (2ε) + H(2)

qq̄g

]
A0

3(1q , 3g , 2q̄)

+ 2I (1)
qq̄g (ε)A1×0

3 (1q , 3g , 2q̄)

with

H(2)
qq̄g =

eεγ

4εΓ(1− ε)

[(
4ζ3 +

589

432
− 11π2

72

)
Nc +

(
− 1

2
ζ3 −

41

54
− π2

48

)
+

(
− 3ζ3 −

3

16
+
π2

4

)
1

Nc
+

(
− 19

18
+
π2

36

)
Ncnf +

(
− 1

54
− π2

24

)
nf

Nc
+

5

27
n2
f

]
(Gehrmann-De Ridder, Gehrmann, Glover, Heinrich,

arXiv:0710.0346)
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Example: e+e− → 3 jets

The double virtual contribution has the following pole structure (µ2 = s)

dσVV
3 = Poles

(
A

(2×0)
3 + A

(1×1)
3

)
+ F inite

(
A

(2×0)
3 + A

(1×1)
3

)
Adding the sum of the integrated approximate cross sections gives

Poles
(
A

(2×0)
3 + A

(1×1)
3

)
+ Poles

∑∫
dσA = 117k terms

• zero numerically in any phase space point

• zero analytically after simplification using symbol technology (C. Duhr)
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Event shapes in e+e− → 3 jets

NNLO coefficients (O(α3
s) parts) for thrust and the C -parameter

• Thrust

-6000

-4000

-2000

0

2000

4000

6000

8000

τ
C
(τ
)

CoLoRFulNNLO
SW
GGGH

0.8
1.0
1.2

S
W

,
M
G
5

MG5

0.8
1.0
1.2

G
G
G
H

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
τ

τ = 1−max
~n

(∑
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• C -parameter
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Constrained subtractions

We can constrain subtractions to near singular regions: α0 ∈ (0, 1]

• poles cancel numerically (α0 = 0.1)

dσVV
H→bb̄

+
∑∫

dσA =
5.4× 10−8

ε4
+

3.9× 10−5

ε3
+

3.3× 10−3

ε2
+

6.7× 10−3

ε
+O(1)

Err

(∑∫
dσA

)
=

3.1× 10−5

ε4
+

5.0× 10−4

ε3
+

8.1× 10−3

ε2
+

7.7× 10−2

ε
+O(1)

• Pesudorapidity of leading jet in H → bb̄
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Constrained subtractions

We can constrain subtractions to near singular regions: α0 ∈ (0, 1]

• improved efficiency

α0 1 0.1
timing (rel.) 1 0.40
〈Nsub〉 52 14.5

〈Nsub〉 is the average number of subtraction terms computed
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Towards processes with hadronic initial states
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The NNLO cross section with initial states

Overall structure unchanged, but must include (known) mass factorization counterterms

σNNLO[J] =

∫
m+2

dσRR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m
dσVV

m Jm

+

∫
m+1

dσC1
m+1Jm+1 +

∫
m
dσC2

m Jm

“No new conceptual issues, but lots of tedious details to work out.”

Morally true 4

• IR factorization formulae known from crossing and/or direct computation

• Principles of matching, extension unchanged (only more terms to catalog)

But 8

• Need new mappings for initial-final collinear limits

• Mappings not suited for processes with massive particles (e.g., V , H)

• Naive crossing of momentum fractions z and transverse momenta k⊥ will not work
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IR factorization from crossing

The symbolic operators Car and Sr denote taking the single collinear and single soft limits

• Collinear: pa||pr (pr → (1− xa)pa + k⊥ +O(k2
⊥))

Car |M(0)
m+2(pr , . . . ; pa + pb)|2 = 8παsµ

2ε 1

xa

1

sar

× P̂far fr (xa, xr , k⊥; ε)⊗ |M(0)
m+1(�Zpr , . . . ; p(ar) + pb)|2

where the initial-final AP kernel is related to the final-final one by crossing

P̂far fr (xa, xr , k⊥; ε) = −(−1)F (fa)+F (far )xaP̂fa f̄r
(1/xa,−xr/xa, k⊥; ε)

• Soft: pr → 0

Sr |M(0)
m+2(pr , . . . ; pa + pb)|2 = −8παsµ

2ε
∑
j,k

sjk

sjr skr
|M(0)

m+1,(i,k)
(�Zpr , . . . ; pa + pb)|2

In order to avoid double subtraction overlapping limits must be identified and removed

All quantities (momenta, momentum fractions xa, xr , transverse momentum k⊥) must be
unambiguously defined over the full phase space
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New momentum mappings

The recoil is redistributed to the initial momenta

Collinear mapping for initial-final configurations

p̃µa = ξa,rp
µ
a , p̃µb = pµb , p̃µn = Λ(Q, Q̃)µν pνn , n 6= a, r

ξa,r = 1−
2pr · p(ab)

p2
(ab)

• momentum conservation

pµa + pµb = pµr +
∑
n 6=r

pµ , p̃µa + p̃µb =
∑
n 6=r

p̃µ

• phase space convolution

dφm+2({p}; p(ab)) =

∫ ξmax

ξmin

dξ dφm+1({p̃}(ar); ξpa + pb)
p2

(ab)

2π
dφ2(Q, pr ; p(ab))
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New momentum mappings

The recoil is redistributed to the initial momenta

New collinear mapping for final-final configurations

p̃µa = (1− αir )pµa , p̃µb = (1− αir )pµb , p̃µir = pµi + pµr − αirQ
µ ,

p̃µn = pµn , n 6= i , r ,

αir =
1

2

[
y(ir)Q −

√
y2

(ir)Q
− 4yir

]
• momentum conservation

pµa + pµb = pµi + pµr +
∑
n 6=i,r

pµ , p̃µa + p̃µb = p̃µir +
∑
n 6=i,r

p̃µ

• phase space convolution

dφm+2({p}; p(ab)) =

∫ αmax

αmin

dα dφm+1({p̃}(ir); (1−α)p(ab))
2p̃ir · p(ab)

2π
dφ2(pi , pr ; p̃ir+αp(ab))
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New momentum mappings

The recoil is redistributed to the initial momenta

New soft mapping

p̃µa =
√
λrp

µ
a , p̃µb =

√
λrp

µ
b , p̃µn = Λ(Q, Q̃)µν pνn , n 6= r ,

λr = 1−
2pr · p(ab)

p2
(ab)

• momentum conservation

pµa + pµb = pµr +
∑
n 6=i,r

pµ , p̃µa + p̃µb =
∑
n 6=r

p̃µ

• phase space convolution

dφm+2({p}; p(ab)) =

∫ λmax

λmin

dλdφm+1({p̃}(r);
√
λp(ab))

p2
(ab)

2π
dφ2(Q, pr ; p(ab))
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New momentum mappings

The recoil is redistributed to the initial momenta

New soft mapping

p̃µa =
√
λrp

µ
a , p̃µb =

√
λrp

µ
b , p̃µn = Λ(Q, Q̃)µν pνn , n 6= r ,

λr = 1−
2pr · p(ab)

p2
(ab)

• momentum conservation

pµa + pµb = pµr +
∑
n 6=i,r

pµ , p̃µa + p̃µb =
∑
n 6=r

p̃µ

• phase space convolution

dφm+2({p}; p(ab)) =

∫ λmax

λmin

dλdφm+1({p̃}(r);
√
λp(ab))

p2
(ab)

2π
dφ2(Q, pr ; p(ab))

Double unresolved mappings are straightforward generalizations of the above
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Definitions of xa, xr and k⊥

Define momentum fractions from crossing?

• Single collinear 4

xa =
1

zi,r

∣∣∣∣
pi→−pa

=
(pi + pr ) · Q

pi · Q

∣∣∣∣
pi→−pa

= 1− pr · Q
pa · Q

= ξa,r

Same as ξa,r appearing in the collinear mapping, clearly xa ∈ [0, 1].

• Triple collinear 8

xa
?
=

1

zi,rs

∣∣∣∣
pi→−pa

=
(pi + pr + ps) · Q

pi · Q

∣∣∣∣
pi→−pa

= 1− pr · Q
pa · Q

− ps · Q
pa · Q

But we find that 0 /∈ [0, 1]! In fact, xa can vanish at “ordinary” points inside the
double real phase space.

Momentum fractions for initial-final collinear splitting cannot be defined by naive crossing.

Have tentative definitions for momentum fractions and transverse momenta for all single
and double limits
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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Does it work?

Check that the ratio of the double real emission matrix element to the the sum of all
subtractions tends to one for all IR limits. E.g., u(p1) + d̄(p2)→W−(p3) + g(p4) + g(p5)
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Does it work?

Subtractions work as designed in all limits, so try to integrate

• Cutoff dependence of subtracted RR contribution to total cross section for pp →W−

(2pi · pj > ymin ŝ)
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Does it work?

Subtractions work as designed in all limits, so try to integrate

• Subtracted RR contribution to rapidity distribution of the W in pp →W±
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Conclusions and outlook
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Conclusions and outlook

CoLoRFulNNLO framework

• Completely Local subtRactions for Fully differential NNLO

• Construction of subtraction terms based on IR limit formulae

• Analytic integration of subtraction terms feasible with modern techniques

• Demonstrated cancellation of poles for m = 2 and m = 3

• Worked out in full detail for processes with no colored particles in the initial state

• Good numerical convergence and stability for e+e− → 3 jets
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Conclusions and outlook

Extension to hadronic initial states on the way

• Subtraction terms for double real radiation defined for generic processes

• Subtraction terms for real-virtual radiation tentatively defined for generic processes

TODO:

• Subtraction terms for mass factorization counterterms (NLO complexity)

• Some integrals done, but many more to do
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