$\begin{array}{c} {\rm Analysis}\\ {\rm Search \ for \ }B^0_s \to \phi \eta' \ {\rm decays \ in \ Run \ 1 \ + \ Run \ 2 \ dataset \ at \ LHCb} \end{array}$

Yiming Liu¹, Matthew Needham¹, Ozlem Ozcelik²

¹University of Edinburgh ²CERN

IOP Joint APP and HEPP Annual Conference 2025 April 09, 2025

イロン 不同 とくほど 不良 とうせい

Review

- Flavor-Changing Neutral Current(FCNC) decays of B⁰_s
- ▶ $s\bar{s}$ as Vector(V) $\phi(1020)$ or Pseudoscalar(P) $\eta'(958)$
- PP/VV/PV(VP) final states

Figure: Lowest-order diagrams for the $B_s^0 \rightarrow \eta' \phi$ decay

Review

•
$$\mathcal{B}(B_s^0 \to \phi \phi)(VV) = (1.84 \pm 0.14) \times 10^{-5} \to \text{JHEP } 2015(10):53$$

• $\mathcal{B}(B_s^0 \to \eta' \eta')(PP) = (3.3 \pm 0.7) \times 10^{-5} \to \text{PRL } 115.051801$
• $B_s^0 \to \phi \eta'$

- Supressed PV/VP
- ▶ No signal in Kun 1 → JHEP 2017(05):158 ▶ $B < 0.82(1.01) \times 10^{-6}$

Figure: Lowest-order diagrams for the $B_s^0 \rightarrow \eta' \phi$ decay

Review

Approach	$B(10^{-6})$
QCD factorisation	$0.05^{+1.18}_{-0.19}$
Pertubative QCD	$0.19_{-0.13}^{+0.20}$
QCD factorisation	$2.2^{+9.4}_{-3.1}$
SCET	$4.3^{+5.2}_{-3.6}$
SU(3) flavour symmetry	5.5 ± 1.8
FAT	13.0 ± 1.6
Pertubative QCD	$20.0^{+16.3}_{-9.1}$
Measurement Run 1	< 0.82 (90% CL)

Table: Prediction of $B^0_s\to\phi\eta'$ Branching Fraction in different theoritical approach, and measurement with run 1 data of LHCb

This Analysis

Decay Modes:

- Signal: $B_s^0 \to \phi(K^+K^-)\eta'(\pi^+\pi^-\gamma)$
- Normalisation(Control): $B_s^0 \rightarrow \phi \phi \rightarrow 4K$
 - Golden channel for charmless B_s^0 meson decays

Dataset:

- ▶ Full Run 1+2 Data & MC Signal & Control Modes
- ► 2016 MC/Rapidsim for additional Background modes

Twiki page here

Strategy

Event selections:

For Normalisation:

- Stripping and Trigger lines
- Offline cuts

For Signal:

- Same Stripping and Trigger lines
- Tighter Offline cuts
- Vetos for specific backgrounds
- MVA

Control mode $B_s^0 \rightarrow \phi \phi \rightarrow 4K$

- Stripping/Trigger
- Offline cuts: kinematics of B_s^0 and products

▶ 72.9(73.8)% ϵ_{sig} in Run 1(2) from MC

Figure: Run 2 data from Stripping

Fit for $B_s^0 \rightarrow \phi \phi \rightarrow 4K$ Data

Figure: Run 1 data selected

- Shape from MC: Double sided crystal ball function
- Combinatorials: Exponential
- ▶ Run 1 Yield: 3053.5 ± 62.2
- Run 2 Yield: 11439.9 ± 122.4

Offline Cuts for Signal $B_s^0 \to \phi(K^+K^-)\eta'(\pi^+\pi^-\gamma)$

Same cuts as the control mode

- ► Same Stripping/Trigger
- ► Tighter Offline cuts
 - ► B⁰_s kinematics
 - γ kinematics

Veto of specific background modes:

With misidentified Kaons

- $\blacktriangleright K^* \to K^{\pm} \pi^{\mp}$
- ► $\Lambda_b \rightarrow p K \eta'$

PartReco

 $\blacktriangleright \phi \to \pi^+ \pi^- (\pi^0 \to \gamma \gamma)$

With random γ

 $\blacktriangleright \ B^0_{d,s} \to (\phi \to KK)\pi\pi$

Additional cuts

- Reconstructed $m_{\phi K \pi}$ and $m_{\phi \pi \pi}$
- Mass windows of ϕ , η' and $(\rho \rightarrow \pi \pi)$
- PID cuts
- Performance validated with MC

くして 前 ふかく ボット 一切 マイロッ

Offline Cuts for Signal Mode

- > 3σ within signal region blinded
- 43.1(44.3)% ϵ_{sig} in Run 1(2) from MC

Figure: Run 2 data from Stripping

MVA

Classifier for combinatorials Boosted Decision Trees(BDT) with XGBoost 18 input variables Calibrated MC signal Sideband background data m_{φη'} > 5600MeV/c²

Figure: SHAP plot of input variables

MVA

Figure: Performance of the XGBoost BDT classifier

- Well discriminated output
- No indication of over/underfit

(日)(周)(日)(日)(日)(日)

MVA Cut

MVA cut based on maximised Punzi Figure of Merit(FoM)

$$\mathit{FoM}(t) = rac{\epsilon_{s}(t)}{a/2 + \sqrt{N_{B}(t)}}$$

(2)

- ε_s(t): Signal efficiency from MC with cut t
 N_B(t) Number of background events left with cut t
- ▶ *a* = 5

Figure: Punzi FoM at different MVA cut value

Figure: Performance of MVA cut

▶ 31.0(34.8)% e_{sig} in Run 1(2) from MC

イロト イヨト イヨト イヨト

$B_s^0 ightarrow \phi \eta'$ background Mass fit

Figure: Fitting of Run 1+2 data with 3σ around the B_s^0 signal region blinded.

Combinational (Blue dash)

►
$$B_s \rightarrow (\phi \rightarrow 2K)(\phi \rightarrow 3\pi)$$
 (Green) Yield: 116.44 ± 32.47

• $\Lambda_b \rightarrow \eta'(\Lambda(1520) \rightarrow pK)$ (Magenta) Yield: 30.77 ± 22.25

Expect yields

Figure: $B_s^0 \rightarrow \phi \eta'$ Toy data with signal yield from Run 1 limit, signal shape from MC

If $\mathcal{B}(B^0_s \to \phi \eta')$ as Run 1 limit at 95(90)% CL we expect:

- 4.72(5.82) events in Run 1
- 39.09(48.15) events in Run 2

CLs test

Figure: CLs for background Model, calculated from toy data

Event number from Run 1 limit(solid lines):

- $\mathcal{B}(B^0_s \to \phi \eta') < 0.82(1.01) \times 10^{-6}$
- 28(35) events at 90(95)% CL

This analysis(dashed lines):

- ▶ 13.5(18.2) events
- ▶ $B < 0.251(0.340) \times 10^{-6}$

イロト イヨト イヨト イヨト

Next Stage

Look at the signal region if:

- 3σ Signal observed \rightarrow First measurement
- ▶ No signal/ lower than $3\sigma \rightarrow$ New upper limit

Thank You

Backup Sildes

Stripping

 ${\tt B2CharmlessInclusive4piAllXOSelectionLine}$

▶ Designed for $B_s^0 \to \rho \rho$ with $\rho \to \pi^+ \pi^-$ or $\rho \to \pi^+ \pi^- \gamma$

 \blacktriangleright Substitute to $\phi \to K^+K^-$ and $\eta' \to \pi^+\pi^-\gamma$

Year	Stripping
2011	21r1p2
2012	21r0p2
2015	24r2
2016	28r2
2017	29r2p1
2018	34r0p1

Table: Version of Stripping Lines used each year

Trigger

	Line
All	L0_Global_TIS
	$L0_HadronDecision_TOS$
Run 1	HIt1TrackAllL0Decision
Run 2	Hlt1TrackMVADecision
	HIt1TwoTrackMVADecision
Run 1	Hlt2Topo(2 3 4)BodyBBDTDecision
	HIt2IncPhiDecision
Run 2	HIt2Topo(2 3 4)BodyDecision
	HIt2IncPhiDecision
	HIt2PhiIncPhiDecision

Table: Triggers for events, the events are required to pass at least one of the lines in L0, and pass at least one of line in HLT1 and HLT2 as TOS

Offline Cuts for Normalisation mode

Particle	Quantity	Cut values
B_s^0	Mass [MeV/ c^2]	> 5000
	ACos(DIRA)	< 0.02
	χ^2_{FD}	> 50.
	$Log(\chi^2_{IP})$	> -6.
	χ^2_{VTX}/ndf	< 6.0
ϕ (1020)	Mass [MeV/ c^2]	1000 - 1040
Track	Multiple_tracks	== 0
	Type I Type II Clones	== 0

Table: Offline selections for the $B^0_s \to \phi \phi$ candidates

Offline Cuts for Signal mode

Particle	Quantity	Cut value
B_s^0	Mass [MeV/ c^2]	> 5000
	ACos(DIRA)	< 0.02
	χ^2_{FD}	> 50.
	$Log(\chi^2_{IP})$	> -6.
	χ^2_{VTX}/ndf	< 6.0
γ	P_T [MeVc]	> 500
ϕ (1020)	Mass [MeV/ c^2]	1000 - 1040
η'	Mass [MeV $/c^2$]	880 - 1040
$ ho(\pi^+\pi^-)$	Mass [MeV c^2]	620 - 920
K	(1-ProbNNp)*ProbNNK	> 0.1
	Momentum [MeV/ <i>c</i>]	< 10000
Track	$Multiple_{tracks}$	== 0
	Type I Type II Clones	== 0

Table: Cuts for the $B_s^0 \rightarrow \phi \eta'$ candidates, the first part is applied on dataset before the MVA training and secon part after.

Background Modes

Decay Modes	MC Type	$BF(imes 10^{-6})$	Visible BF ($\times 10^{-6}$)
$B_d ightarrow (K^* ightarrow K\pi) \eta'$	RapidSim	2.8 ± 0.6	0.551 ± 0.118
$\Lambda_b o \eta' ho K$	15104212	$\textbf{8.48} \pm \textbf{1.31}$	2.50 ± 0.38
$\Lambda_b o \eta'(\Lambda(1520) o ho K)$	RapidSim	$\textbf{3.14} \pm \textbf{0.48}$	0.417 ± 0.065
$B_d ightarrow K^*(\phi ightarrow 3\pi)$	RapidSim	10.0 ± 0.5	1.03 ± 0.06
$B_s ightarrow (\phi ightarrow 2K)(\phi ightarrow 3\pi)$	13104401	18.4 ± 1.4	2.78 ± 0.22
$\Lambda_b o ho K(\phi o 3\pi)$	RapidSim	N/A	N/A
$B_s ightarrow (\phi ightarrow 2K) \pi \pi$	RapidSim	$\textbf{3.5}\pm\textbf{0.5}$	1.72 ± 0.24
$B_{d} ightarrow (\phi ightarrow 2 {\it K}) \pi \pi$	RapidSim	0.18 ± 0.05	0.088 ± 0.003
$B_s o \phi \phi (o 4K)$	13104013	18.4 ± 1.4	$\textbf{4.43} \pm \textbf{0.34}$
$B_{d} ightarrow K^{st}(\phi ightarrow KK)$	11104020	10.0 ± 0.05	3.27 ± 0.16
$\Lambda_b o (\phi o KK)$ pK	RapidSim	N/A	N/A
$B^0_s o (\phi o KK) \eta'$	13104231	< 0.82	< 0.119

Table: Decay modes accounted for in this analysis with Branching fraction, and visible Branching Fraction calculated from the BF times the BF of each product to their specific final states. Red modes are expected peaking in the background

MVA Variables

MVA inputs Pt.1

Variables	Description
B_DIRA_OWNPV	Angle between primary and end vertex
B_ETA	B pseudorapidity η
B_FDCHI2_OWNPV	B flight distance
B_IPCHI2_OWNPV	B impact parameter
B_ENDVERTEX_CHI2	B decay end vertex χ^2
B_DOCA12	Distance between the ϕ and η^\prime vertex
B_CONEDELTAETA	Difference in the direction of the tracks in the cone
B_CONEMULT	Number of tracks in the cone
PID_K	Probability of K as K not π or proton
PID₋pi	Probability of π as π not K or proton
'	

Table: MVA input variables Part 1

MVA inputs Pt.2

_

Variables	Description
Hadrons_PT	Transverse momentum of all hadrons
Hadrons_IPCHI2_OWNPV	Impact parameter of all hadrons
$Hadrons_TRACK_GhostProb$	Probability of a hadron as ghost
etapr₋PT	η' transverse momentum
D_VERTEX	Position difference of ϕ and η' end vertex
gamma₋PT	Photon transverse momentum
$gamma_ProbNN_H$	Photon probability as is hadron

Table: MVA input variables Part 2

Efficiencies and expect yields

$$\mathcal{N}(B^0_s \to \phi \eta') = \mathcal{N}(B^0_s \to \phi \phi) \times \frac{\mathcal{B}(B^0_s \to \phi \eta')}{\mathcal{B}(B^0_s \to \phi \phi)} \times \frac{\mathcal{B}(\eta' \to \pi \pi \gamma)}{\mathcal{B}(\phi \to KK)} \times \frac{\epsilon(B^0_s \to \phi \eta')}{\epsilon(B^0_s \to \phi \phi)}$$
(4)

$$\epsilon_{total} = \epsilon_{gen} \times \epsilon_{reco} \times \epsilon_{sel} \tag{5}$$

	$\epsilon_{\phi\phi}^{run1}$	$\epsilon_{\phi\phi}^{run2}$	$\epsilon^{run1}_{\phi\eta'}$	$\epsilon^{run2}_{\phi\eta'}$
Generation(%)	16.6	17.6	17.7	18.7
Reconstruction(%)	2.738	3.391	0.257	0.652
Selection(%)	72.98	77.89	31.03	34.82
$Total(\times 10^{-3})$	3.317	4.648	0.141	0.424

If $\mathcal{B}(B^0_s \to \phi \eta')$ as Run 1 limit at 95(90)% CL we expect:

▶ $3.17 \pm 0.06(3.91 \pm 0.08)$ events in Run 1

25.28
$$\pm$$
 0.27(31.14 \pm 0.33) events in Run 2

- >