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• In this talk: overview of an unconventional analysis technique that is beginning to be used 
more widely by the ATLAS experiment called Anomaly Detection 

• Covering the topics:

Ø What is Anomaly Detection and why is it an appealing choice of analysis method? 
Ø What machine learning models are used for Anomaly Detection? 
Ø How is Anomaly Detection being used in this analysis that targets di-lepton final states?
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• Despite extensive efforts by ATLAS and other experiments, we have not 
discovered any New Physics since the discovery of the Higgs boson 

   → This begs the question - are we looking in the correct places?

• Traditional analysis methods - target a specific BSM model and perform 
searches in regions where the target signal dominates over the backgrounds 
(S>>B)

• Many phase spaces exist that have not yet been covered by ATLAS analyses
• Often because they contain difficult to model backgrounds 

How can we extend these BSM searches?
 →  One approach is to use Anomaly Detection to perform signal model-independent searches to target phase    

     spaces that are not attainable or have not yet been considered by traditional analysis methods 
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• Anomaly Detection searches therefore have several benefits over traditional analysis methods:

• Model agnostic searches → search for New Physics without signal model assumptions
• Not sensitive to mis-modelling of MC simulated backgrounds → data-driven background estimations 
• Allow for targeting of complicated phase spaces, e.g., containing high multiplicities
• Simultaneously target many BSM signatures 

• However, there are also some challenges to face when performing such an analysis, for example:

• It can be difficult to design an analysis that is completely unbiased to potential BSM signals 
• Designing robust validation methods can be more challenging than traditional searches 
• Performing a model-independent analysis → subject to the look-elsewhere effect

Benefits

Challenges



08/04/2025 4IOP, Cambridge 2025, jennifer.rachel.curran@cern.ch

What is Anomaly Detection?  

• common type of machine learning
• requires assumptions on the signal model 

being searched for
• model is trained to predict labels on data
• for example,  to classify an event as a Signal 

or SM Background

• used for Anomaly Detection
• train on Monte Carlo backgrounds only or SM dominated data
• no labels in the training data 
• NO knowledge of the signal required 
• explicitly or implicitly learn to estimate the probability density

Supervised ML: Unsupervised ML: 

What is Anomaly Detection?
• Anomaly Detection refers to the use of unsupervised machine learning (ML) algorithms to identify rare and different 

events that could be attributed to new physics 

What is Unsupervised ML?
• Refers to training the ML algorithm without labels 

• 2 main types of ML used for New Physics searches:  Supervised ML and Unsupervised ML 
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• These ML algorithms are trained on data (or MC simulated backgrounds)

• No knowledge of the potential BSM signal is required during training 
  → signal model independent 

• Search for anything that looks different to the SM data by defining an 
Anomaly Score

• Defining possible signal regions using the anomaly score allows for the 
simultaneous targeting of many BSM signatures  

Why use Unsupervised ML?

AnomalyBackground



Anomaly Detection in di-lepton searches 
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• This analysis performs Event-based Anomaly Detection for outlier detection → Identify rare events that differ to the SM 
dominated data

• Targeting events with ≥ 2 leptons (electrons, muons) + X in the ATLAS detector 
  → record an event with 2 charged leptons and any other object e.g. jets, b-jets or photons 

•  Why search for di-lepton BSM events in the ATLAS detector in the LHC?

• Good reconstruction of high energy leptons with the electromagnetic 
       calorimeters and muon chambers
• Forward-backward symmetry means missing energy in direction transverse 
       to beam (𝐸!"#$$) can be determined  
• Allows us to target a wide variety of possible BSM signatures, for example: 

Ø High mass dilepton resonances: Z’ E6 interpretation, RS gravitons etc.
Ø Heavy Scalar (Higgs) to 𝑙%𝑙& + 𝐸!"#$$: 	S → 𝑍𝑍 → �̅�𝜈𝑙%𝑙&	
Ø SUSY stop pairs decaying to *𝑏𝑏𝑙%𝑙&+ 𝐸!"#$$ 
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How do we use Anomaly Detection in the analysis? 

Step 2:
Train AD algorithms on 1% 

data 

Train AD algorithms 
using event-based 
information from small 
percentage of the data 
including: 

• 4-momenta of objects 
such as leptons, jets, 
b-jets, photons  
(𝐸, 𝑝! , 𝜂, 𝜙) 

• 𝐸!"#$$ , 𝐸!"#$$(𝜙) 
• Angular separation of 

leptons (𝑙): ∆𝑅%%, ∆𝜙%%

Step 5:
Perform search for 

BSM physics

Select events that 
contain at least 2 
leptons:

• Leptons = 
electrons or muons

• With leading 2 
leptons, pT > 27 
GeV

Loose selections → 
target a wide range 
of BSM signatures 

Why training is performed on a small percentage of data: 

• Remain unbiased/blinded to the bulk of the dataset 
• New Physics events are expected to be rare 
• If present in small % data 
 → should be in tails of anomaly score 

→ not statistically impactful in the Control Regions  

Step 1: 
Basic object selections
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Step 1: 
Basic object selections

How do we use Anomaly Detection in the analysis? 

Step 2:
Train AD algorithms on 1% 

data 

Step 3: 
Test performance on MC BSM 

signals 

Select events that 
contain at least 2 
leptons:

• Leptons = 
electrons or muons

• With leading 2 
leptons, pT > 27 
GeV

Loose selections → 
target a wide range 
of BSM signatures 

Evaluate the performance of 
the AD algorithm by testing on 
MC BSM signals 
• E.g., Observe separation in the 

Anomaly score of the model

black = test data vs Z’ 2TeV, Z’ 3TeV, heavy 
Higgs 400GeV

Train AD algorithms 
using event-based 
information from small 
percentage of the data 
including: 

• 4-momenta of objects 
such as leptons, jets, 
b-jets, photons  
(𝐸, 𝑝! , 𝜂, 𝜙) 

• 𝐸!"#$$ , 𝐸!"#$$(𝜙) 
• Angular separation of 

leptons (𝑙): ∆𝑅%%, ∆𝜙%%

• Trained on 1% Run2 (2015-2018) data
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Step 1: 
Basic object selections

How do we use Anomaly Detection in the analysis? 

Step 2:
Train AD algorithms on 1% 

data 

Step 3: 
Test performance on MC BSM 

signals 

Evaluate the performance of 
the AD algorithm by testing on 
MC BSM signals 
• E.g., Observe separation in the 

Anomaly score of the model

black = test data vs Z’ 2TeV, Z’ 3TeV, heavy 
Higgs 400GeV

Use the anomaly score 
to help define model 
agnostic Signal and 
Control regions 

e.g., based on 90% 
background acceptance 

vs rejection 

Step 4:
Define SR/CR based on 

anomaly score 

SRCR

Train AD algorithms 
using event-based 
information from small 
percentage of the data 
including: 

• 4-momenta of objects 
such as leptons, jets, 
b-jets, photons  
(𝐸, 𝑝! , 𝜂, 𝜙) 

• 𝐸!"#$$ , 𝐸!"#$$(𝜙) 
• Angular separation of 

leptons (𝑙): ∆𝑅%%, ∆𝜙%%

SRCR

Select events that 
contain at least 2 
leptons:

• Leptons = 
electrons or muons

• With leading 2 
leptons, pT > 27 
GeV

Loose selections → 
target a wide range 
of BSM signatures 
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How do we use Anomaly Detection in the analysis? 

Step 2:
Train AD algorithms on 1% 

data 

Step 3: 
Test performance on MC BSM 

signals 

Evaluate the performance of 
the AD algorithm by testing on 
MC BSM signals 
• E.g., Observe separation in the 

Anomaly score of the model

black = test data vs Z’ 2TeV, Z’ 3TeV, heavy 
Higgs 400GeV

Use the anomaly score 
to help define model 
agnostic Signal and 
Control regions 

e.g., based on 90% 
background acceptance 

vs rejection 

SRCR

Train AD algorithms 
using event-based 
information from small 
percentage of the data 
including: 

• 4-momenta of objects 
such as leptons, jets, 
b-jets, photons  
(𝐸, 𝑝! , 𝜂, 𝜙) 

• 𝐸!"#$$ , 𝐸!"#$$(𝜙) 
• Angular separation of 

leptons (𝑙): ∆𝑅%%, ∆𝜙%%

Step 5:
Perform search for 

BSM physics

Step 4:
Define SR/CR based on 

anomaly score 

Step 5:
Perform search for BSM 

physics

Perform a search for 
New Physics using the 
full Run 2 / Run 3 data 
in the SR of the chosen 
final state

If no deviations are found: 
set model-dependent and 
model-independent limits

Select events that 
contain at least 2 
leptons:

• Leptons = 
electrons or muons

• With leading 2 
leptons, pT > 27 
GeV

Loose selections → 
target a wide range 
of BSM signatures 

Step 1: 
Basic object selections
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• Common Unsupervised ML

• Designed to automate the process of optimising the 
representation of the input feature space

• AE Trained on 1% Run2 (2015-2018) data

• Example Anomaly Score (MSE) output comparing a 
small percentage of Run 2 test data to the BSM signal:
• Heavy Scalar (Higgs) to 2 leptons + 𝐸!"#$$:

•  S → 𝑍𝑍 → �̅�𝜈𝑙%𝑙&	
• Mass range 200 GeV – 3 TeV

One Example: the AutoEncoder (AE)

• Investigating different unsupervised ML algorithms to evaluate which is most effective at identifying a wide range of 
BSM signatures
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• These results are currently being used to produce 
expected model-independent and model-
dependent limits for this BSM signal for final 
states containing 2 leptons and 𝑬𝑻𝒎𝒊𝒔𝒔 

• Example of the limits set for the dedicated Run 2 
analysis for the BSM signal – heavy Higgs boson 
to 4 leptons and 2 leptons + 𝐸!"#$$  

• Aim is to produce comparable limits using the 
Anomaly Detection approach 

Example: AutoEncoder (AE)

Eur. Phys. J. C
81, 332 (2021)

https://doi.org/10.1140/epjc/s10052-021-09013-y
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• Anomaly Detection (AD) methods provide promising new model-independent analysis techniques 

• Such methods can be sensitive to a broad scope of BSM signatures simultaneously 

• In this analysis, we perform event-based anomaly detection, allowing for the exploitation of correlations in the  
kinematics of an event that have not necessarily been considered before

• As we are targeting di-lepton final states, the AD approach could be sensitive to a variety of BSM signatures, 
including heavy di-lepton resonances, such as Z’, and the heavy Higgs boson

• By producing model-independent limits in Signal Regions defined by these AD scores, we extend the phase 
space of traditional searches to potentially uncovered regions 



Back-Up
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• Several Anomaly Detection (AD) searches have already been published by the ATLAS collaboration 

• For example, jet-level AD was used to set upper limits on the production cross-section: 𝜎,
-

𝑝𝑝 → 𝑌 → 𝐻𝑋 →
	2𝑏𝑏2𝑞𝑞  of a high mass particle (Y) decaying to SM Higgs boson (H) and a new particle X of 1.5 < mY < 6 TeV  & 65 < 
mX 3000 GeV [DOI: 10.1103/PhysRevD.108.052009]

• Additionally, event-based AD was performed in the jet+X final state and upper limits on the production cross 
section of generic resonant signals of varying mass were produced [DOI: 10.1103/PhysRevLett.132.081801]

• Further weakly supervised AD searches have been performed, e.g., [DOI: 10.1103/PhysRevLett.125.131801]

• Many more ongoing 

• In addition to targeting many BSM signatures, the applications and interpretations of AD are also vast  

Anomaly Detection in ATLAS 

https://link.aps.org/doi/10.1103/PhysRevD.108.052009
https://doi.org/10.1103/PhysRevLett.132.081801
https://doi.org/10.1103/PhysRevLett.125.131801
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Event Selection 

• Using full Run 2 and partial Run 3 (2022, 2023) data : ~196 fb-1

• 3 channels defined: di-electron, di-muon and electron + muon

• Possibility to combine di-electron + di-muon  into a single channel (electron + muon is kept separate due to 
background composition)
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Event Selection 

• Targeting ll+X final states → Initial focus on ll + MET (+X) final states

•  Using mc20/mc23, main backgrounds under consideration: 
•  Zjets, �̅�𝒕, Single Top, Diboson, Triboson,  Wjets  

• 1% Run 2 / Run 3 used for training of ML algorithms: ~1.39fb-1/0.56fb-1

• Signals currently being used as benchmarks: 
• High mass dilepton resonances (ee, mumu) – Z’ E6 interpretation, RS gravitons, MSSM Higgs etc.
• Heavy Scalar (Higgs) to ll + 𝐸!"#$$  (ee, mumu)  - S→ZZ →llvv (range of masses 200-2400GeV)
• SUSY stop pairs to bbll + MET (emu) 
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• Investigating a number of different unsupervised ML algorithms to evaluate which is most effective at identifying a 
wide range of BSM signatures

• 3 main algorithms are currently under investigation:
• Autoencoder: a common unsupervised ML algorithm that is designed to automate the process of optimising 

the representation of the input feature space. The differences between the input and reconstructed data are 
used to form an anomaly score. 

• DSVDD (Deep Set Vector Data Descriptor):  like the Autoencoder, the DSVDD learns a different 
representation of the input phase space that is more optimal for identifying anomalies. These models should 
be able to identify outliers from the SM data [arXiv:2106.10164]. 

• Autoregressive Flow: tries to explicitly learn the likelihood of an event which can then be used to form the 
anomaly score. Therefore, these models should be able to identify less probable or rarer events 
[arXiv:2106.10164]. 

What Anomaly Detection methods are used in the analysis? 

https://arxiv.org/abs/2106.10164
https://arxiv.org/abs/2106.10164


AD Algorithms 
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Reconstruction Loss = !"∑#(𝑥# − 𝑥#
$)%

x x’Encoder Decoder

Latent 
Space

𝜓 𝜙

Inputs
Reconstructed 

Inputs

z

BottleneckAutoEncoder (AE)

• Common Unsupervised ML

• Designed to automate the process of optimising the representation of 
the input feature space

• Aims to learn a pair of functions: the encoder ( 𝜓	) and decoder (	∅	) 
such that the error on the reconstructed data (∑# 𝑥# − ∅(𝜓(𝑥#)) +) is 
minimised (the mean square error (MSE))

• Deciding if an event is anomalous: 

• If MSE is small → good reconstruction → likely SM
• If MSE is large → poor reconstruction → could be BSM

→  Investigate further

Reconstruction Loss = !"∑#(𝑥# − 𝑥#
$)%

IOP, Cambridge 2025, jennifer.rachel.curran@cern.ch
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arXiv:2106.10164

Deep Set Vector Data Descriptor (DSVDD)

• Similar to an AE

• Maps input data to a multidimensional point of a defined target value 
e.g., d=5, n= 1 -> (1, 1, 1, 1, 1). 

• The latent space = a multidimensional space that can be thought of 
as a compressed representation of the input feature space that 
encodes meaningful information on this input space

• The anomaly score = the distance to the multidimensional point

• The SM data should lie within the defined multidimensional region

• Anomalous (BSM) data should fall outside this region

IOP, Cambridge 2025, jennifer.rachel.curran@cern.ch

https://arxiv.org/abs/2106.10164
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Autoregressive Flow

• Attempts to evaluate the likelihood of each event and 
convert this to an anomaly score.

• These models start from a uniform prior distribution and try 
to determine a probability distribution for the known data 
(the SM) through transformations of parameterised 
variables.

• SM events that the model is trained on should have a high 
likelihood, whilst BSM events should have a low likelihood. 
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https://arxiv.org/abs/2106.10164

